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Abstract
Several goal-oriented problems in the real-world
can be naturally expressed as Stochastic Shortest
Path Problems (SSPs). However, the computa-
tional complexity of solving SSPs makes finding
solutions to even moderately sized problems in-
tractable. Currently, existing state-of-the-art plan-
ners and heuristics often fail to exploit knowledge
learned from solving other instances. This paper
presents an approach for learning Generalized Pol-
icy Automata (GPA): non-deterministic partial poli-
cies that can be used to catalyze the solution pro-
cess. GPAs are learned using relational, feature-
based abstractions, which makes them applicable
on broad classes of related problems with different
object names and quantities. Theoretical analysis
of this approach shows that it guarantees complete-
ness and hierarchical optimality. Our experiments
show that this approach effectively learns broadly
applicable policy knowledge in a few-shot fashion
and significantly outperforms state-of-the-art SSP
solvers on test problems whose object counts are
far greater than those used during training.

1 Introduction
Goal-oriented Markov Decision Processes (MDPs) expressed
as Stochastic Shortest Path problems (SSPs) have been the
subject of active research since they provide a convenient
framework for modeling the uncertainty in action execution
that often arises in the real-world. Recently, research in
deep learning has demonstrated success in finding solutions
to goal-oriented MDPs using image-based state representa-
tions [Tamar et al., 2016; Pong et al., 2018; Levy et al.,
2019]. However, these methods require significant human-
engineering effort in finding transformations like grayscale
conversion, etc., to yield representations that facilitate learn-
ing. A large number of practical problems however, are
more intuitively expressed using relational representations
and have been widely studied in the literature. Consider a
planetary rover whose mission is to collect all rocks of in-
terest from a planet’s surface and deliver them to the base
for analysis. Such a problem objective is not easily de-
scribed in an image-based representation (e.g., visibility is af-

fected by line of sight) but lends itself to a relational descrip-
tion. Converting these existing problems to suitable image-
based representations would be counter-productive and diffi-
cult. Furthermore, they either require large amounts of train-
ing data and/or are unable to provide guarantees of complete-
ness and/or convergence.

Many real-world problems can be readily expressed as
SSPs and polynomial-time algorithms are available for solv-
ing them. A common theme among different SSP solvers
is to use a combination of pruning strategies (e.g., heuris-
tics [Hansen and Zilberstein, 2001]) that can eliminate large
parts of the search space from consideration, thereby reducing
the computational effort expended. Despite such optimiza-
tions, a major hurdle that SSP solvers face is the “curse-of-
dimensionality” since the state spaces grow exponentially as
the total number of objects increases. The pruning strategies
employed by these SSP solvers fail because they are “state-
less” in the sense that they do not store, and consequently
fail to re-use, knowledge that could have been exploited by
solving similar problems.

For rover problems, the total number of possible states
grows exponentially as a factor of the total number of loca-
tions and rocks. Existing SSP solvers would have difficulty
scaling to problems with many locations and/or rocks. A bet-
ter way to tackle this problem of state space explosion would
be to compute a simple generalized policy: move the rover
to the closest available location with a rock, try loading the
rock until it succeeds, navigate back to the base, unload it,
and re-iterate this process until all the rocks are at the base.

Such a generalized policy can be used to solve many dif-
ferent SSP problems with large numbers of objects that share
similar objectives. Furthermore, such policies appear to be
easily computable using solutions of problems with few num-
bers of objects. Recent work has demonstrated that it is pos-
sible to learn such generalized policies. Toyer et al.; Groshev
et al.; Garg et al. [2018; 2018b; 2020] use deep learning to
learn generalized reactive policies. Bonet et al. [2009] au-
tomatically derive controllers that represent generalized re-
active policies. A key limitation of these approaches is the
lack of any theoretical guarantees of finding a solution or its
optimality even if one is guaranteed to exist. In this paper,
we show that such policies can be learned with guarantees of
completeness and hierarchical optimality using solutions of
very few, small problems with few objects.



The primary contribution of this paper is a novel approach
for few-shot learning Generalized Policy Automata (GPAs)
using solutions of SSP instances with small object counts.
GPAs are non-deterministic partial policies that represent
generalized knowledge that can be applied to problems with
different object names and larger object counts. This process
uses logical feature-based abstractions to lift instance-specific
information like object names and counts while preserving
the relationships between objects in a way that can be used to
express generalized knowledge. GPAs learned using our ap-
proach can be used to accelerate any model-based SSP solver.
Our approach uses GPAs to prune out large sets of actions in
different, related but larger SSPs. We prove that our approach
is complete and guarantees hierarchical optimality. Empiri-
cal analysis on a range of well-known benchmark domains
used in various planning competitions and robotics shows that
our approach few-shot learns GPAs and convincingly outper-
forms existing state-of-the-art (SOA) SSP solvers and does so
without compromising the quality of the solutions found.

The rest of this paper is organized as follows: The next
section provides the necessary background. Sec. 3 describes
our approach for using example policies in conjunction with
abstractions to learn GPAs and use them for solving SSPs. We
present our experimental setup and discuss obtained results
in Sec. 4. Sec. 5 provides a description of related work in the
area. Finally, Sec. 6 states the conclusions that we draw upon
from this work followed by a brief description of future work.

2 Background
Our problem setting considers SSPs expressed in a symbolic
description language such as the Probabilistic Planning Do-
main Definition Language (PPDDL) [Younes et al., 2005].
Let D = ⟨P,A⟩ be a problem domain where P is a set
of predicates and A is a set of parameterized actions. Ob-
ject types, such as those used in PPDDL, can be equiva-
lently represented using unary predicates. A relational SSP
problem for a domain D is then defined as a tuple P =
⟨O,S,A, s0, g, T, C⟩ where O is a set of objects. A fact is
the instantiation of a predicate p ∈ P with the appropriate
number of objects from O. A state s is a set of true facts
and the state space S is defined as all possible sets of true
facts derived using D and O. Similarly, the action space A
is instantiated using A and O. T : S × A × S′ → [0, 1]
is the transition function and C : S × A × S → R+ is the
cost function. An entry t(s, a, s′) ∈ T defines the probability
of executing action a in a state s and ending up in a state s′
where a ∈ A, s, s′ ∈ S, and c(s, a, s′) ∈ C indicates the cost
incurred while doing so. Naturally,

∑
s′ t(s, a, s

′) = 1 for
any s ∈ S and a ∈ A. Note that a refers to the instantiated
action a(o1, . . . , on), where o1, . . . , on ∈ O are the action
parameters. We omit the parameters when it is clear from
context. s0 ∈ S is a known initial state and g is the goal con-
dition expressed as a first-order logic formula. A goal state sg
is a state s.t. sg |= g. c(sg, a, sg) = 0 and t(sg, a, sg) = 1 for
all such goal states for any action a. Additionally, termination
(reaching a state s.t. s |= g) in an SSP is inevitable making
the length of the horizon unknown but finite [Bertsekas and
Tsitsiklis, 1996].

Running example: The planetary rover example dis-
cussed earlier can be expressed using a domain that consists
of parameterized predicates connected(lx, ly), in-rover(rx),
rock-at(rx, lx), and actions load(rx, lx), unload(rx, lx), and
move(lx, ly). Object types can be denoted using unary pred-
icates location(lx) and rock(rx). lx, ly , and rx are param-
eters that can be instantiated with different locations and
rocks, allowing an easy way to express many different prob-
lems with different object names and counts. Actions dy-
namics are described using closed-form probability distribu-
tions (e.g. loading a rock could be modeled to fail with a
probability of 0.2) and this forms the transition function. A
simplified SSP problem that ignores connectivity and con-
sists of two locations, a base location, and two rocks can be
described using a set of objects O = {l1, l2, base, r1, r2}.
A state in this SSP seg that describes the situation where
r2 is being carried by the rover and r1 is at l2 can be
written as seg = {location(l1), location(l2), location(base),
rock(r1), rock(r2), in-rover(r2), rock-at(r1, l2)}. The goal of
delivering all the rocks to the base can be expressed as
∀rx rock(rx) ∧ rock-at(rx, base). Actions are assumed to
have a unit-cost when executed in a non-goal state and 0 oth-
erwise.

A solution to an SSP is a deterministic policy π : S → A
which is a mapping from states to actions. A complete proper
policy is one for which the goal is guaranteed to be reachable
from all possible states. By definition, SSPs must have at least
one complete proper policy [Bertsekas and Tsitsiklis, 1996].
This can be overly limiting in practice since such a formula-
tion does not model dead-end states. A weaker formulation of
an SSP stipulates that the goal must be reachable with a prob-
ability of 1 from s0 i.e. whose solution is a partial proper
policy from s0 that is defined for every reachable state from
s0. To use such a formulation, we focus on a broader class of
relaxed SSPs called Generalized SSPs [Kolobov et al., 2012]
that allow the presence of dead-end states (whose costs are
infinite) and only require the existence of at least one partial
proper policy from s0. Henceforth, we use the term SSPs to
refer to Generalized SSPs and focus only on partial proper
policies.

The value of a state s when using a policy π is the expected
cost when starting in s and following π thereafter [Sutton and
Barto, 1998]:

vπ(s) =
∑
s′∈S

t(s, π(s), s′)[c(s, π(s), s′) + vπ(s
′)]

This equation is the Bellman equation for the value of a state
under the policy π. The optimal policy π∗ is one s.t. vπ∗(s) ≤
vπ(s) for any policy π. The Bellman optimality equation (or
the optimal state value function v∗) can be similarly expressed
as [Sutton and Barto, 1998]:

v∗(s) = min
a∈A

∑
s′∈S

t(s, a, s′)[c(s, a, s′) + v∗(s
′)]

Once v∗ has been computed, the optimal policy can be ex-
tracted using π∗(s) = argmin

a
v∗(s). Thus, given an SSP,

the objective is to compute a policy that reaches the goal state
from the initial state while minimizing the expected cost of



doing so. SSP solvers often compute partial proper policies
π∗(s0) by iteratively improving state-value estimates using
the Bellman equations. Naturally, for any improper policy π,
vπ(s0) = ∞. SSP solvers have, under certain conditions,
been proved to converge to a policy that is ϵ-consistent with
the optimal policy [Hansen and Zilberstein, 2001; Bonet and
Geffner, 2003].

A policy π for an SSP P can be represented as a concrete
directed hypergraph Gπ = ⟨V,E⟩ where V = S is the vertex
set comprising states of P and E ⊆ V × P(V ) × A is the
set of directed hyperedges s.t. each hyperedge e ∈ E is a
tuple (estart, eresults, eaction) representing the start vertex, a set
of result vertices, and an action label. Gπ can easily be con-
structed using the transition function T of P by adding ver-
tices and hyperedges corresponding to each transition from T
starting from π(s0). It is easy to see that such a hypergraph
representation of π is a non-deterministic finite-state automa-
ton whose states are bounded by the total number of vertices
in Gπ .

Let f be a feature and F be a set of features. We use
feature-based abstractions to lift problem-specific character-
istics like object names and numbers in order to facilitate
the learning of generalized knowledge that can be applied to
problems irrespective of differences in such characteristics.
We define state abstraction as a function α : F, S → S that
transforms the concrete state space S for an SSP into an ab-
stract state space S using the feature set F . Similarly, action
abstraction β : F, S,A → A transforms the action space to
an abstract action space using the feature set F . In this paper,
we utilize canonical abstraction [Sagiv et al., 2002] to com-
pute such feature-based representations of concrete states and
actions. We define feature sets in more detail in Sec. 3.2.

3 Our Approach
Our objective is to exploit knowledge from solutions of SSP
instances with small object counts to learn Generalized Policy
Automata (GPAs) that allow effective pruning of the search
space of related SSPs with larger object counts. We accom-
plish this by using solutions to a small set of training instances
that are easily solvable using existing SSP solvers, and us-
ing feature-based canonical abstractions to learn a GPA that
encodes generalized partial policies and serves as a guide to
prune the set of policies under consideration. We define GPAs
and provide a brief description of canonical abstractions in
Sec. 3.1 and Sec. 3.2 respectively, and describe our process to
learn a GPA in Sec. 3.3. We then describe our method (Alg. 1)
for solving SSPs in Sec. 3.4.

3.1 Generalized Policy Automata
We introduce Generalized Policy Automata (GPAs), which
are compact and expressive non-deterministic finite-state au-
tomata that encode generalized knowledge and can be rep-
resented as directed hypergraphs. GPAs impose hierarchical
constraints on the state space of an SSP and prune the action
space under consideration, thus reducing the computational
effort of solving larger related SSP instances. We now for-
mally define GPAs below.

Definition 3.1 (Abstract states and abstract actions). Given
a concrete directed hypergraph Gπ = ⟨V,E⟩ that represents
a policy π for an SSP P , abstraction functions α and β, and
feature sets Fα and Fβ , a set of abstract states S is defined as
{α(Fα, s)|s ∈ V }. Similarly, a set of abstract actions A is
defined as {β(Fβ , s, a)|s ∈ V, e ∈ E, s ∈ estart, a ∈ eaction}.
Definition 3.2 (Generalized Policy Automaton). Given sets
of abstract states S and abstract actionsA, a Generalized Pol-
icy Automaton (GPA) G = ⟨V ,E⟩ is a non-deterministic
finite-state automaton that can be represented as an abstract
directed hypergraph where V = S is the vertex set and
E ⊆ V × P(V ) × A is the set of directed hyperedges s.t.
each hyperedge e ∈ E is a tuple (estart, eresults, eaction) repre-
senting a start vertex, a set of result vertices, and an action
label.

3.2 Canonical Abstraction
A key ingredient in learning generalized knowledge using
feature-based abstractions is using rich feature sets that fa-
cilitate the learning of compact generalized policies. We use
canonical abstractions for automatically synthesizing a set of
such rich, domain-independent features.

Canonical abstractions, commonly used in program anal-
ysis, have been shown to be useful in generalized planning
[Srivastava et al., 2011; Karia and Srivastava, 2021]. Given
a predefined set of abstraction predicates, canonical abstrac-
tions group together different objects based on the subset of
abstraction predicates that they satisfy in a state. Each subset
of abstraction predicates is known as a summary element. We
used the set of all unary predicates as abstraction predicates
in this paper.1 We use these abstraction predicates to obtain a
set of features as described later in the paper.

Let ψ be a summary element, then, we define ϕψ(s) as
a function that returns the set of objects that satisfy ψ in
a concrete state s. An object o belongs to exactly one
summary element in any given concrete state s and this
is the maximal summary element for that object. Simi-
larly, for any given predicate pn ∈ P where n is the arity,
ϕpn(ψ1, . . . , ψn) is defined as the set of all n-ary predicates
in s that are consistent with the summary elements compos-
ing the predicate pn(ψ1, . . . , ψn), i.e., ϕpn(ψ1,...,ψn)(s) =
{pn(o1, . . . , on)|pn(o1, . . . , on) ∈ s, oi ∈ ϕψi(s)}.

The value of a summary element ψ in a concrete state s is
given as max(2, |ϕψ(s)|) to indicate whether there are 0, 1, or
greater than 1 objects satisfying the summary element. Since
relations between objects become imprecise when grouped as
summary elements, the value of a predicate pn(ψ1, . . . , ψn)
in s is determined using three-valued logic and is represented
as 0 if ϕpn(ψ1,...,ψn)(s) = {}, as 1 if |ϕpn(ψ1,...,ψn)(s)| =
|ϕψ1

(s)× . . .× ϕψn
(s)|, and 1

2 otherwise.
Let Ψ be the set of all summary elements and Pi be the

set of all predicates p ∈ P of arity i for a domain D, then
Pi = Pi × [Ψ]i is the set of all possible relations of arity
i between summary elements. We define the feature set for
state abstraction as Fα = Ψ ∪Ni=2 Pi where N is the maxi-
mum arity of any predicate in D. We define state abstraction

10-ary predicates are represented as unary predicates with a de-
fault “phantom” object.



Algorithm 1 GPA-accelerated SSP Solver

Require: SSP P = ⟨O,S,A, s0, g, T, C⟩, GPA G =
⟨V ,E⟩, Feature Sets Fα, Fβ

1: C ′ = C {copy over the cost function of P}
2: for (s, a, s′) ∈ S ×A× S do
3: s, a, s′ ← α(Fα, s), β(Fβ , s, a), α(Fα, s

′)

4: if there is no edge e ∈ E s.t. estart = s, s′ ∈ eresults,
and eaction = a then

5: C ′[s, a, s′] =∞
6: end if
7: end for
8: P |G = ⟨O,S,A, s0, g, T, C ′⟩
9: vP |G , πP |G ← SSP solver(P |G)

10: if πP |G is a partial proper policy then
11: return πP |G
12: else
13: Initialize vP using vP |G
14: vP , πP ← SSP solver(P )
15: return πP
16: end if

α(Fα, s) for a given concrete state s to return an abstract state
s as a total valuation of Fα using the process described above.
Similarly, we define the feature set for action abstraction as
Fβ = Ψ. The action abstraction β(Fβ , s, a) for a concrete ac-
tion a(o1, . . . , on) when applied to s returns an abstract action
a(ψ1, . . . , ψn) where a ≡ a and ψi is the summary element
that object oi satisfies, i.e., oi ∈ ϕψi

(s) for ψi ∈ Ψ.
Example Consider the state seg from the running exam-

ple (Sec. 2). Let the summary elements computed using
canonical abstraction be ψ1 = {location}, ψ2 = {rock},
and ψ3 = {in-rover, rock} and let Ψeg = {ψ1, ψ2, ψ3}
be the set of all summary elements. We can compute
ϕψ1

(seg) = {base, l1, l2}, ϕψ2
(seg) = {r1}, and ϕψ3

(seg) =
{r2}. Similarly, ϕrock-at(ψ1,ψ1) = {}, ϕrock-at(ψ1,ψ2) = {},
ϕrock-at(ψ2,ψ1) = {rock-at(r1, l2)}, and so on. The abstract
state seg = {ψ1 = 2, ψ2 = 1, ψ3 = 1, rock-at(ψ1, ψ1) =
0, rock-at(ψ1, ψ2) = 0, rock-at(ψ2, ψ1) = 1

2 , . . .}. Simi-
larly, for an action, unload(r2, base), in seg, the abstract ac-
tion would be unload(ψ3, ψ1).

3.3 Learning GPAs
It is well-known that solutions to small problems can be used
to construct generalized control structures that can assist in
solving larger problems. We adopt a similar strategy of the
learn-from-small-examples approach [Wu and Givan, 2007;
Karia and Srivastava, 2021] and compute GPAs iteratively
from a small training set containing solutions of similar SSP
instances as outlined below.

To form our training set, we use a library of solution poli-
cies Π = {π1, . . . , πn} for small problems P1, . . . , Pn that
can be easily computed by existing SOA SSP solvers. We rep-
resent each policy πi ∈ Π as a concrete directed hypergraph
and construct a training set T = {Gπ1 , . . . , Gπn}. We initial-
ize an initial empty GPAG = ⟨{V ,E}⟩ = ⟨{}, {}⟩. Next, for
each Gπi

= ⟨Vπi
, Eπi

⟩ ∈ T , we merge the concrete directed
hypergraph withG as follows: V = V ∪{α(Fα, v)|v ∈ Vπi

}.

Next, we form a set of abstract hyperedges by converting
every edge in Eπi to its corresponding abstract counterpart,
i.e., Eπi = {⟨estart, eresults, eaction⟩} for every edge e ∈ Eπi

s.t. estart = α(Fα, estart), eresults = {α(Fα, v)|v ∈ eresults}
and eaction = β(Fβ , estart, eaction). Finally, we merge this
set of abstract hyperedges using the following procedure:
E = E ∪ Eπi

. Once this is done, we compress the GPA
by replacing any edges in E that have the same start nodes
and labels with a new edge, i.e., for any two edges e1, e2 ∈ E
s.t. e1start = e2start, and e1action = e2action, we delete the two
edges and replace the edge set with a new merged edge:
E = ⟨e1start, e

1
results ∪ e2results, e

1
action⟩ ∪ E \ {e1, e2}.

3.4 Solving SSPs using GPAs
Given a GPA G, we now describe our method for solving
SSPs. To do so, we modify the cost function of an SSP P to
generate a new SSP P |G, taking into account the transitions
in G as shown in Alg. 1 (lines 1-7). Our SSP solver -- GPA-
accelerated SSP Solver -- operates as follows: Create a copy
of the cost function of the original SSP P (line 1); Iterate
over each (s, a, s′) tuple of P and convert them to (s, a, s′)
tuples by computing abstract states and action representations
using canonical abstraction (lines 2-3); Check if a hyperedge
corresponding to the tuple (s, a, s′) exists in the GPA G. A
hyperedge (estart, eresults, eaction) ∈ E is corresponding to the
tuple (s, a, s′) iff estart = s, s′ ∈ eresults, and eaction = a (line
4); If the hyperedge does not exist in the GPA G, we set the
cost entry for the concrete tuple (s, a, s′) to infinity (line 5).
Finally, we create a GPA-constrained SSP P |G that is same
as the original SSP except for the cost function which is a
modified copy of the original cost function (line 8), and use
any off-the-shelf SSP solver that guarantees to find a partial
proper policy if one exists to solve P |G (line 9).

The goal of modifying the cost function is to prevent transi-
tions whose abstract translations are not present in the Gener-
alized Policy AutomatonG to be used when performing Bell-
man updates for the new SSP P |G. As a result, actions be-
longing to such transitions cannot appear in πP |G . As a con-
sequence, the existence of a partial proper policy is not guar-
anteed in P |G. Nevertheless, the GPA-accelerated SSP solver
is guaranteed to return a partial proper policy. This is because,
if the computed policy for P |G is a partial proper policy, the
GPA-accelerated SSP solver directly returns it (lines 10-11).
Otherwise, if a partial proper policy for P |G does not exist or
an improved policy is desired, then the GPA-accelerated SSP
solver re-uses the computational effort expended in P |G to
initialize the value function ofP using vP |G (line 13) and uses
the SSP solver to compute a policy for the original SSP P
(lines 14-15). This policy is guaranteed to be a partial proper
policy if the SSP solver used is complete (Thm. 3.2). Also,
if the used SSP solver is optimal then the bootstrapped pol-
icy computed for P is at least as cost-effective as the policy
computed for P |G (Thm. 3.1).

The GPA-accelerated SSP solver computes a policy for
P |G in the space of cross-product of the states of the GPA G
with the states of the SSP P , similar to HAMs [Parr and Rus-
sell, 1997]. This policy, defined as a hierarchically optimal
policy, corresponds to an optimal policy for P among all the



policies that satisfy the constraints encoded by the GPAG. As
seen in our empirical analysis in Sec. 4, we observe that using
a small set of example policies that are sufficient to capture
rich generalized control structures results in GPA-accelerated
SSP solver returning partial proper policies within a fraction
of the original computational effort. We now prove theoret-
ical guarantees of completeness and hierarchical optimality
below.2

Theorem 3.1. Given an SSP P , an optimal SSP solver, a
GPA G, and the corresponding GPA-constrained SSP P |G,
let vP , vP |G , and πP , πP |G be the state-value functions and
policies obtained using Alg. 1 respectively, then πP is at least
as cost-effective as πP |G , i.e., vP (s0) ≤ vP |G(s0).

Proof (Sketch). Our proof is based on the following intuition.
In the trivial case where πP |G is not a partial proper policy
(line 10), vP |G(s0) = ∞ and solving P using bootstrapped
estimates (line 13) is equivalent to solving P without boot-
strapping. If πP |G is a partial proper policy, then it is also a
partial proper policy for P since Alg. 1 does not change the
transition function of P and thus vP (s0) = vP |G(s0) when
bootstrapping. An optimal solver using the Bellman equa-
tions will only accept a new policy π over πP |G if it leads to
improvement over the current, greedy policy i.e., πP |G . Thus,
the only case in which Alg. 1 would return a different policy
is if it finds a partial proper policy whose expected cost is less
than or equal to that of πP |G i.e., vP (s0) ≤ vP |G(s0).

Theorem 3.2. Given a training set T = {Gπ1 , ..., Gπn}
containing partial proper policies, an optimal, complete SSP
solver, feature sets Fα, Fβ , a learned GPA G, and an SSP
P , the GPA-accelerated SSP Solver (Alg. 1) is guaranteed to
be complete, i.e., return a partial proper policy for P if one
exists.

Proof (Sketch). Line 10 of the Alg. 1 checks if the policy
computed on solving P |G is a partial proper policy and re-
turns it in case it is partial proper policy. If the policy is not a
partial proper policy then it uses the bootstrapped value esti-
mates and solves P . If the used SSP solver is complete, then
Alg. 1 is guaranteed to return a partial proper policy if one
exists.

Theorem 3.3. Given a training set T = {Gπ1
, ..., Gπn

}
containing partial proper policies, an optimal complete SSP
solver, feature sets Fα, Fβ , a learned GPA G, and an SSP
P , the GPA-accelerated SSP Solver (Alg. 1) is guaranteed to
return a hierarchically optimal policy for P if one exists.

Proof (Sketch). We provide a proof by contradiction. Sup-
pose that an optimal policy π∗ ̸= πP |G exists for P |G.
This implies that for at least one of the states s in P |G,
v∗(s) < vπP |

G
(s) and as a result π∗(s) ̸= πP |G(s). This

implies the existence of an optimal action a for which the
cost function C ′[s, a, s′] was set to ∞ since otherwise this
action a would have been considered by the SSP solver. This
implies that a transition (s, a, s′) in the training data was not

2Complete proofs for all theorems are available in the appendix.

captured by the GPA and is a contradiction since no transi-
tions are discarded when creating G from the training data
T .

4 Experiments
We conducted an empirical evaluation on five well-known
benchmark domains that were selected from the International
Planning Competition (IPC) and International Probabilistic
Planning Competition (IPPC) [Younes et al., 2005] as well
as robotic planning [Shah et al., 2020]. As a part of our anal-
ysis, we aim to determine if GPAs allow efficient solving of
SSPs.

We chose PPDDL as our representational language, which
was the default language in IPPCs until 2011, after which,
the Relational Dynamic Influence Language (RDDL) [San-
ner, 2010] became the default. We chose PPDDL over RDDL
since RDDL does not allow specifying the goal condition eas-
ily and as a result many benchmarks using RDDL are general
purpose MDPs with no goals. Also, modern SOA solvers for
PPDDL are available.

For our baselines, we focus on complete solvers for SSPs.
We used Labeled RTDP (LRTDP) [Bonet and Geffner, 2003]
and Soft-FLARES [Pineda and Zilberstein, 2019] which are
state-of-art (SOA), complete SSP solvers. These algorithms
internally generate their own heuristics using the domain and
problem file. We conducted an empirical evaluation and used
the FF heuristic [Hoffmann, 2001] as the internal heuristic
function for all algorithms. We used FF even though it is
inadmissible since the baselines performed best using it.

We ran our experiments on a cluster of Intel Xeon E5-2680
v4 CPUs running at 2.4 GHz with 16 GiB of RAM. Our im-
plementation is in Python and we ported C++ implementa-
tions of the baselines from Pineda and Zilberstein [2019] to
Python. We utilized problem generators from the IPPC suite
and those in Shah et al. [2020] for generating the training and
test problems for all domains. We provide a brief description
of the problem domains below.
Rover(r, w, s, o) A set of r rovers need to collect and drop s
samples that are present at one of w waypoints. The rovers
also need to collect images of different objectives o that are
visible from certain waypoints. This is an IPC domain and
we converted it into a stochastic version by modifying sam-
ple collecting actions to fail with a probability of 0.4 (keeping
the rover in the same state).
Gripper(b) A robot with two grippers is placed in an envi-
ronment consisting of two rooms A and B. The objective of
the robot is to transfer all the balls b initially located in room
A to room B. We modified the gripper to be slippery so that
picking balls have a 20% chance of failure.
Schedule(C, p) is an IPPC domain that consists of a set of
p packets each belonging to one of C different classes that
need to be queued. A router must first process the arrival of
a packet in order to route it. The interval at which the router
processes arrivals is determined by probability 0.94.
Keva(P, h) A robot uses P keva planks to build a tower of
height h. Planks are placed in a specific order in one of
the two locations preferring one location with probability 0.6.
Despite this simple setting, the keva domain has been shown
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Figure 1: Impact of learned GPAs on solver performance (lower values are better). Left y-axes and bars show solution times (in units of
1000 secs) for our approach and baseline SOA solvers (LRTDP and Soft-FLARES). Right y-axes and points show cost incurred by the policy
computed by our approach and the baselines. We use the same SSP solver as the corresponding baseline in our approach. Error bars indicate
1 standard deviation (SD) averaged across 10 runs. For clarity, we only report results for the largest test problems and omit error bars from
costs due to the low SDs. This and additional empirical data is available in the supplementary material.

to be a challenging robotics problem [Shah et al., 2020].
Delicate Can(c) An arrangement of c cans on a table of
which 1 is a delicate can. The objective is to pick up a spe-
cific goal can. Cans can obstruct the trajectory to the goal can
and they must be moved in order to successfully pick up the
goal can. Cans can be crushed with probability 0.1 (delicate
cans have a higher chance with probability 0.8) and need to
be revived.

Training Setup Our method learns GPAs in a few-shot
fashion, requiring little to no training data. For our training
set, we used at most ten optimal solution policies (obtained
using LAO*) for each domain. The time required to learn a
GPA was less than 10 seconds in all cases in our experiments.
This highlights the advantages of GPAs that can quickly be
learned in a few-shot setting.
Test Setup We fixed the time and memory limit for each
problem to 7200 seconds and 16GiB respectively. To demon-
strate generalizability, our test set contains problems with ob-
ject counts that are much larger than the training policies
used. The largest problems in our test sets contain at least
twice the number of objects than those used in training. For
example, in the Keva domain we use training policies with
towers of height up to 6 and evaluate on problems with towers
of height up to 14. The minimum and maximum number of
problems that we used in our test set are 11 and 26 problems
respectively. Due to space limitations, information pertain-
ing to the total number of training and test problems and their
parameters, used hyperparameters for configuring baselines,
etc., are included in the supplementary material.

4.1 Results and Analysis
Our evaluation metric compares the time required to find a
partial proper policy. We also compare the quality of the com-
puted policies by executing the policies for 100 trials with a
horizon limit of 100 and averaging the obtained costs. We
report our overall results averaged across 10 different runs
and report results up to 1 standard deviation. Results of our
experiments are illustrated in Fig. 1.

In four out of five domains (Schedule, Rover, Keva, and
Delicate Can), our approach takes significantly less time com-
pared to the corresponding baseline. For example, in Sched-
ule, the baselines timed out for all of the large test problems
reported. GPAs are able to successfully prune away action
transitions that are not helping, leading to large savings in the
computational effort. The costs obtained for executing these
policies are also quite similar to each baseline showing that
GPAs are capable of learning good policies much faster with-
out compromising solution quality.

Our approach was unable to outperform the baselines in
the Gripper domain. An interesting phenomenon that we ob-
served was that training policies returned by LAO* were dif-
ferent for the case of even/odd balls due to tie-breaking and
this led to the GPA not pruning actions as effectively. Nev-
ertheless, we expected GPA to still outperform the baselines.
We performed a deeper investigation and found that the FF
heuristic used is already well-suited to prune away actions
that the GPA would have otherwise pruned. This results in
additional overhead being added in our SSP solver from the
process of abstraction. However, heuristics that allow such
pruning are difficult to synthesize and in many cases are hand-
coded by a domain expert after employing significant effort.

Finally, because of the fixed timeout used, the maximum
time of the baselines was bounded, making the impact of GPA
appear smaller in larger problems. For example, in problem
ID 25 of the Rover domain, the Soft-FLARES baseline timed
out in all our runs, but when allowed to run to convergence,
it took over 15000 seconds in a targeted experiment that we
performed for investigating this issue.

5 Related Work
There has been plenty of dedicated research to improve the
efficiency for solving SSPs. LAO∗ [Hansen and Zilber-
stein, 2001] computes policies by using heuristics to guide
the search process. LRTDP [Bonet and Geffner, 2003] uses
a labeling procedure in RTDP wherein a part of the sub-



tree that is ϵ-consistent is marked as solved leading to faster
ending of trials. SSiPP [Trevizan and Veloso, 2012] uses
short-sightedness by only considering reachable states up to t
states away and solving this constrained SSP. Soft-FLARES
[Pineda and Zilberstein, 2019] combines labeling and short-
sightedness for computing solutions. These approaches are
complete and can be configured to return optimal solutions,
however, they fail to learn any generalized knowledge and as
result cannot readily scale to larger problems with a greater
number of objects.

Boutilier et al. [2001] utilize decision-theoretic regression
to compute generalized policies for first-order MDPs repre-
sented using situation calculus. They utilize symbolic dy-
namic programming to compute a symbolic value function
that applies to problems with varying number of objects.
FOALP [Sanner and Boutilier, 2005] uses linear program-
ming to compute an approximation of the value function for
first-order MDPs while providing upper bounds on the ap-
proximation error irrespective of the domain size. A key lim-
itation of their approach is requiring the use of a representa-
tion of action models over which it is possible to regress using
situation calculus. API [Fern et al., 2006] uses approximate
policy iteration with taxonomic decision lists to form poli-
cies. They use Monte Carlo simulations with random walks
on a single problem to construct a policy. API offers no guar-
antees of completeness or hierarchical optimality.

Parr and Russell [1997] propose the hierarchical abstract
machine (HAM) framework wherein component solutions
from problem instances can be combined to solve larger prob-
lem instances efficiently. Recently, Bai and Russell [2017]
extended HAMs to Reinforcement Learning settings by lever-
aging internal transitions of the HAMs. A key limitation of
both these approaches is that the HAMs were hand-coded by
a domain expert.

Bonet et al. [2009] automatically create finite-state con-
trollers for solving problems using a set of examples by
modeling the search as a contingent problem. Their ap-
proach is limited in applicability since it only works on de-
terministic problems and the features they use are hand-
coded. Aguas et al. [2016] utilize small example policies
to synthesize hierarchical finite state controllers that can
call each other. However, their approach requires all train-
ing data to be provided upfront. D2L [Bonet et al., 2019;
Francès et al., 2021] utilizes description logics to automati-
cally generate features and reactive policies based on those
features. Their approach comes with no guarantees for find-
ing a solution or its cost and can only work on deterministic
problems.

Our approach differs from these approaches in several as-
pects. Our approach constructs a GPA automatically without
any human intervention. Using canonical abstraction, we lift
problem-specific characteristics like object names and object
counts. Another key difference between other techniques is
that our approach can easily incorporate solutions from new
examples into the GPA without having to remember any of
the earlier examples. This allows our learning to scale better
and can naturally utilize leapfrogging [Groshev et al., 2018a;
Karia and Srivastava, 2021] when presented with a large
problem in the absence of training data. Finally, our approach

comes with guarantees of completeness and hierarchical op-
timality given the training data presented. This means that
if a solution exists, our approach will find it and it will be
guaranteed to be hierarchically optimal.

6 Conclusions and Future Work
We show that non-deterministic Generalized Policy Au-
tomata (GPAs) constructed using solutions of small example
SSPs are able to significantly reduce the computational effort
for finding solutions for larger related SSPs. Furthermore,
for many benchmark problems, the search space pruned by
GPAs does not prune away relevant transitions allowing our
approach to compute policies of comparable cost in a frac-
tion of the effort. Our approach comes with guarantees of
hierarchical optimality given the training data and also comes
with the guarantee of always finding a solution provided one
exists.

There are several interesting research directions for future
work. Currently, GPAs do not employ any memory and can
be improved by incorporating a finite amount of memory for
better pruning of the action transitions. Description Log-
ics (DL) are more expressive than canonical abstractions and
have been demonstrated by Bonet et al. [2019] to be effec-
tive at synthesizing memoryless controllers for deterministic
planning problems. Our approach can easily utilize any rela-
tional abstraction and it would be interesting to evaluate the
efficacy of description logics as compared to canonical ab-
stractions. Finally, our approach is applicable when solutions
have a pattern. We believe that more intelligent training data
generation methods could help improve performance in do-
mains like Gripper. We plan to investigate these directions of
research in future work.
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A Proofs for Theoretical Results
A.1 Proof for Theorem 3.1
Proof. (Case 1) Consider the case in Alg. 1 where πP |G is not
a partial proper policy (line 10). This implies that there is at
least one state in πP |G from which the goal is not reachable.
Let sdead be such a state and let s and a by any state and action
such that πP |G(s) = a and t(s, a, sdead) > 0. The state-value
estimate for s can be written as:

vπP |
G
(s) =

∑
s′∈S

t(s, a, s′)[c(s, a, s′) + vπP |
G
(s′)]

=
∑

s′∈S\sdead

t(s, a, s′)[c(s, a, s′) + vπP |
G
(s′)]

+ t(s, a, sdead)[c(s, a, sdead) + vπP |
G
(sdead)]

=
∑

s′∈S\sdead

t(s, a, s′)[c(s, a, s′) + vπP |
G
(s′)]

+ t(s, a, sdead)[c(s, a, sdead) +∞]

=∞
Naturally, since for a partial proper policy, s is always reach-
able from the initial state via some path, we can recursively
apply the Bellman equation to obtain vπP |

G
(s0) = ∞. For

any other path reachable from s0 through a state s′ such that
the path is proper, it follows that vπP |

G
(s′) ̸= ∞. When

such values are bootstrapped, the SSP solver will always try
to find a proper path or adjust the path from s0 such that the
dead end states are never encountered. Since at least one
such policy is guaranteed to exist, an SSP solver will find
it and it will be strictly better than an improper policy, i.e.,
vP (s0) ≤ vP |G(s0).

(Case 2): In this case, Alg. 1 computes a partial proper pol-
icy πP |G and initializes the value estimates for the problem P
with those from vP |G . At the initial iteration, πP |G is also a
partial proper policy for the original SSP P since the transi-
tion function has not been modified by Alg. 1. Thus, we only
need to show that using an SSP solver always results in pol-
icy improvement over the current policy if a better one exists.
Suppose that for a given state s and action a, πP |G(s) = a.
Let an action a′ ̸= a exist such that c(s, a′, s′) was set to∞
by Alg. 1. Furthermore, let π∗(s) = a′ for SSP P . This im-
plies that v∗(s) ≤ vP |G(s0). The SSP solver would try policy
improvement for this new transition using the Bellman opti-
mality equation using the current estimate of the state v(s′):

v(s) = min
a∈A

∑
s′∈S

t(s, a, s′)[c(s, a, s′) + v(s′)]

It is easy to see that an optimal solver (usually configured
with an admissible heuristic), would initialize v(s′) with an
admissible heuristic estimate of the expected cost if s′ was
not explored earlier or it would simply use the bootstrapped
estimate. In either case, if the value of the state v(s) for ac-
tion a′ was found to be better than the current policy πP |G ,
the solver would update the current policy to use a′ instead.
These set of updates would recursively trickle to the initial
state and would always result in a lower expected cost. Thus,
vP (s0) ≤ vP |G(s0).

A.2 Proof for Theorem 3.2
Proof. The only places where Alg. 1 returns is when it finds a
partial proper policy using the GPA (line 10) or using an SSP
solver with bootstrapped estimates to solve P and returning
the found policy. Since Alg. 1 guarantees policy improve-
ment (Thm. 3.1), once it finds a partial proper policy, all sub-
sequent policies are guaranteed to be partial proper policies.
In the trivial case, line 10 checks that the policy computed by
solving P |G is partial proper and returns it. If πP |G is not a
partial proper policy, then bootstrapped estimates are used for
policy improvement for the original SSP where the existence
of a partial proper policy is guaranteed. If the used SSP solver
is complete, it is guaranteed to find such a policy.

A.3 Proof for Theorem 3.3
Proof. (Case 1) Let T = {} in effect making the GPA
G = ⟨{}, {}⟩ contain no transitions. Lines 2-6 of Alg. 1 will
then mark every (s, a, s′) tuple of the SSP with a cost of ∞
when synthesizing P |G. The policy πP |G for P |G will be
an improper policy and in fact this policy is a hierarchically
optimal policy for P under the given constraints.

(Case 2) For the second case, let the training data T consist
of all possible policies for a given SSP P . As a result, every
transition that is represented by P should appear in the GPA.
In this case, Alg. 1 will never modify the cost function and as
a result C ′ = C. Since the transition function is not modified
by Alg. 1, solving P |G is equivalent to solving P and using
an optimal solver would find the optimal policy π∗ for P . It
is easy to see that π∗ is a hierarchically optimal policy given
such a GPA. If all abstract transitions for a given domain ap-
pear in the GPA, Alg. 1 will find an optimal policy for any
SSP P for such a domain.

(Case 3) Finally, we consider a training set T =
{Gπ1

, ..., Gπn
} that consists of policies from solving SSP

problems. Consider a proper policy πP |G that is obtained by
using an optimal solver to solve P |G using Alg. 1. The value
of any state πP |G when using πP |G can be expressed as:

vπP |
G
(s) = min

a∈A

∑
s′∈S

t(s, a, s′)[c(s, a, s′) + vπP |
G
(s′)] (1)

If there exists two different policies π′
P |G
̸= πP |G s.t. π′

P |G
is

strictly better than πP |G for a state s then this must mean that
π′
P |G

(s) ̸= πP |G(s). Let π′
P |G

(s) = a and πP |G = a′.

vπP |
G
(s) > vπ′

P |
G

(s) (2)∑
s′∈S

t(s, a, s′)[c(s, a, s′) + v(s′)] >∑
s′∈S

t(s, a′, s′)[c(s, a′, s′) + v(s′)]
(3)

If the transition (s, a′, s′) was present in the training data T
then such a transition would appear in the GPA and as a result
this policy would be found by the optimal SSP solver. Now
suppose that a transition (s, a′, s′′) where t(s, a′, s′′) > 0
does not appear in the training data. Furthermore, suppose
that no abstract hyperedge with estart = s and eaction = a con-
tains s′′ in eresults in G. This would cause the check for the
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ID Keva(P,h) Rover(r,w,s,o) Schedule(C,p) Delicate Can(c) Gripper(b)

0 (2, 1) (1, 3, 1, 2) (1, 2) (2) (1)
1 (4, 2) (1, 4, 1, 2) (1, 3) (3) (1)
2 (6, 3) (1, 3, 2, 2) (1, 4) (4) (2)
3 (8, 4) (1, 4, 2, 2) − (5) (2)
4 (10, 5) (1, 3, 3, 2) − (6) (3)
5 (12, 6) (1, 4, 3, 2) − − (3)
6 − (1, 3, 4, 2) − − (4)
7 − (1, 4, 4, 2) − − (4)
8 − (1, 3, 5, 2) − − (5)
9 − (1, 4, 5, 2) − − (5)

Table 1: Our training setup for all domains. ID refers to the problem
ID in the training set. The other columns refer to the parameters
passed to the problem generator for generating the problem. Entries
marked − indicate that there was no such problem in training set.

abstract hyperedge for the transition (s, a′, s′′) to fail in line
4 of Alg. 1. Thus, C ′[s, a′, s′′] would be set to ∞ for this
transition. Eqn. 3 can be rewritten as:∑

s′∈S

t(s, a, s′)[c(s, a, s′) + v(s′)] >

∑
s′∈S\s′′

t(s, a′, s′)[c(s, a′, s′) + v(s′)]

+ t(s, a′, s′′)[c(s, a′, s′′) + v(s′′)]

(4)

∑
s′∈S

t(s, a, s′)[c(s, a, s′) + v(s′)] >∑
s′∈S\s′′

t(s, a′, s′)[c(s, a′, s′) + v(s′)]

+ t(s, a′, s′′)[∞+ v(s′′)]

(5)

∑
s′∈S

t(s, a, s′)[c(s, a, s′) + v(s′)] >∞ (6)

If we assume πP |G to be a partial proper policy,∑
s′∈S t(s, a, s

′)[c(s, a, s′) + v(s′)] < ∞. This is a contra-
diction and any such policy π′

P |G
is strictly worse than πP |G .

Next, if we assume πP |G to be improper, then vπP |
G
(s0) =

∞. Substituting s = s0 and a = πP |G(s0) in Eqn. 6 we get
another contradiction since in this case πP |G(s0) is as good
as π′

P |G
(s0). Thus, πP |G is a hierarchically optimal policy

given the GPA G constructed using the training data T .

B Extended Experiments and Results
Training and Test Setup Descriptions of the training prob-
lems used by us and their parameters can be found in Table. 1.
Test problems and parameters along with complete informa-
tion for the solution times, costs, and their standard deviations
for 10 runs are available in tabular format in Tables 2, 3, 4, 5,
and 6. Note that for the Keva domain, the standard devia-
tions for the costs incurred are 0. This is accurate since the
only source of stochasticity in Keva is a human place action
that determines where the human places a plank which is one
of two locations. As a result, Keva policies are deterministic
in execution since the human always places a plank and all
other actions are deterministic. It is interesting that despite
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Figure 2: Impact of learned GPAs on solver performance of all test
problems (lower values are better). Left y-axes and bars show so-
lution times (in log scale), and right y-axes and points show cost
incurred by the policy computed by our approach and baseline SOA
solvers (LRTDP and Soft-FLARES). We use the same SSP solver as
the corresponding baseline in our approach. Error bars for solution
times indicate 1 standard deviation (SD) averaged across 10 runs.

this simplistic domain, the baselines are unable to reasonably
converge within the timeout. We also present an extended
version of Fig. 1 of the main paper that includes results for
a larger suite a test problems for a better view of our over-
all results. These results are reported in Fig. 2. Note that the
solution times on the left y-axis of these plots are shown in
log scale. We omitted the problems with smaller IDs, mainly
whose solutions times (in log scale) were not visible for both
our as well as baseline approaches, for better visualization.

Hyperparameters We used ϵ = 10−5 as the value for
determining whether an algorithm has converged to an ϵ-
consistent policy. We set the total number of trials for all
algorithms to∞. As a result, each algorithm would only re-
turn once it has converged or if the time limit has been ex-
ceeded. For Soft-FLARES, we used t = 4 which controls the
horizon of the sub-tree that is checked for being ϵ-consistent
during the labeling procedure. Our distance metric is the step
function which simply counts the depth until the horizon is
exceeded. For the selective sampling procedure, we used the
logistic sampler configured with α = 0.1 and β = 0.9.



ID θ
Time(x ≡ LRTDP) Time(x ≡ Soft-FLARES) Cost(x ≡ LRTDP) Cost(x ≡ Soft-FLARES)

x Ours + x x Ours + x x Ours + x x Ours + x

0 (29, 1) 2.45 ±0.32 1.44 ±0.17 2.65 ±0.37 1.47 ±0.27 6.00 ±0.00 6.00 ±0.00 6.00 ±0.00 6.00 ±0.00
1 (29, 2) 10.23 ±2.05 4.15 ±0.68 11.22 ±1.45 4.63 ±0.58 12.00 ±0.00 12.00 ±0.00 12.00 ±0.00 12.00 ±0.00
2 (29, 3) 34.05 ±5.53 8.14 ±0.92 37.33 ±4.71 9.55 ±1.45 18.00 ±0.00 18.00 ±0.00 18.00 ±0.00 18.00 ±0.00
3 (29, 4) 93.78 ±14.53 16.26 ±2.34 93.39 ±11.30 18.80 ±2.84 24.00 ±0.00 24.00 ±0.00 24.00 ±0.00 24.00 ±0.00
4 (29, 5) 183.57 ±43.80 32.61 ±5.40 201.99 ±45.05 41.19 ±6.05 30.00 ±0.00 30.00 ±0.00 30.00 ±0.00 30.00 ±0.00
5 (29, 6) 358.98 ±67.32 68.73 ±11.04 379.84 ±51.43 74.47 ±9.10 36.00 ±0.00 36.00 ±0.00 36.00 ±0.00 36.00 ±0.00
6 (29, 7) 515.85 ±101.56 115.28 ±11.90 583.52 ±143.15 120.30 ±17.58 42.00 ±0.00 42.00 ±0.00 42.00 ±0.00 42.00 ±0.00
7 (29, 8) 829.19 ±174.46 174.88 ±17.36 825.84 ±192.54 191.44 ±27.16 48.00 ±0.00 48.00 ±0.00 48.00 ±0.00 48.00 ±0.00
8 (29, 9) 1174.79 ±160.45 298.61 ±30.82 1236.91 ±200.02 331.95 ±45.28 54.00 ±0.00 54.00 ±0.00 54.00 ±0.00 54.00 ±0.00
9 (29, 10) 1578.38 ±279.31 394.71 ±62.16 1647.76 ±297.42 406.45 ±37.23 60.00 ±0.00 60.00 ±0.00 60.00 ±0.00 60.00 ±0.00
10 (29, 11) 2223.43 ±390.05 544.26 ±58.84 2158.91 ±199.54 639.60 ±54.35 66.00 ±0.00 66.00 ±0.00 66.00 ±0.00 66.00 ±0.00
11 (29, 12) 2713.78 ±435.39 665.29 ±76.02 2787.92 ±378.85 782.82 ±74.38 72.00 ±0.00 72.00 ±0.00 72.00 ±0.00 72.00 ±0.00
12 (29, 13) 3606.12 ±494.69 815.11 ±117.62 3427.93 ±409.34 958.17 ±81.59 78.00 ±0.00 78.00 ±0.00 78.00 ±0.00 78.00 ±0.00
13 (29, 14) 4171.27 ±645.70 1042.44 ±119.63 4291.64 ±663.83 1128.84 ±183.24 84.00 ±0.00 84.00 ±0.00 84.00 ±0.00 84.00 ±0.00

Table 2: Our test setup for the Keva(P, h) domain (lower values better). ID refers to the problem ID in the test set. θ refers to the parameters
passed to the problem generator for generating the problem. Times indicate the seconds required to find a policy. Similarly, costs are reported
as average costs obtained by executing the computed policy for 100 trials. We ran our experiments using a different random seed for 10
different runs and report average metrics up to one standard deviation. Better metrics are at least 5% better and are indicated using bold font.

ID θ
Time(x ≡ LRTDP) Time(x ≡ Soft-FLARES) Cost(x ≡ LRTDP) Cost(x ≡ Soft-FLARES)

x Ours + x x Ours + x x Ours + x x Ours + x

0 (1, 3, 1, 2) 0.02 ±0.01 0.02 ±0.01 0.02 ±0.01 0.01 ±0.00 6.62 ±0.08 6.68 ±0.08 6.69 ±0.12 6.68 ±0.09
1 (1, 4, 1, 2) 0.02 ±0.01 0.02 ±0.00 0.02 ±0.01 0.01 ±0.00 6.64 ±0.08 6.70 ±0.09 6.62 ±0.12 6.70 ±0.12
2 (1, 3, 2, 2) 0.10 ±0.03 0.03 ±0.01 0.09 ±0.02 0.03 ±0.00 10.33 ±0.14 10.29 ±0.08 10.38 ±0.15 10.34 ±0.10
3 (1, 4, 2, 2) 0.18 ±0.04 0.03 ±0.01 0.22 ±0.02 0.04 ±0.01 10.34 ±0.11 10.30 ±0.12 10.27 ±0.12 10.26 ±0.16
4 (1, 3, 3, 2) 0.43 ±0.06 0.18 ±0.03 0.46 ±0.07 0.20 ±0.04 15.03 ±0.19 15.01 ±0.16 14.94 ±0.23 15.09 ±0.11
5 (1, 4, 3, 2) 0.80 ±0.14 0.10 ±0.02 0.96 ±0.24 0.09 ±0.01 15.00 ±0.23 15.01 ±0.23 14.95 ±0.17 14.95 ±0.19
6 (1, 3, 4, 2) 1.08 ±0.12 0.54 ±0.10 1.66 ±0.39 0.68 ±0.11 19.76 ±0.21 19.65 ±0.31 19.68 ±0.15 19.62 ±0.17
7 (1, 4, 4, 2) 2.33 ±0.43 0.54 ±0.08 3.22 ±0.69 0.70 ±0.14 19.63 ±0.13 19.63 ±0.18 19.70 ±0.16 19.73 ±0.20
8 (1, 3, 5, 2) 3.54 ±0.59 1.61 ±0.23 4.25 ±0.84 2.42 ±0.51 24.36 ±0.17 24.35 ±0.30 24.34 ±0.22 24.46 ±0.09
9 (1, 4, 5, 2) 7.78 ±1.62 1.82 ±0.28 9.57 ±1.69 2.26 ±0.42 24.41 ±0.27 24.38 ±0.16 24.32 ±0.34 24.23 ±0.32
10 (1, 3, 6, 2) 8.77 ±1.08 4.91 ±1.04 12.67 ±1.91 6.40 ±0.93 28.95 ±0.26 29.13 ±0.26 28.98 ±0.25 29.14 ±0.31
11 (1, 4, 6, 2) 18.50 ±3.76 4.31 ±0.77 26.62 ±5.28 5.28 ±0.56 28.96 ±0.29 29.07 ±0.18 29.09 ±0.18 28.86 ±0.25
12 (1, 3, 7, 2) 22.42 ±2.26 13.60 ±1.98 33.11 ±4.79 18.49 ±2.85 33.80 ±0.29 33.54 ±0.20 33.74 ±0.26 33.71 ±0.24
13 (1, 4, 7, 2) 42.96 ±9.15 14.47 ±2.40 59.22 ±12.54 19.09 ±3.84 33.70 ±0.34 33.75 ±0.22 33.63 ±0.21 33.67 ±0.28
14 (1, 3, 8, 2) 65.32 ±13.63 35.25 ±5.75 93.44 ±13.87 51.72 ±8.90 38.30 ±0.26 38.39 ±0.24 38.28 ±0.27 38.36 ±0.35
15 (1, 4, 8, 2) 113.36 ±17.49 44.60 ±6.77 159.83 ±25.30 64.87 ±7.88 38.43 ±0.17 38.18 ±0.22 38.33 ±0.29 38.24 ±0.36
16 (1, 3, 9, 2) 156.88 ±23.55 86.26 ±16.11 222.42 ±43.47 122.44 ±21.53 43.02 ±0.40 42.98 ±0.45 42.87 ±0.26 43.11 ±0.29
17 (1, 4, 9, 2) 260.78 ±49.61 95.92 ±16.68 345.68 ±38.97 142.71 ±27.75 43.05 ±0.19 42.94 ±0.31 42.98 ±0.36 43.00 ±0.24
18 (1, 3, 10, 2) 367.77 ±71.46 199.80 ±35.50 555.65 ±121.90 337.10 ±52.84 47.65 ±0.34 47.36 ±0.16 47.62 ±0.30 47.67 ±0.42
19 (1, 4, 10, 2) 599.74 ±60.23 223.38 ±26.79 848.57 ±141.78 345.02 ±53.64 47.85 ±0.39 47.78 ±0.27 47.49 ±0.28 47.70 ±0.19
20 (1, 3, 11, 2) 914.39 ±217.86 515.34 ±85.61 1312.81 ±302.78 800.94 ±169.25 52.17 ±0.22 52.58 ±0.35 52.29 ±0.32 52.21 ±0.29
21 (1, 4, 11, 2) 1472.73 ±254.76 543.15 ±97.44 2168.73 ±450.03 819.44 ±159.47 52.36 ±0.27 52.35 ±0.41 52.37 ±0.46 52.26 ±0.30
22 (1, 3, 12, 2) 2336.52 ±492.69 1195.16 ±213.55 3171.35 ±554.37 1885.02 ±375.15 57.00 ±0.35 56.94 ±0.26 56.85 ±0.36 57.12 ±0.62
23 (1, 4, 12, 2) 3593.42 ±487.19 1385.19 ±187.00 5196.66 ±1063.94 2224.24 ±351.60 56.93 ±0.24 56.94 ±0.24 56.80 ±0.27 56.94 ±0.35
24 (1, 3, 13, 2) 5366.69 ±807.68 2721.86 ±337.95 6933.16 ±432.32 4505.52 ±811.02 62.26 ±1.69 61.63 ±0.39 63.83 ±2.43 61.67 ±0.29
25 (1, 4, 13, 2) 6997.37 ±338.99 3349.16 ±517.48 7200.00 ±0.00 4710.61 ±855.90 69.72 ±11.30 61.60 ±0.46 75.14 ±13.01 61.83 ±0.37

Table 3: Our test setup for the Rover(r, w, s, o) domain (lower values better). ID refers to the problem ID in the test set. θ refers to the
parameters passed to the problem generator for generating the problem. Times indicate the seconds required to find a policy. Similarly, costs
are reported as average costs obtained by executing the computed policy for 100 trials. We ran our experiments using a different random seed
for 10 different runs and report average metrics up to one standard deviation. Better metrics are at least 5% better and are indicated using
bold font.



ID θ
Time(x ≡ LRTDP) Time(x ≡ Soft-FLARES) Cost(x ≡ LRTDP) Cost(x ≡ Soft-FLARES)

x Ours + x x Ours + x x Ours + x x Ours + x

0 (1, 2) 0.02 ±0.01 0.02 ±0.01 0.02 ±0.01 0.02 ±0.01 6.41 ±0.13 6.32 ±0.13 6.35 ±0.08 6.45 ±0.15
1 (1, 3) 0.08 ±0.02 0.06 ±0.02 0.07 ±0.02 0.07 ±0.02 9.53 ±0.12 9.50 ±0.09 9.60 ±0.13 9.52 ±0.12
2 (1, 4) 0.32 ±0.05 0.16 ±0.03 0.33 ±0.05 0.19 ±0.03 12.72 ±0.14 12.73 ±0.14 12.81 ±0.15 12.77 ±0.15
3 (1, 5) 1.58 ±0.25 0.41 ±0.06 1.60 ±0.34 0.46 ±0.09 16.00 ±0.14 15.97 ±0.17 15.89 ±0.11 15.95 ±0.19
4 (1, 6) 6.45 ±0.77 1.02 ±0.22 7.36 ±1.28 1.21 ±0.20 19.06 ±0.16 19.16 ±0.16 19.17 ±0.24 19.14 ±0.14
5 (1, 7) 36.46 ±7.19 2.46 ±0.56 35.61 ±6.35 3.10 ±0.59 22.37 ±0.19 22.45 ±0.19 22.45 ±0.25 22.28 ±0.24
6 (1, 8) 145.33 ±24.97 6.58 ±1.25 142.70 ±18.86 8.42 ±1.93 25.57 ±0.18 25.56 ±0.09 25.52 ±0.23 25.59 ±0.26
7 (1, 9) 616.36 ±140.89 14.92 ±1.65 622.93 ±61.96 19.85 ±3.00 28.78 ±0.18 28.61 ±0.16 28.73 ±0.25 28.88 ±0.18
8 (1, 10) 3036.01 ±507.41 38.89 ±7.41 2662.96 ±361.97 48.08 ±10.54 31.95 ±0.08 31.95 ±0.23 31.96 ±0.20 32.01 ±0.21
9 (1, 11) 7200.00 ±0.00 85.99 ±9.94 7200.00 ±0.00 122.28 ±19.92 81.68 ±16.65 35.06 ±0.29 74.56 ±19.98 35.10 ±0.28
10 (1, 12) 7200.00 ±0.00 220.64 ±43.34 7200.00 ±0.00 313.88 ±48.81 87.85 ±11.06 38.26 ±0.23 81.42 ±16.54 38.20 ±0.25
11 (1, 13) 7200.00 ±0.00 490.90 ±90.83 7200.00 ±0.00 692.75 ±126.60 89.45 ±12.88 41.50 ±0.40 89.54 ±11.68 41.43 ±0.22
12 (1, 14) 7200.00 ±0.00 1153.32 ±117.37 7200.00 ±0.00 1710.56 ±278.99 87.26 ±12.32 44.69 ±0.13 93.66 ±10.10 44.74 ±0.27
13 (1, 15) 7200.00 ±0.00 2514.16 ±337.59 7200.00 ±0.00 3639.92 ±627.08 86.84 ±11.41 47.77 ±0.17 85.14 ±13.60 47.74 ±0.34

Table 4: Our test setup for the Schedule(C, p) domain (lower values better). ID refers to the problem ID in the test set. θ refers to the
parameters passed to the problem generator for generating the problem. Times indicate the seconds required to find a policy. Similarly, costs
are reported as average costs obtained by executing the computed policy for 100 trials. We ran our experiments using a different random seed
for 10 different runs and report average metrics up to one standard deviation. Better metrics are at least 5% better and are indicated using
bold font.

ID θ
Time(x ≡ LRTDP) Time(x ≡ Soft-FLARES) Cost(x ≡ LRTDP) Cost(x ≡ Soft-FLARES)

x Ours + x x Ours + x x Ours + x x Ours + x

0 (2) 0.01 ±0.01 0.01 ±0.00 0.00 ±0.00 0.01 ±0.01 5.40 ±0.07 5.40 ±0.08 5.45 ±0.07 5.40 ±0.10
1 (3) 0.03 ±0.01 0.02 ±0.01 0.03 ±0.01 0.02 ±0.01 7.42 ±0.12 7.50 ±0.15 7.53 ±0.09 7.48 ±0.06
2 (4) 0.11 ±0.03 0.07 ±0.02 0.12 ±0.03 0.09 ±0.02 9.58 ±0.11 9.53 ±0.16 9.56 ±0.14 9.62 ±0.09
3 (5) 0.49 ±0.08 0.22 ±0.05 0.51 ±0.08 0.40 ±0.06 11.71 ±0.20 11.72 ±0.12 12.48 ±0.69 14.22 ±2.49
4 (6) 2.56 ±0.55 0.80 ±0.13 2.14 ±0.26 1.79 ±0.23 13.82 ±0.15 13.75 ±0.07 15.02 ±1.09 25.16 ±4.14
5 (7) 12.55 ±2.20 3.25 ±0.56 8.08 ±0.92 6.81 ±1.41 15.94 ±0.09 15.86 ±0.08 18.87 ±1.44 23.32 ±4.09
6 (8) 54.31 ±11.04 14.12 ±2.60 31.86 ±5.15 27.65 ±4.41 18.08 ±0.13 18.07 ±0.14 22.16 ±1.68 22.01 ±1.52
7 (9) 244.32 ±47.46 54.60 ±10.68 101.63 ±20.29 90.57 ±15.57 20.04 ±0.13 20.15 ±0.14 25.18 ±2.65 22.70 ±1.22
8 (10) 960.96 ±105.78 188.50 ±29.21 331.06 ±49.98 293.54 ±36.06 22.28 ±0.17 22.17 ±0.13 28.54 ±2.09 26.29 ±1.73
9 (11) 4691.23 ±859.08 698.09 ±143.63 990.65 ±144.48 983.51 ±144.08 24.30 ±0.12 24.41 ±0.17 30.05 ±1.37 28.02 ±1.40
10 (12) 7200.00 ±0.00 3769.57 ±439.21 3347.02 ±540.66 2911.30 ±397.41 27.46 ±0.83 26.46 ±0.14 32.23 ±2.35 29.49 ±1.47
11 (12) 6980.00 ±660.00 7183.58 ±49.27 6980.48 ±658.56 7132.65 ±202.04 96.62 ±10.13 96.12 ±11.65 96.50 ±10.49 96.48 ±10.56

Table 5: Our test setup for the Delicate Can(c) domain (lower values better). ID refers to the problem ID in the test set. θ refers to the
parameters passed to the problem generator for generating the problem. Times indicate the seconds required to find a policy. Similarly, costs
are reported as average costs obtained by executing the computed policy for 100 trials. We ran our experiments using a different random seed
for 10 different runs and report average metrics up to one standard deviation. Better metrics are at least 5% better and are indicated using
bold font.

ID θ
Time(x ≡ LRTDP) Time(x ≡ Soft-FLARES) Cost(x ≡ LRTDP) Cost(x ≡ Soft-FLARES)

x Ours + x x Ours + x x Ours + x x Ours + x

0 (1) 0.01 ±0.01 0.00 ±0.01 0.00 ±0.00 0.01 ±0.01 3.25 ±0.06 3.25 ±0.05 3.23 ±0.06 3.25 ±0.04
1 (2) 0.02 ±0.01 0.02 ±0.01 0.02 ±0.01 0.02 ±0.01 5.48 ±0.08 5.53 ±0.08 5.51 ±0.10 5.55 ±0.07
2 (3) 0.10 ±0.02 0.12 ±0.03 0.12 ±0.03 0.12 ±0.03 9.71 ±0.07 9.76 ±0.10 9.76 ±0.07 9.75 ±0.09
3 (4) 0.33 ±0.05 0.34 ±0.05 0.30 ±0.06 0.38 ±0.07 11.99 ±0.10 12.03 ±0.16 12.00 ±0.08 12.03 ±0.10
4 (5) 1.36 ±0.23 1.62 ±0.28 1.82 ±0.35 2.21 ±0.47 16.27 ±0.09 16.23 ±0.12 16.22 ±0.06 16.26 ±0.15
5 (6) 3.38 ±0.39 5.17 ±1.65 4.64 ±0.80 5.16 ±0.64 18.51 ±0.21 18.54 ±0.14 18.53 ±0.12 18.44 ±0.07
6 (7) 14.00 ±2.83 17.67 ±3.43 18.07 ±2.13 22.28 ±4.48 22.82 ±0.08 22.78 ±0.10 22.80 ±0.19 22.73 ±0.15
7 (8) 34.11 ±7.52 38.35 ±4.68 43.88 ±8.90 55.78 ±12.25 24.96 ±0.12 24.99 ±0.13 24.96 ±0.14 24.95 ±0.14
8 (9) 108.94 ±19.36 133.06 ±24.75 175.48 ±33.68 186.91 ±24.64 29.17 ±0.10 29.26 ±0.20 29.23 ±0.14 29.08 ±0.17
9 (10) 264.59 ±28.50 362.16 ±60.65 392.91 ±69.13 463.30 ±78.81 31.48 ±0.20 31.54 ±0.15 31.47 ±0.14 31.54 ±0.17
10 (11) 867.91 ±195.44 1028.70 ±172.62 1256.52 ±277.94 1509.25 ±195.14 35.78 ±0.09 35.73 ±0.15 35.70 ±0.15 35.84 ±0.16
11 (12) 2037.65 ±326.63 2454.41 ±377.38 2941.24 ±457.95 3461.67 ±595.74 38.07 ±0.13 37.98 ±0.15 38.03 ±0.18 38.10 ±0.12

Table 6: Our test setup for the Gripper(b) domain (lower values better). ID refers to the problem ID in the test set. θ refers to the parameters
passed to the problem generator for generating the problem. Times indicate the seconds required to find a policy. Similarly, costs are reported
as average costs obtained by executing the computed policy for 100 trials. We ran our experiments using a different random seed for 10
different runs and report average metrics up to one standard deviation. Better metrics are at least 5% better and are indicated using bold font.
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