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Abstract
We consider the problem of optimal planning in de-
terministic domains and reduce it to the problem of
finding an optimal solution of a corresponding con-
straint optimization problem incorporating a bound
n on the maximum length of the plan. By solv-
ing the latter, we can conclude whether (i) the plan
found is optimal even for bounds greater than n;
or (ii) we need to increase n; or (iii) it is use-
less to increase n since the planning problem has
no solution. Our approach (i) substantially gen-
eralizes previous approaches for optimal symbolic
deterministic planning; (ii) allows to compute non
trivial lower bounds on the cost and length of opti-
mal plans; and (iii) produces an encoding linear in
the size of the planning problem and the bound n.

1 Introduction
We consider the problem of optimal planning in determinis-
tic domains. Given a planning problem Π with costs C, We
assume (i) that Π is specified with 3 formulas in conjunctive
normal form (CNF) giving the initial state, valid transitions
and goal states, and (ii) that C associates a non negative real
number to every valid transition between two states. Our ob-
jective is to determine an optimal plan, i.e., a sequence of
actions leading from the initial state to a goal state with min-
imum associated total cost, defined as the sum of the costs of
the transitions induced by the actions in the plan.

In particular, we extend the planning as satisfiability ap-
proach [Kautz and Selman, 1992] and reduce the problem of
finding an optimal plan for ⟨Π, C⟩ to the one of solving a cor-
responding constraint optimization problem incorporating a
bound n on the maximum length of the plan. The basic idea
is to construct an encoding ΠO

n of Π and CO
n of C such that

each valid plan π of Π with cost C(π)

• bijectively corresponds to a model πO
n of ΠO

n having cost
CO

n (πO
n ) = C(π), if π has at most n actions, and

• corresponds to a model πO
n of ΠO

n having cost
CO

n (πO
n ) ≤ C(π), if π has more than n actions.

Thus, if πO
n is an optimal model of ⟨ΠO

n , C
O
n ⟩ then

1. if πO
n corresponds to a plan π of Π with at most n ac-

tions, then π is an optimal plan of Π, and

2. if πO
n does not correspond to a plan of Π with at most n

actions then we have to increase the bound n.

Moreover, if ΠO
n is unsatisfiable then Π does not admit a valid

plan and it is useless to increase the bound n.
Since we place no restriction on the CNF formula speci-

fying the valid transitions, our work substantially generalizes
previous approaches for optimal symbolic deterministic plan-
ning. In particular, this paper builds on and significantly ex-
tends [Leofante et al., 2020] which is restricted to numeric
planning problems expressible in PDDL2.1 level 2 [Fox and
Long, 2003]. Despite being far more general than [Leofante
et al., 2020], (i) we provide non trivial lower bounds on the
cost of the optimal plans and on the length of valid plans,
and (ii) our encoding never exponentially blows up since it is
guaranteed to be linear in the size of Π and the bound n.

The paper is structured as follows. After the formal frame-
work, we focus on how to encode plans with length smaller
than or equal to the bound (section 3), and then we consider
plans longer than the bound (section 4). We put all the pieces
together in section 5, ending the paper in section 6 with some
final considerations, including related and future works.

2 Formal framework
We consider deterministic planning problems (i) that can be
described using finitely many state and action variables, and
(ii) whose initial state, valid transitions and goal states are the
models of quantifier free CNF formulas. Thus, our approach
is completely general and captures many logic based planning
representation languages, like grounded PDDL 2.1 level 2
[Fox and Long, 2003] and the action language C [Giunchiglia
and Lifschitz, 1998] in the deterministic case.

For the language signature, we assume to have

1. a non empty finite set X of state variables, each variable
x ∈ X equipped with a domain dom(x) representing
the values the variable can assume,

2. a finite set A of Boolean action variables,

3. a copy X ′ of X of next state variables such that, for each
state variable x ∈ X , there is a corresponding variable
x′ ∈ X ′ with dom(x′) = dom(x).

An assignment to a set of variables V is a function mapping
each variable in V to an element of its domain. In the case of



Boolean variables, their domain is {⊤,⊥} for truth and fal-
sity, and we use v in place of v = ⊤. A state (resp. action,
resp. next state) is an assignment to the variables X (resp.
A, resp. X ′). States, actions and next states are denoted with
σ, σ0, . . ., α, α0, . . ., and σ′, σ′

0, . . . respectively. A transition
is an assignment to all the state, action and next state variables
at hand. Besides variables, we assume to have other possibly
theory dependent symbols (like “0”, “+”, “≥”) and auxiliary
symbols (like “(” and “)”) that are used to define atomic for-
mulas, literals and well formed formulas. We take for granted
standard logic notions like satisfiability, entailment, model,
and the like. Unless explicitly specified, assignments are to-
tal. (Partial) actions are represented with the set of action
literals they satisfy.

A (deterministic) planning problem is a 5 tuple Π =
⟨X ,A, I(X ), T (X ,A,X ′), G(X )⟩ where

1. I(X ) is the initial state formula in the state variables X ,
assumed to be satisfied by exactly one state;

2. T (X ,A,X ′) is the transition relation, i.e., a formula in
the X ,A,X ′ variables, whose models are the valid tran-
sitions. For each state σ and action α it is assumed that
there is at most one valid transition σ, α, σ′;

3. G(X ) is the goal formula in the state variables X , whose
models are the goal states.

Without loss of generality, we assume I(X ), T (X ,A,X ′)
and G(X ) to be in CNF, i.e, that each formula is a conjunction
of clauses, where a clause is a disjunction of literals.

In the following, lx, lx1, . . . (resp. la, la1, . . ., resp.
lx′, lx′

1, . . .) denote state (resp. action, resp. next state) liter-
als, i.e., literals in the X (resp. A, resp. X ′) variables. When
convenient, we use also the symbol “→” for implication and
write clauses in T (X ,A,X ′) either as

p∧
i=1

lai →
q∨

i=1

lxi (1)

(p, q ≥ 0) to model that (
∨q

i=1 lxi) is an explicit precondition
of the partial actions which satisfy (

∧p
i=1 lai), or as

p∧
i=1

lai ∧
q∧

i=1

lxi →
r∨

i=1

lx′
i (2)

(p, q ≥ 0, r ≥ 1), to model that (
∨r

i=1 lx
′
i) is an explicit

(conditional) effect of the partial action {la1, . . . , lap} with
the conditions in {lx1, . . . , lxq}.
Running Example. Consider a domain SQUARE in which a
numeric variable var is initialized to a fixed value VI ∈ R
and should reach a fixed value VG ∈ R. The value of var
can be changed only in states with var ≥ 0, and in the
next state the value of var is automatically incremented by 1
unless it is squared. This domain can be formalized as the
planning problem Π = ⟨X ,A, I(X ), T (X ,A,X ′), G(X )⟩
where X = {var}, A = {square}, I(X ) = (var = VI),
G(X ) = (var = VG), and T (X ,A,X ′) is the formula

(¬square ∧ var ≥ 0 → var′ = var + 1)∧
(square → var ≥ 0) ∧ (square → var′ = var2)∧

(var < 0 → var′ = var).
(3)

Indeed, SQUARE has been formalized as above to make the
example simple yet illustrative for the theory below. □

Let Π = ⟨X ,A, I(X ), T (X ,A,X ′), G(X )⟩ be a planning
problem. Our next step is to define the valid plans of Π. We
mostly use the terminology of [Fox and Long, 2003; Haslum
et al., 2019]. If F (V) is a formula/function in the V variables
and µ is a partial assignment to V defined on U ⊆ V , by F (µ)
we mean the formula/function obtained by substituting each
variable v ∈ U with µ(v) in F (V).

An action α is executable in a state σ if there is a next state
σ′ satisfying T (σ, α,X ′), in which case the result of execut-
ing α in σ is the state σ′′ such that, for each state variable x,
σ′′(x) = σ′(x′). A plan (of length k) is a sequence of k ≥ 0
actions.

Consider a plan π = α0; . . . ;αk−1 (k ≥ 0). π is exe-
cutable if for each i ∈ [0, k−1], αi is executable in σi, where

1. σ0 is the state satisfying the initial state formula, and
2. σi+1 is the result of executing αi in σi.

If π is executable, the state σi (0 ≤ i ≤ k) as above defined
is the i-th state induced by π. The plan π is valid if it is
executable and the k-th induced state σk satisfies G(X ).

For the definition of optimal plan, we introduce a cost as-
sociated to each valid transition. By Cmin we denote a fixed
positive constant. A pair ⟨Π, C⟩ is a planning problem with
costs if C is a cost function such that for each valid transition
σ, α, σ′, (i) C(σ, α, σ′) ≥ Cmin whenever σ′(x′) ̸= σ(x) for
some state variable x, and (ii) C(σ, α, σ′) ≥ 0 otherwise. If
π is a valid plan, the cost C(π) of π is the sum of the costs of
each transition, i.e.,

C(π) =

k−1∑
i=0

C(σi, αi, σ
′
i+1)

where σi and σi+1 are the i-th and (i + 1)-th states induced
by π and, for each x ∈ X , σ′

i+1(x
′) = σi+1(x). The plan π is

optimal if it is valid and there is no valid plan with a smaller
cost.
Running Example. In SQUARE, we further assume that the
cost of each transition is the maximum between 1 and the
difference between the new and old values of var. Formally,

C(X ,A,X ′) = max(var′ − var, 1).

Then, if VI = 1 and VG = 9, the plans ξ =
{square}; {¬square}; {¬square}; {square}, and π =
{¬square}; {¬square}; {square}, are both valid, but only
π is optimal (since C(ξ) = 9 and C(π) = 8), and there exist
only two other optimal plans of length 7 and 8. □

As a consequence of the assumption that every valid tran-
sition to a different state has an associated cost greater than
or equal to Cmin > 0, we have the following fact.
Proposition 1. Let ⟨Π, C⟩ be a planning problem with costs.
If π is a valid plan of Π with cost C(π) then there exists an
optimal plan of length less than or equal to ⌊C(π)/Cmin⌋.

3 Plans shorter than or equal to the bound
Let Π = ⟨X ,A, I(X ), T (X ,A,X ′), G(X )⟩ be a planning
problem with costs C(X ,A,X ′), and let n ≥ 0 be a fixed
integer called bound or number of steps.



Following the planning as satisfiability approach [Kautz
and Selman, 1992], we make n+1 disjoint copies X0, . . . ,Xn

of the set X of state variables, and n copies A0, . . . ,An−1 of
the set A of action variables. Then, for each i ∈ [0, n − 1],
T (Xi,Ai,Xi+1) is the formula obtained substituting each
variable x ∈ X (resp. a ∈ A, x′ ∈ X ′) with xi ∈ Xi

(resp. ai ∈ Ai, xi+1 ∈ Xi+1) in T (X ,A,X ′), and similarly
for other formulas like I(X0), G(Xn) and C(Xi,Ai,Xi+1).

Then, we define

ΠS
n = I(X0) ∧

∧n−1
i=0 T (Xi,Ai,Xi+1) ∧G(Xn),

CS
n =

∑n−1
i=0 C(Xi,Ai,Xi+1).

Notice that both ΠS
n and CS

n are in the variables
X0,A0, . . . ,Xn−1,An−1,Xn. ΠS

n and CS
n define a constraint

optimization problem, whose optimal models are the models
of ΠS

n that have minimum associated cost CS
n .

Lemma 1. Let Π be a planning problem. Let π =
α0; . . . ;αn−1 be a plan of Π. There exists at most one model
πS
n of ΠS

n such that for each variable ai ∈ Ai (0 ≤ i < n),
πS
n (ai) = αi(a).

According to the lemma, for each plan π we have at most
one corresponding model πS

n of ΠS
n . Indeed, we have a tighter

correspondence between the valid plans of Π and the models
of ΠS

n and their respective costs.

Proposition 2. Let ⟨Π, C⟩ be a planning problem with costs.
Let π be a plan of length n. π is a valid plan of Π iff πS

n is a
model of ΠS

n , and C(π) = CS
n (π

S
n ).

Notice that ΠS
n and CS

n (π
S
n ) encode the validity and the

cost of plans of length exactly n. In order to consider also
plans with length smaller than the bound, the transition rela-
tion T (X ,A,X ′) may need to be modified in order to ensure
Π to be inertial, i.e., that for every state σ there exists an ac-
tion α whose execution in σ results in the same state σ with
cost 0. To deal with inertia, we

1. extend the action signature with the variable NoOp, and

2. define T I(X ,A ∪ {NoOp},X ′) to be

T I(X ,A ∪ {NoOp},X ′) = (¬NoOp → T (X ,A,X ′)∧∧
x∈X (NoOp → x′ = x)∧∧
a∈A(NoOp → ¬a).

Imposing in the definition above that all the action variables
a ∈ A have to be false whenever NoOp is true allows to es-
tablish a one-to-one correspondence between the valid plans
of Π of length k ≤ n and the models of

ΠI
n = I(X0)∧

∧n−1
i=0 T I(Xi,Ai ∪ {NoOpi},Xi+1)

∧
∧n−2

i=0 (NoOpi → NoOpi+1) ∧G(Xn).

The following lemma defines the assignment πI
n to the vari-

ables in ΠI
n corresponding to a valid plan π of length k ≤ n.

Lemma 2. Let Π be a planning problem. Let π =
α0; . . . ;αk−1 be a plan of Π of length k ≤ n. There ex-
ists at most one model πI

n of ΠI
n such that for each variable

ai ∈ Ai (0 ≤ i < k), πI
n(ai) = αi(a) and πI

n(NoOpk) =
. . . = πI

n(NoOpn−1) = ⊥.

If we define CI(X ,A ∪ {NoOp},X ′) to be such that, for
each assignment σ, α, σ′ to X ,A,X ′,

CI(σ, α ∪ {NoOp = ⊥}, σ′) = C(σ, α, σ′),
CI(σ, α ∪ {NoOp = ⊤}, σ′) = 0,

then we have also that the cost C(π) of a plan π of length
k ≤ n is equal to CI

n(π
I
n), defined as:

CI
n =

n−1∑
i=0

CI(Xi,Ai ∪ {NoOpi},Xi+1).

Proposition 3. Let ⟨Π, C⟩ be a planning problem with costs.
Let π be a plan of length k ≤ n. π is a valid plan of Π iff πI

n
is a model of ΠI

n, and C(π) = CI
n(π

I
n).

Owing to proposition 3, we know that if a model πI
n of ΠI

n
is optimal (i.e., all the other models ρIn of ΠI

n are such that
CI

n(ρ
I
n) ≥ CI

n(π
I
n)), then there is no valid plan of Π with

length ≤ n and cost smaller than C(π).
Running Example. Assume that VI = 1 and VG = 9 in
our ⟨Π, C⟩ formalization of the SQUARE domain. From the
previous example, we know that there is an optimal plan π,
plus two other, say ω and ρ, of length 3, 7 and 8, respectively.
Assuming n = 8, from the proposition we can conclude that
πI
n, ωI

n and ρIn are optimal models of ⟨ΠI
n, C

I
n⟩. On the other

hand, from the fact that πI
n, ωI

n and ρIn are optimal models of
⟨ΠI

n, C
I
n⟩, the proposition does not allow us to conclude that

π, ω and ρ are optimal plans of ⟨Π, C⟩. □

4 Plans longer than the bound
Let Π = ⟨X ,A, I(X ), T (X ,A,X ′), G(X )⟩ be a planning
problem with costs C(X ,A,X ′), and let n ≥ 0 be a bound.
We build an abstract encoding ΠA

n such that for each valid
plan π of length k > n there is a corresponding model πA

n of
ΠA

n with cost CA
n (πA

n ) ≤ C(π).
Consider a plan π = α0; . . . ;αk−1 of length k > n and let

σn be the n-th state induced by π.
The definition of ΠA

n is based on an abstract version
TA(X ,BA,BX ,V) of the transition relation T (X ,A,X ′)
and an abstract version GA(X ,BX ,V) of the goal condition
G(X ), where

1. BX is a set containing one new Boolean abstract state
variable x for each variable x ∈ X : intuitively x is true
in πA

n if x is affected by some action αi (n ≤ i < k);

2. BA is a set containing one new Boolean abstract action
variable la for each action literal la (thus, |BA| = 2 ×
|A|): intuitively, la is true in πA

n if for some n ≤ i < k,
αi(la) = ⊤; and

3. V is a set of auxiliary Boolean variables necessary to
maintain polynomial the size of TA(X ,BA,BX ,V) and
of its CNF conversion, and allowing the computation of
non trivial lower bounds on the length and cost of π.

If π is valid, then πA
n will be a model of both

TA(X ,BA,BX ,V) and GA(X ,BX ,V).
Similarly to T (X ,A,X ′) (see eq. (1) and (2)),

TA(X ,BA,BX ,V) includes two types of clauses:



1. the abstract preconditions of each variable la ∈ BA,
defined on the basis of a subset P la of the preconditions
of the partial action {la} in T (X ,A,X ′) and defining
whether la can be set to true, and

2. the abstract effects affecting a variable x ∈ BX , defined
on the basis of a superset Ex of the states and actions
causing x ∈ X to change value (i.e., x ̸= x′) and defin-
ing whether x has to be set to true given the BA variables
set to true in the previous step.

Given that the abstract preconditions and effects involve the
variables in the same set BA,BX , “loops” between the ab-
stract preconditions and effects are possible. Such loops, if
not ruled out, cause unwanted models, i.e., models not corre-
sponding to plans executable starting from σn, the n-th state
induced by π. In order to rule out such models, taking in-
spiration from [Janhunen, 2004; Niemelä, 2008], we impose
a level ordering on BA,BX ensuring that the first actions in
BA set to true have their abstract preconditions satisfied by
σn, and each variable in BX is not used to enable an abstract
action in BA unless it has been previously set to true by some
other abstract action in a lower level. This is obtained by
introducing level ordering constraints associating a level in
[0, |X |+ 1] to the following level ordering variables in V:

1. λla for each abstract action la ∈ BA,
2. λx for each abstract state variable x ∈ BX ,
3. λp for each precondition p∈P la of a partial action {la},
4. λe for each conjunction e ∈ Ex whose truth affects the

value of x in the resulting state,
5. λlx for each state literal lx in a conjunction e ∈ Ex.

As part of V , we also have one Boolean variable e for each
conjunction e ∈ Ex and one additional Boolean variable lx
for each state literal lx in a conjunction e ∈ Ex.

Consider an action literal la. The set of abstract precondi-
tions of la are computed on the basis of a subset P la of the
preconditions of la. A disjunction p of state literals is a pre-
condition of an action literal la if T (X ,A,X ′) and the falsity
of p entails the falsity of la (i.e., if (T (X ,A,X ′)∧¬p∧ la) is
unsatisfiable). Formally, the conjunction of the preconditions
of la is equivalent to

∃A∃X ′(la ∧ T (X ,A,X ′)). (4)

Running Example. The preconditions of square coincide
with its explicit precondition (var ≥ 0), while ¬square has
no preconditions, corresponding to the formula ⊤. Indeed, in
this case, the explicit preconditions of square and ¬square
are equivalent to the formula (4). However, such equiva-
lence in general does not hold since there can be also other
implicit preconditions. For instance, if we add the clause
(var′ > var) to (3), the precondition of square becomes
(var > 1), which indeed entails its explicit precondition. □

Computing the preconditions of la requires that the theory
behind the planning problem admits a quantifier elimination
procedure, which, in general, cannot be guaranteed (see also
[Helmert, 2002]). However, there are cases in which such
quantifier elimination is possible, though computationally ex-
pensive, e.g., using Fourier–Motzkin procedure, assuming

variables are either Boolean or range over the reals, and that
in T (X ,A,X ′) there are only Boolean variables and linear
inequalities. Furthermore, in many cases all preconditions
are explicit in T (X ,A,X ′), e.g., for PDDL encoded prob-
lems. Finally, in all cases — since we wish to compute a
superset of the set of actions literals la which have their pre-
condition satisfied — we do not need all the preconditions of
la, and we can just consider the explicit ones in T (X ,A,X ′).

Given the last point, consider a subset P la of the precon-
ditions of la, which contains at least the explicit precondi-
tions of {la} in T (X ,A,X ′) and thus also the clauses in
T (X ,A,X ′) without action and next state variables. For-
mally, let P la be a set of disjunctions of state literals, each en-
tailed by (4). Then, for each precondition p = (

∨q
i=1 lxi) ∈

P la (q ≥ 0) in the state variables {x1, . . . , xm} ⊆ X ,
TA(X ,BA,BX ,V) includes the clause

la → p ∨
m∨
i=1

xi.

The above clause models the fact that we consider the abstract
precondition corresponding to p satisfied, if p is either satis-
fied by σn or if one of its state variables has been affected by
an abstract action at a lower level. For the level ordering con-
straint, we impose that the level λp associated to p is 0 if p is
satisfied by σn, and is the minimum of the levels associated
to x1, . . . , xm and |X |+ 1 otherwise:∨q

i=1 lxi → λp = 0,∧q
i=1 ¬lxi → λp = min(λx1

, . . . , λxm
, |X |+ 1).

Then, the level λla associated to la ∈ BA is the maximum
of the levels associated to all the preconditions in P la and 0,
and la can be set to true only if its level is not |X |+ 1:

λla = max(λp : p ∈ P la, 0), la → λla ̸= |X |+ 1. (5)

Now we consider the problem of computing the abstract
effects, determining when an abstract state variable x ∈ BX
can be set to true. Consider a state variable x. Our goal is to
set x to true when there is a state and an action which cause x
to change value in the resulting state. Such states and actions
are those that satisfy

∃X ′(x′ ̸= x ∧ T (X ,A,X ′)). (6)

As for the preconditions of an action literal, computing a
quantifier free formula equivalent to the above may not be
possible. However, we need to find a superset of the set of
next state variables x′ which change value, and we can con-
sider a superset of the desired states and actions. Thus, we
can take Ex to be the set of the antecedents of the explicit
effects (2) in T (X ,A,X ′) such that

1. x′ occurs in a next state literal lx′
i (1 ≤ i ≤ r), and

2. (
∧q

j=1 lxj ∧ lx′
i) does not entail x′ = x.1

1Such condition can be easily checked when (i) lx′ is x′ = x or
x = x′ or there is a conjunct lxi (0 < i ≤ q) equal to x = v and
lx′ is x′ = v (as it is the case in the explanatory and classical frame
axioms of classical Boolean planning problems).



Consider a set Ex of conjunctions of state and action lit-
erals such that if x changes value in the resulting state then
at least one of the conjunctions in Ex is satisfied. Let Ex be
a set of conjunctions of state and action literals such that the
disjunction of the conjunctions in Ex is entailed by (6). Then,
TA(X ,BA,BX ,V) includes the following clauses:

1. for each conjunction e =
∧p

i=1 lai ∧
∧q

i=1 lxi ∈ Ex

(p, q ≥ 0), the clauses corresponding (i) to
lxi ↔ lxi ∨

∨m
j=1 xj ,

for each state literal lxi (1 ≤ i ≤ q) in e in the state
variables {x1, . . . , xm} ⊆ X , and (ii) to

e ↔
∧p

i=1 lai ∧
∧q

i=1 lxi,

all clauses modeling the fact that we consider e to be sat-
isfied when the abstract version of the actions and con-
ditions in e are satisfied; and

2. the clauses saying that x is true iff one of abstract for-
mulas in Ex is satisfied, equivalent to:

x ↔
∨

e∈Ex

e.

For the level ordering constraint, we impose that

1. for each conjunction e =
∧p

i=1 lai ∧
∧q

i=1 lxi ∈ Ex

(p, q ≥ 0), (i) that the level λlxi
(1 ≤ i ≤ q) associated

to the state literal lxi in the state variables x1, . . . , xm

(m ≥ 0) is 0 if lxi is satisfied in σn, and is the mini-
mum of the levels associated to the abstract state vari-
ables {x1, . . . , xm} and |X |+ 1 otherwise:

lxi → λlxi
= 0,

¬lxi → λlxi
= min(λx1

, . . . , λxm
, |X |+ 1),

and (ii) that the level λe of e is the maximum of the
levels of the conditions and action literals in e and 0:

λe = max(λla1 , . . . , λlap , λlx1 , . . . , λlxq , 0),

2. that the level λx of x ∈ BX is 1 plus the minimum of
the levels associated to each effect e ∈ Ex and |X |, and
x can be set to true only if its level is not |X |+ 1:

λx = min(λe : e ∈ Ex, |X |) + 1,
x → λx ̸= |X |+ 1.

(7)

TA(X ,BA,BX ,V) is the conjunction of the clauses as-
sociated to P la and Ex, for each action literal la and state
variable x.
Running Example. Let Psquare = {var ≥ 0} and
P¬square = ∅, corresponding to the explicit preconditions
of {square} and {¬square} respectively. Let Evar =
{(¬square ∧ var ≥ 0), square}, corresponding to the first
and third clauses in (3). Then, from TA(X ,BA,BX ,V), it
follows that (|X | = 1)

1. if (var ≥ 0) is false then, given (5) and (7), ¬square
can be set to true but square and var are necessarily
false since λsquare = λvar = 2, λ¬square = 0,

2. if (var ≥ 0) is true then square, ¬square and var can
be set to true since λsquare = λ¬square = 0, λvar = 1.

□

Now we consider the definition of GA(X ,BX ,V), the ab-
stract version of the goal formula G(X ). Consider the goal
formula G(X ) =

∧s
i=1

∨si
j=1 lxij . GA(X ,BX ,V) is the

CNF formula consisting of
1. for each clause ci =

∨si
j=1 lxij in the state variables

x1, . . . , xm (m ≥ 0), the clauses corresponding to

ci ∨
∨m

j=1 xj ,
∨si

j=1 lxij → λci = 0,∧si
j=1 ¬lxij → λci = min(λx1 , . . . , λxm , |X |+ 1),

where λci is a new level ordering variable in V , and
2. the clause (λG is the last new variable in V we introduce)

λG = max(λc1 , . . . , λcs , 0).

The definition of the level ordering λG associated to the
goal formula allows us to define (i) a lower bound λG on
the number of steps necessary, starting from the n-th induced
state σn, to reach a goal state, and (ii) a lower bound

CG
n = λG × Cmin

of the cost to reach a goal state starting from σn.
We can state the desired correspondence between the plan

π with cost C(π) and a model πA
n of ΠA

n with cost CA
n (πA

n ).
ΠA

n and CA
n are defined below, while πA

n will be characterized
with a lemma as we did for πI

n in Section 3.

ΠA
n = I(X0)∧

∧n−1
i=0 T (Xi,Ai,Xi+1)

∧TA(Xn,BA,BX ,V) ∧GA(Xn,BX ,V),
CA

n = CS
n + CG

n .

Lemma 3. Let Π be a planning problem. Let π =
α0; . . . ;αk−1 be a plan of Π of length k > n. There exists at
most one model πA

n of ΠA
n such that

1. for each variable ai ∈ Ai (0 ≤ i < n), πA
n (ai) = αi(a),

2. for each action literal la, πA
n (la) = ⊤ iff there exists an

action αi with i ∈ [n, k − 1] and αi(la) = ⊤.
Proposition 4. Let ⟨Π, C⟩ be a planning problem with costs.
Let G be the goal formula in Π. Let π be a valid plan of length
k > n ≥ 0. Then, πA

n is a model of ΠA
n , C(π) ≥ CA

n (πA
n ),

and k ≥ n+ πA
n (λG).

Running Example. GA(X ,BX ,V) simplifies to

(var = VG ∨ var) ∧ (var = VG → λG = 0)∧
(var ̸= VG → λG = λvar).

Assuming that VG > VI ≥ 0, then, for n = 0, for any model
πA
n of ΠA

n , πA
n (λG) = 1 = |X |, meaning that, for n = 0, we

can conclude that the length of each valid plan has 1 as lower
bound. This is because, for every n, if ΠA

n is satisfiable then
it is always the case that λG ≤ |X |, and we have |X | = 1. If
we consider the planning problem with m Boolean state vari-
ables X = {v1, . . . , vm} and no action variables, assuming
that I(X ) =

∧m
i=1 ¬vi, G(X ) = vm and that the transition

relation is a CNF formula equivalent to

v′1 ∧
∧m−1

i=1 (vi → v′i+1) ∧
∧m−1

i=1 (¬vi → v′i+1 ↔ vi+1)

then valid plans (consisting of sequences of empty actions)
have length ≥ m and, for n = 0, λG = |X |. □



5 Optimal planning as Constraint
Optimization

Let Π = ⟨X ,A, I(X ), T (X ,A,X ′), G(X )⟩ be a planning
problem with costs C(X ,A,X ′), and let n ≥ 0 be a bound.
We combine the results in Sections 3, 4 and define a constraint
optimization problem ⟨ΠO

n , C
O
n ⟩ allowing to determine (i) an

optimal plan of length k ≤ n, or (ii) the non existence of a
valid plan, or (iii) whether the bound n needs to be increased.
These statements are consequences of the Theorem below,
based on the following definition of ⟨ΠO

n , C
O
n ⟩:

ΠO
n = I(X0)∧

∧n−1
i=0 T I(Xi, Ai ∪ {NoOpi},Xi+1)

∧
∧n−2

i=0 (NoOpi → NoOpi+1)
∧TA(Xn,BA,BX ,V) ∧GA(Xn,BX ,V)
∧(NoOpn−1 → λG = 0)
∧
∧

la∈BA(λG = 0 → ¬la),
CO

n = CI
n + CG

n .

Lemma 4. Let Π be a planning problem. Let π =
α0; . . . ;αk−1 be a plan of Π. There exists at most one model
πO
n of ΠO

n such that, if m = min(k, n),
1. for each variable ai ∈ Ai (0 ≤ i < m), πO

n (ai) =
αi(a) and πO

n (NoOpm) = . . . = πO
n (NoOpn−1) = ⊥,

2. for each action literal la, πO
n (la) = ⊤ iff there exists an

action αi with i ∈ [m, k − 1] and αi(la) = ⊤.
Theorem 1. Let ⟨Π, C⟩ be a planning problem with costs.

1. A plan π of length k is optimal iff there exists a bound
n ≥ k such that πO

n is an optimal model of ⟨ΠO
n , C

O
n ⟩

and πO
n (λG) = 0.

2. For a bound n ≥ 0, if πO
n is an optimal model of

⟨ΠO
n , C

O
n ⟩ and πO

n (λG) = 0, then for every m ≥ n,
πO
m is an optimal model of ⟨ΠO

m, CO
m⟩ and πO

m(λG) = 0.
3. For a bound n ≥ 0, if ΠO

n is unsatisfiable then for every
m ≥ n, ΠO

m is unsatisfiable and Π has no valid plans.
4. For a bound n ≥ 0, if πO

n is an optimal model of
⟨ΠO

n , C
O
n ⟩ then any valid plan of Π has cost greater than

or equal to CO
n (πO

n ).
5. For a bound n ≥ 0, if πO

n is an optimal model of
⟨ΠO

n , C
G
n ⟩ and πO

n (λG) ̸= 0 then any valid plan of Π
has length greater than or equal to (n+ πO

n (λG)).
6. The size of ΠO

n is O([Π]×n), where [Π] is the size of Π.
Given Proposition 1, the Theorem guarantees that, assum-

ing the existence of a valid plan for Π, we are able to de-
termine an optimal plan by repeatedly solving the constraint
optimization problem ⟨ΠO

n , C
O
n ⟩ for increasing n, till an op-

timal model πO
n is found with πO

n (λG) = 0. The second and
third statements imply that we do not need to increment the
bound in unitary steps: indeed, we can fix the new bound
according to some policy (see, e.g., [Rintanen et al., 2006;
Rintanen, 2012]). The fourth and fifth statements provide the
lower bounds on the cost and length of valid plans. Notice
that if πO

n is an optimal model of ⟨ΠO
n , C

O
n ⟩ and πO

n (λG) ̸= 0,
we can conclude neither the existence of a valid plan nor
that valid plans have length ≥ n + πO

n (λG). Indeed, the
latter holds (fifth statement) assuming that the cost func-
tion of the optimization problem is fixed to CG

n (and not to
CO

n = (CI
n + CG

n )). Finally, the last statement ensures that
our encoding is linear in the size of Π and n.

Running Example. If VI < 0 and VG ̸= VI then, for any n ≥
0, ΠO

n is unsatisfiable and indeed Π does not have valid plans.
If VI = 1 and VG = 9 there are three optimal plans of length
3, 7 and 8; and (i) for n ≤ 6, ΠO

n has one optimal model
with cost (n− 1) and satisfying λG = 1; (ii) for n = 7, ΠO

n
has 3 optimal models with cost 8 but only two of them satisfy
λG = 0; and (iii) for n ≥ 8, there are 3 optimal models and
all of them satisfy λG = 0. If we extend the transition relation
(3) with the constraint (var < 9) and VI = 1 and VG = 10,
then ΠO

n admits one optimal model satisfying λG = 1 for
n ≤ 8, while for n ≥ 9, ΠO

n is unsatisfiable, proving that Π
has no valid plan. □

As the above example makes clear, it is possible to have
(i) a bound n greater than the length of an optimal plan π and
πO
n is not an optimal model of ⟨ΠO

n , C
O
n ⟩; (ii) a bound n for

which we have various optimal models of ⟨ΠO
n , C

O
n ⟩ but only

some of them correspond to optimal plans; and (iii) a bound
n after which for every optimal plan π, πO

n is an optimal
model of ⟨ΠO

n , C
O
n ⟩. It is also possible that the optimization

problem ⟨ΠO
n , C

O
n ⟩ becomes unsatisfiable for bounds greater

than a certain value.

6 Conclusions, related and future work
We have shown how to reduce an optimal planning problem
in deterministic domains with finitely many variables to a
constraint optimization one. We have considered the problem
in its full generality, making no other assumption about the
domain. Our results are thus applicable to planning problems
specified, e.g., in various versions of the PDDL language (in
particular, in subsets of PDDL 2.1, 2.2, 3.1) and in the ac-
tion language C when the domain is deterministic. We are
not aware of comparable approaches as general as ours. Pre-
vious attempts to find solutions for optimal planning prob-
lems include [Robinson et al., 2010], where partial weighted
MaxSAT is proposed as a backend to solve specific kinds of
optimal planning problems. More recently, in [Davies et al.,
2016] a mixed-integer programming encoding of a perfect
heuristic is developed, landing on an incremental Boolean
satisfiability encoding, while our results can be applied to
back-ends dealing with decidable first order theories, e.g., sat-
isfiability modulo theories. As for lower bounds, some results
related to ours can be found in [Haslum, 2012] presenting in-
cremental lower bounds, but limited to additive cost planning
problems, and [Haslum, 2013] discussing optimal planning
with conditional effects using a mechanism of relaxation sim-
ilar to ours. Finally, some work closely related to ours can be
found also in [Abdulaziz, 2021] where upper bounds on the
length of cost optimal plans that are valid for problems with
0-cost actions are investigated. More in general, there are
many papers focusing on optimal planning and/or showing
how to translate planning problems in logic-based formalisms
(see, e.g., [Ghallab et al., 2004] for an overview). As men-
tioned, our work generalizes [Leofante et al., 2020] which
considers numeric problems specified in PDDL 2.1 level 2.
If we do not take into account the optimizations introduced
by [Leofante et al., 2020] that are possible because of the
restricted language used, the substantial difference is in the
encoding of plans longer than the bound. In particular, to



eliminate the unwanted models caused by loops between pre-
conditions and effects, we use level order formulas based on
[Janhunen, 2004; Niemelä, 2008], while Leofante et al. use
loop formulas based on [Lin and Zhao, 2002]. However, with
loop formulas (i) the size of the encoding may exponentially
blow up [Lifschitz and Razborov, 2006], and (ii) it is not
possible to compute non trivial lower bounds of the length of
valid plans and of their cost.

This work is still preliminary. Of course, the primary ex-
tension of this work is to assess whether the proposed theory
and/or a generalization/specialization scales in practice, also
compared to other approaches. The results in [Leofante et al.,
2020], but also in [Piacentini et al., 2018] for numeric prob-
lems, are encouraging even for sequential planning problems
in which, in every action, at most one variable is true. Indeed,
in the non sequential case, planners based on search have to
evaluate 2|A| possible actions in every state, making symbolic
approaches like ours very appealing.
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