
Learning General Policies and Helpful Action Classifiers from Partial State Spaces

Dominik Drexler,1 , Javier Segovia-Aguas,2 and Jendrik Seipp1

1Linköping University, Linköping, Sweden
2Universitat Pompeu Fabra, Barcelona, Spain

dominik.drexler@liu.se, javier.segovia@upf.edu, jendrik.seipp@liu.se

Abstract
Generalized planning aims to compute generalized
plans that solve a whole class of problems from a
given tractable planning domain. Recently, the D2L
system showed how to learn generalized plans with
the form of general policies in a self-supervised
manner with a MaxSAT solver, where states and
transitions are qualitatively abstracted by a set of
description logics features. However, D2L requires
to fully explore the state space of the input plan-
ning problems, which is a major bottleneck even
for simple domains. Therefore, we propose the
Incremental-D2L algorithm that only requires to ex-
plore small fragments of the input state spaces and
show that it scales to harder training instances. For
very hard domains, where we are unable to learn
a general policy, Incremental-D2L yields a partial
policy that we can use to enhance a greedy best-
first search. Our experiments show that prefer-
ring learned helpful actions, i.e., actions compatible
with the (partial) policy, significantly reduces the
search effort for many of the considered domains.

1 Introduction
Classical planning is one of the original core AI areas. It is the
task of finding a sequence of deterministic actions that trans-
forms an initial fully-observed situation into one that satisfies
a given goal condition [Ghallab et al., 2004]. Traditional clas-
sical planning systems are domain-independent, i.e., they op-
erate on a model of the task without knowing anything about
the planning domain the task comes from. While domain-
independent planners have certainly seen great success in re-
cent years, they fail to scale to large and complex tasks.

In many cases, this limitation can be overcome by giv-
ing planners access to domain control knowledge (DCK),
which allows them to better guide their search for a solution
or even prune fragments of the search space. The planning
literature contains many types of DCK and numerous ways
of how to generate and use it: macros [Fikes et al., 1972],
control rules [Veloso et al., 1995], temporal logic formulas
[Bacchus and Kabanza, 2000; De Giacomo and Vardi, 2013],
HTNs [Erol et al., 1996], reactive policies [Yoon et al., 2008;
de la Rosa et al., 2011], procedural DCK [Baier et al., 2007;

Segovia et al., 2016], (hierarchical) finite state automata
[Palacios and Geffner, 2009; Segovia-Aguas et al., 2018],
planning programs [Segovia-Aguas et al., 2019; Segovia-
Aguas et al., 2021; Segovia-Aguas et al., 2022], heuristics
[Francès et al., 2019; Ståhlberg et al., 2021], general policies
[Toyer et al., 2018; Francès et al., 2021], and policy sketches
[Drexler et al., 2021; Drexler et al., 2022].

In this paper, we learn DCK in the form of general policies.
Recently, Francès et al. [2021] presented the D2L system and
showed that it can learn general policies in a self-supervised
manner with a weighted MaxSAT solver, after abstracting the
state space with a pool of description logic features. How-
ever, D2L requires to fully explore the state space of the in-
put planning problems, which is a major bottleneck even for
simple domains. To address this problem, we introduce the
Incremental-D2L (ID2L) algorithm that learns policies from
small fragments of the input state spaces, scaling up to larger
input training instances and to more complex domains. ID2L
iteratively increases the fragment of the input state space by
sampling optimal plans and computing partial policies that
work for the considered fragment of the state space.

For tractable domains in which the observed states and
transitions are representative of the whole state space, ID2L
converges to a general policy that encodes a solution for all
tasks from the domain. While D2L is only applicable for
tractable domains, ID2L yields a partial policy for intractable
domains where no general policy exists, e.g., the PSPACE-
complete Sokoban domain. We compare two approaches for
using such (partial) policies to complement a greedy best-
first search [Doran and Michie, 1966] and show that they of-
ten drastically reduce the search effort compared to a pure
heuristic-based search.

The first approach is based on an algorithm by Yoon et
al. [2008]: when GBFS expands a node, we perform a policy
lookahead by repeatedly choosing a transition that is com-
patible with the learned policy and enqueue the successors
of all states on the path. The second approach prioritizes
states reached via policy-compatible transitions by putting
them into an additional open list queue. GBFS then alternates
between the two queues when selecting the next state to ex-
pand. This dual-queue strategy has been popularized by the
LAMA planner [Richter and Westphal, 2010], which uses it
to prioritize states reached via preferred operators (originally
called helpful actions) [Hoffmann and Nebel, 2001].

2 Background
We begin by introducing classical planning, description log-
ics, and their combination for generalized planning where we
closely follow the definitions given by Francès et al.; Drexler
et al. [2021; 2022].

2.1 Classical Planning
A classical planning problem or task is a pair P = (D, I)
where D is a first-order domain with action schemas de-
fined over predicates, and I is an instance consisting of a
set of objects and two sets of ground literals, the initial and
goal situations I and G. The initial situation is consistent
and complete, meaning either a ground literal or its com-
plement is in I . A task P induces a state model S(P) =
(S, I, SG, A, app, succ) where the states in S are the truth
valuations over the ground atoms represented by the set of
literals that they make true, the initial state s0 is I , the set
of goal states SG are those that make the goal literals in G
true, and the actions A are the ground actions obtained from
the schemas and objects. The ground actions in app(s) are
the ones that are applicable in a state s; namely, those whose
preconditions are true in s, and the state transition function
maps a state s and an action a ∈ app(s) into the successor
state s′ = succ(a, s). We say that 〈s, a, s′〉 is a transition if
s′ = succ(a, s) and refer to the set of all transitions with T .
An s-plan Π for P is a sequence of actions a0, . . . , an that
is executable in s and maps the state s into a goal state; i.e.,
ai ∈ app(si), si+1 = succ(ai, si) for all 0 ≤ i ≤ n, s = s0,
and sn+1 ∈ SG. A state s is solvable if there exists an s-plan,
otherwise it is unsolvable (also called dead-end), and a state
s is alive if it is solvable and it is not a goal state. The length
of a plan is the number of its actions, and a plan is optimal if
there is no shorter plan. Our objective is to find suboptimal I-
plans for collections of tasks P = (D, I) over fixed domains
D denoted as QD or simply as Q.

2.2 Heuristics and Greedy Best-First Search
A heuristic is a function h : S → R+

0 ∪ {∞} that estimates
the cost of an s-plan. In this work, we consider the blind
heuristic hb, which returns 1 for all non-goal states and 0 for
all goal states, and the hFF heuristic which is based on delete
relaxation [Hoffmann and Nebel, 2001]. The main satisficing
heuristic search algorithm is greedy best-first search [Doran
and Michie, 1966], where the search repeatedly expands a
search node with the lowest heuristic value among all previ-
ously generated but unexpanded search nodes, starting with
the initial state I .

2.3 State Abstractions
A state feature is a function that maps a state s of a task P to
either a truth value (Boolean feature) or a nonnegative inte-
ger (numerical feature). A state abstraction fΦ(s) of a state
s ∈ S over features Φ = {f1, . . . , fn} is a vector of feature
valuations, i.e., fΦ(s) = (f1(s), . . . , fn(s)). We construct
features by iteratively applying grammar rules from descrip-
tion logics [Francès et al., 2021].

Description logics [Baader et al., 2003] is based one con-
cepts and roles, where concepts represent unary relations, and

roles represent binary relations over the universe ∆, that is,
the set of objects in a task. The concepts and roles we use are
similar to the ones used in work on computing general poli-
cies [Francès et al., 2021]. However, we compute a richer
pool of primitives by projecting n-ary predicates to concepts
and roles, which often allows deriving meaningful informa-
tion in domains with predicates of arity three or greater. We
use the same feature grammar as in work on learning policy
sketches [Drexler et al., 2022], and hence we closely follow
their definitions. Consider a state s in a task P . For every
n-ary predicate p in P and 1 ≤ i ≤ n, there is a concept that
evaluates to the set of objects that occur at the i-th position
of the respective ground atoms of p that are true in s. Simi-
larly, for every n-ary predicate p in P and 1 ≤ i < j ≤ n,
there is a role that evaluates to the set of pairs of objects that
occur at the i-th and j-th position of the respective ground
atoms of p that are true in s. Furthermore, for every such
primitive concept and role as above, there is a goal version
that is evaluated in the goal instead of the state s. Next, for
each constant x in the planning domain, there is a concept
that evaluates to the singleton set {x}. Last, there are the fol-
lowing additional primitive and compositional concepts and
roles. Consider concepts C,D, and roles R,S.

• universal concept > with denotation >s ≡ ∆,

• bottom concept ⊥ with denotation ⊥s ≡ ∅,
• role-value mapping R = S with denotation

(R = S)s ≡ {a ∈ ∆ | (a, b) ∈ Rs ↔ (a, b) ∈ Ss},
• concept intersection C uD with denotation

(C uD)s = Cs ∩Ds,

• concept negation ¬C with denotation (¬C)s ≡ ∆ \Cs,
• existential abstraction ∃R.C with denotation

(∃R.C)s ≡ {a ∈ ∆ | ∃b : (a, b) ∈ Rs ∧ b ∈ Cs},
• universal abstraction ∀R.C with denotation

(∀R.C)s ≡ {a ∈ ∆ | ∀b : (a, b) ∈ Rs → b ∈ Cs},
• role inverse R−1 with denotation

(R−1)s ≡ {(b, a) | (a, b) ∈ Rs},
• role restriction R : C with denotation

(R : C)s ≡ Rs u (∆× Cs),

• role composition R ◦ S with denotation
(R◦S)s ≡ {(a, c) ∈ ∆×∆ | (a, b) ∈ Rs∧(b, c) ∈ Ss},

• transitive closure role R+ with denotation (R+)s ≡⋃
n≥1(Rs)n where the iterated composition is defined as

(Rs)0 = {(d, d) | d ∈ Cs} and (Rs)n+1 = (Rs)n ◦Rs.
We place additional restrictions on the above grammar. Sim-
ilar to Francès et al. [2021], we omit role composition, and
only allow the transitive closure role, inverse role, and re-
strict role on primitive concepts and roles. We obtain Boolean
and numerical features via an additional level of composition.
Consider a state s in a task P . For every nullary predicate p,
there is a Boolean feature that is true in s iff the ground atom
of p is true in s. Next, let C,D be concepts, R be a role,
and X be either a concept or a role. There are the following
Boolean and Numerical features.

• Boolean empty feature Empty(X)s is true iff |Xs| = ∅,
• numerical counting feature Count(X)s ≡ |Xs|, and

• numerical distance feature Distance(C,R,D), which
returns the smallest n ∈ N0, s.t., there are objects
x0, . . . , xn in P , x0 ∈ Cs, xn ∈ Ds, and (xi−1, xi) ∈
Rs for all 1 ≤ i ≤ n. If no such n exists then the feature
evaluates to∞.

Our distance features are richer than those used by Francès et
al. [2021] as we allow arbitrary concepts C in them, and R
can have at most complexity 2.

The feature complexity is the number of grammar rules ap-
plied. Features with the smallest feature complexity of 1 are
either primitive concepts corresponding to the unary projec-
tion of domain predicates or primitive roles corresponding to
the binary projection of domain predicates. Our feature gram-
mar ensures that every feature is computable in cubic time in
the number of atoms. However, most features have linear or
quadratic runtimes.

2.4 General Policies
The objective in generalized planning is finding knowledge
suitable for solving a (possibly infinite) set of classical plan-
ning problems Q = {Pi | i ≥ 1} that share a common plan-
ning domain [Jiménez et al., 2019]. One type of solution to
Q are general policies.

The language of general policies that we use in this pa-
per closely follows the definition by Francès et al. [2021]. A
Boolean feature condition is b or ¬b if b is a Boolean feature
and n= 0 or n> 0 if n is a numerical feature. A feature ef-
fect is b (positive), ¬b (negative) or b? (any) if b is a Boolean
feature and n↑ (increases), n↓ (decreases) or n? (any) if n is
a numerical feature.

Definition 1 (General policy). A general policy πΦ is a set
of policy rules over the features Φ. Each rule has the form
C 7→ E whereC is a set of Boolean feature conditions, andE
is a set of feature effects. A transition 〈s, a, s′〉 is compatible
with a policy πΦ (or πΦ-compatible) iff πΦ contains a rule
C 7→ E such that:

• C is true in fΦ(s),
• b(s′) for all positive Boolean effects b,
• ¬b(s′) for all negative Boolean effects ¬b,
• n(s) < n(s′) for all increasing numerical effects n↑,
• n(s) > n(s′) for all decreasing numerical effects n↓, and
• f(s) = f(s′) for all features f that are not in E.

Effects b? or n? allow b and n to change arbitrarily.
The policy is general if from every alive state there is a πΦ-

compatible transition, it is terminating and always reaches a
goal state.

Example 1. In the Visitall domain, an agent starts at an ar-
bitrary location of an n × n grid, and has to visit all lo-
cations. A general policy πΦ for this domain requires two
features Φ = {v, d}, where v denotes the number of visited
locations and d is the distance from the current agent loca-
tion to the closest unvisited location. The two policy rules are
{d > 0} 7→ {v↑, d?} and {d > 0} 7→ {d↓} which let the

agent take an action that visits a new location or decreases
the distance to the closest unvisited location.

Definition 2 (Partial general policy). A policy πΦ is partial if
there is an alive source state from which no outgoing transi-
tion is πΦ-compatible.

3 General Policies as Transition Classifiers
A general policy πΦ is a transition classifier because transi-
tions are either πΦ-compatible (Good), or not πΦ-compatible
(Bad). More formally, a δ-optimal binary transition classifier
is a function cδ : T → {Good,Bad} that maps transitions
t = 〈s, a, s′〉 ∈ T to either Good or Bad such that the fol-
lowing condition holds: if cδ(t) is Good then s is alive, s′
is solvable, and action a starts a δ-optimal s-plan, or other-
wise, if it is Bad then either there is no δ-optimal s-plan or
there is an alternative πΦ-compatible transition from s. Thus,
a δ-optimal general policy πΦ acts as a cδ transition classifier.
We can use transition classifiers and thus general policies to
characterize helpful actions.

Definition 3 (πΦ-helpful Action). Given a general policy πΦ

and a state s, an action a is considered to be πΦ-helpful iff
there is a transition 〈s, a, s′〉 ∈ T that is πΦ-compatible.

We borrow the term πΦ-helpful from Hoffmann and
Nebel [2001] who define the helpful actions in a state s as
the set of actions that are applicable in s and part of a relaxed
s-plan.

Example 2. Consider the general policy πΦ from Example
1 and the following Visitall state: the grid has size 2 × 2,
the agent is in the bottom right location, and only the top
right location is unvisited. The agent can either move up or
left. Moving up is πΦ-helpful because it is compatible with
both rules of the policy: the agent visits a new location and
decreases the distance to an unvisited location. Moving left
is not πΦ-helpful because the transition is incompatible with
the policy.

4 Learning Helpful Actions
In this section, we show that general policies and thus transi-
tion classifiers can be incrementally learned and refined with
a weighted MaxSAT solver.

4.1 Learning a Transition Classifier
Learning a binary classifier that labels actions as helpful or
unhelpful can be turned into learning a general policy πΦ as
per Definition 3, since there is a one-to-one correspondence
from Good transitions to helpful actions, and from Bad tran-
sitions to unhelpful actions.

The D2L system already showed that learning a general pol-
icy πΦ can be cast as a self-supervised problem and formu-
lated as a propositional theory in conjunctive normal form
(CNF). However, D2L requires all reachable states from the
input planning tasks. Thus, the approach is only tractable for
simple domains and tiny input tasks. Even for small tasks,
any stage in the D2L pipeline can become infeasible to com-
pute: the preprocessing, the encoding to CNF, or the MaxSAT
solving.

We avoid the shortcomings by expanding only a fragment
Si ⊆ Si of states, which we obtain by sampling optimal plans
for each task Pi in a given set of training tasks P ⊆ Q. Fur-
thermore, with Gi ⊆ Si, we refer to the set of generated
states that consists of all expanded states and their succes-
sors, inducing the set of sampled transitions Ti and optimal
cost to goal V ∗i (s) for each s ∈ Gi. Like D2L, we com-
pute a pool of features F up to a certain complexity k (see
Section 2.3) to abstract states and transitions, and allow the
policy πΦ with Φ ⊆ F to compute δ-optimal plans from any
source state in the set of states Si. Thus, our propositional en-
coding Γ = CNF({Si, V ∗i }ni=1,P,F , δ) uses the same types
of propositional variables as D2L but some constraints are
adapted for the expanded fragments. The propositional vari-
ables in Γ are:

• Select(f): feature f ∈ F is used in the policy πΦ,
• Goodi(s, s′): transition 〈s, a, s′〉 ∈ Ti is πΦ-compatible,
• Vi(s, d): goal distance d is labeled δ-optimal for s in Pi.

We now describe the formulas in the theory Γ. In the con-
straints for each Pi ∈ P , the symbols s, t range over all ex-
panded states Si, and s′, t′ range over all generated states Gi.
∆f (s, s′) expresses how the feature f changes from state s to
s′, i.e., from false to true (↑), from true to false (↓), increases
(↑), decreases (↓), or stays the same (=). V ∗i (s) denotes the
cost of an optimal s-plan.

C1 For each state s, there exists at least one good transition:∨
s′ Goodi(s, s′).

C2 For good transitions, require that the assigned Vi(s, d)
labels are descending: Goodi(s, s′) ∧ Vi(s, d) →∨
d′∈[V ∗i (s′),min(d−1,δV ∗i (s′))] Vi(s

′, d′).

C3 For each solvable state s, there is exactly one δ-optimal
label: |{Vi(s, d) : d ∈ [V ∗i (s), δV ∗i (s)]}| = 1.

C4 Each transition 〈s, a, s′〉 ∈ Ti cannot be Good if s′ is
labeled with the maximum Vi value, i.e., Vi(s′, d′) where
d′ = δmaxs V

∗
i (s).

C5 Each pair of good and bad transition must be dis-
tinguishable by at least one feature: Goodi(s, s′) ∧
¬Goodi(t, t′)→

∨
f∈F :∆f (s,s′)6=∆f (t,t′) Select(f).

C6 At least one feature must be selected:
∨
f∈F Select(f).

C7 Each transition 〈s, a, s′〉 ∈ Ti to an unsolvable state s′
is bad: (A ∧ B) → C where A ≡ V ∗i (s) > 0, B ≡
V ∗i (s′) =∞, and C ≡ ¬Goodi(s, s′).

C8 Minimize the total cost of Γ, i.e., satisfying Select(f) has
a cost equal to the feature complexity of f .

The propositional theory Γ differs from the one used by D2L
in the following constraints: C1 specifically defines policies
over the set of expanded states, not all states; C4 simplifies
the decision task of labeling good transitions by not forcing
the policy to move towards the states that are the furthest from
goals in each input graph, i.e., any transition to one of the fol-
lowing states {argmaxs∈GiV ∗i (s)} is bad; and C6 forbids
empty policies which occur when all transitions in the ob-
served fragment of the state space are descending and thus,
any action will get closer to a goal without using any feature.
Furthermore, we do not require the solver to find a solution

with at least one feature that distinguishes all goal states from
all non-goal states. Instead, we allow combinations of fea-
tures, i.e., a conjunction or disjunction of features to be goal
distinguishing. Next, we state that considering fragments of
the state space can only increase the solution space.

Lemma 1. Consider tasks P , a pool of features F , δ ∈ R≥1,
and for each Pi ∈ P the set of fully expanded states Si ⊆ Si,
with their corresponding cost to goal V ∗i (s) for all s ∈ Si.
If the theory Γfull = CNF({Si, V ∗i }ni=1,P,F , δ) is satisfiable
then the theory Γpartial = CNF({Si, V ∗i }ni=1,P,F , δ) is sat-
isfiable.

Proof. By assumption, Γfull = CNF({Si, V ∗i }ni=1,P,F , δ) is
satisfiable. Since, Si ⊆ Si and Ti ⊆ Ti, we can remove the
clauses from Γfull containing Vi(s, d) variables s.t. s 6∈ Gi,
and variables Goodi(s, s′) s.t. (s, s′) 6∈ Ti to obtain a solu-
tion for Γpartial = CNF({Si, V ∗i }ni=1,P,F , δ). The remaining
clauses and variable assignments in Γpartial will remain satis-
fiable.

4.2 Incremental D2L
Models that satisfy and optimize the D2L propositional theory
for a given domain and collection of tasks are perfect transi-
tion classifiers since they observe all the corner cases of the
input state spaces and guarantee sound δ-optimal plans from
any expanded state. The downside of knowing about all cor-
ner cases is that all state spaces have to be fully explored,
which is only feasible for very simple domains and small
tasks. To mitigate this limitation while preserving the useful
properties of D2L, we propose the Incremental-D2L (ID2L) al-
gorithm to incrementally explore state spaces, taking advan-
tage of the new propositional theory formulation Γ, which
allows computing general policies over the expanded state
space instead of the full state space. The solution preserva-
tion in Si and Ti is proven in Lemma 1.
ID2L (Algorithm 1) is divided into three phases that are

repeated until converging to a general policy πΦ or until a
time limit is reached. The data generation phase (lines 6–16)
computes optimal s-plans for each root state (starting with
the set of initial states), adds the s-plans to the partially ex-
panded state space, assigns the optimal costs to each new ex-
panded state and their immediate generated successors with
their corresponding optimal cost to goal, and computes the
pool of features F (introduced in Section 2.3) up to a certain
complexity bound k over the generated states. Once the data
is generated, the learning phase (lines 17–20), encodes the
data into the propositional theory Γ, which is solved with a
MaxSAT solver. If the solver proves the theory to be unsatis-
fiable, either the feature complexity bound k is too low, or no
general policy exists, as is the case for all intractable domains.
The validation phase (line 21) validates the computed policy
πΦ over all unexpanded states, which consists of randomly
applying ground actions that are compatible with the policy,
until reaching a goal condition or failing to do so. If the val-
idation fails, it is because a new fragment of the state space
has been observed where the policy either generates a cycle,
or there is no πΦ-compatible transition. Each failure can be
understood as a flaw of the policy and can be used as one of

the roots in the next iteration. The algorithm terminates when
no more roots (or flaws) are detected.

Algorithm 1 Incremental-D2L
Input: set of planning tasks P = {Pi}ni=1, slack factor δ,

maximum feature complexity k
Output: general policy πΦ

1: roots← {Ii}ni=1 // initial state of each Pi ∈ P
2: πΦ ← ∅
3: for i = 1 to n do
4: Si,Gi ← ∅, ∅
5: while roots 6= ∅ do
6: for all si ∈ roots do
7: 〈a1, . . . , am〉 ←Optimal-Planner(Pi[si])
8: for all j = 1 to m do
9: V ∗i (si)← m− j + 1 // distance to goal

10: Si ← Si ∪ {si}
11: Gi ← Gi ∪ {si}
12: for all 〈si, a, s′i〉 ∈ Ti do
13: V ∗i (s′i)← |Optimal-Planner(Pi[s′i])|
14: Gi ← Gi ∪ {s′i}
15: si ← succ(aj , si)
16: F ← Compute-Features({Gi}ni=1, k)
17: Γ← CNF({Si, V ∗i }ni=1,P,F , δ)
18: πΦ ←MaxSAT-Solver(Γ)
19: if πΦ = ∅ then
20: return πΦ // UNSAT theory

// get alive states that are loopy or not πΦ-compatible
21: roots← Validate(πΦ, {Gi \ Si}ni=1)
22: return πΦ

Theorem 1. (Termination) The ID2L algorithm is terminat-
ing.

Proof. By contradiction. Assume ID2L is non-terminating.
This can only happen if the set of roots never becomes empty
and the propositional theory Γ is always satisfiable. If Γ is sat-
isfiable, then only unexpanded and alive states can be roots in
the next iteration. In every iteration, the roots are expanded.
Hence they cannot be roots in the next iteration, which mono-
tonically enlarges the set of expanded states. Once all states
in the given state spaces have been expanded, a general pol-
icy πΦ exists because Γ is satisfiable. Since there are no more
unexpanded states to validate, the new set of roots is empty,
which contradicts the initial assumption, proving that ID2L is
terminating.

Lemma 2. Policies returned by ID2L are δ-optimal.

Proof. By contradiction. Assume that the policy πΦ yields
an s-plan with total cost d′ which is not δ-optimal for a state
s ∈ Si. Then at least one C3 clause must contain the vari-
able Vi(s, d′). However, C3 is defined as {Vi(s, d) : d ∈
[V ∗i (s), δV ∗i (s)]} for all s ∈ Si but d′ > δV ∗i (s). Hence,
Vi(s, d

′) does not exist for any s ∈ Si, proving that πΦ is
δ-optimal in the set of expanded states.

Theorem 2. (Soundness) Let πΦ be the policy returned by
ID2L, where Φ ∈ F is a non-empty set of features. Then, πΦ

is a solution to Γ.

Proof. To show that πΦ is a solution for Γ, we need to prove
that every constraint from C1–C7 is satisfied in Γ.

• C1–C4 and C7. Since πΦ is δ-optimal by Lemma 2, it is
defined in every expanded state s ∈ Si, where the gener-
ated transitions (s, s′) in the corresponding s-plan must
be Goodi(s, s′) and descending Vi(s, d) > Vi(s

′, d′).

• C5. At least one feature in Φ must distinguish good from
bad transitions, otherwise πΦ would not be δ-optimal.

• C6. Since Φ is a non-empty set, at least one feature has
been selected.

Hence, the policy πΦ is a solution to Γ.

Theorem 3. (Completeness) If there is a δ-optimal policy πΦ

with Φ ⊆ F , then the ID2L algorithm will find it.

Proof. The ID2L algorithm explores the state space incre-
mentally, adding states and their expansions in every iteration
if they are counter-examples of the theory, which is known to
be terminating from Theorem 1. In each iteration ID2L con-
siders a fragment of the state space Si and sampled transitions
Ti. From Lemma 1 it follows that any πΦ that is a solution in
the full state space S and transitions T , is also a solution in
the observed state space. Therefore, ID2L is terminating and
guarantees that δ-optimal policies can be found in smaller ob-
served fragments of the state space.

Theorem 3 guarantees that if a δ-optimal policy exists ID2L
will find it. However, if the returned policy πΦ found cor-
rectly solves the observed state space fragment, ID2L will re-
turn it as a solution to the problem, even though there could
be unobserved corner cases that are incompatible with the re-
turned πΦ. We named this phenomenon early convergence,
which can be either provably mitigated after observing the
full state space, or statistically by gathering more input tasks
and sampling more data. Also, low δ values such as δ = 1,
which is the minimum value that forces the policy to be opti-
mal from any state, could make the theory unsatisfiable, while
larger values could turn it into a satisfiable theory by paying
an extra cost in the number of variables and clauses in the en-
coding Γ. Thus, low δ values, intractable domains, resource
limits (time and memory), and early convergence are the main
reasons that cause a returned policy to be incomplete (a.k.a.
partial policy) over the full state space when observing only
a fragment.

5 Planning with a Helpful Actions Classifier
A binary transition classifier c that distinguishes between
good and bad transitions can be beneficial for state space
search. In the best case, where the classifier is perfect, we
can prune all bad transitions and the search remains com-
plete. However, in our case, where the learned policies are
not necessarily perfect, we need to use algorithms capable of
filling gaps of missing information. We use two methods for
enhancing a greedy best-first search with a (partial) policy.

5.1 Policy Lookahead

The first approach, policy lookahead, is based on an algo-
rithm by Yoon et al. [2008]: instead of adding only the suc-
cessors of the expanded state to the open list like plain GBFS,
their algorithm follows the learned policy for n steps and en-
queues the successors of all states on the path. Since our
learned partial policies do not always match exactly one of
the outgoing transitions of the expanded state, we randomly
select one of the policy-compatible transitions if there are
multiple options. In case none of the outgoing transitions is
compatible with the policy, we stop the lookahead.

5.2 Preferring Policy-Compatible Actions

Our second approach for enhancing a GBFS with a (partial)
policy is to mark the executable actions that conform to the
policy as helpful actions, and biasing GBFS towards execut-
ing helpful actions, which are also called preferred operators
[Richter and Helmert, 2009]. Usually, preferred operators are
a byproduct of the heuristic evaluation: for example, for a
state s, the FF heuristic computes a relaxed s-plan (i.e., an
s-plan for a copy of the task where all delete-effects are re-
moved), and uses it to estimate the true goal distance of s
[Hoffmann and Nebel, 2001]. Then FF marks all operators
that are part of the delete-relaxed plan as preferred.

For brevity, we call states that are reached via preferred
operators preferred states. In many domains, there are plans
that only traverse states preferred by FF. In general, how-
ever, pruning all non-preferred operators renders the search
incomplete. This is why preferred operators are usually used
in a dual-queue approach, which prioritizes preferred states
but does not prune any non-preferred states: one queue con-
tains all open nodes (generated but not expanded), the other
one contains only the nodes reached via preferred operators
[Richter and Helmert, 2009]. GBFS then selects states from
the two queues in an alternating manner. This setup makes it
more likely that preferred states are expanded early. To fur-
ther amplify this effect, Richter and Helmert [2009] use the
following boosting method: whenever expanding a preferred
state generates a successor state with a new minimum heuris-
tic value, they only consider the preferred operator queue for
the next N expansions.

6 Experiments
In this section, we evaluate ID2L on 23 common classi-
cal planning domains. The purpose of our experiments is
two-fold: for tractable domains, we show that ID2L scales
to larger tasks and more complicated domains than D2L.
For intractable domains, where no general policy exists, we
show that ID2L learns a partial policy that can be used as
a helpful actions classifier, which enhances a GBFS. Our
benchmark set consists of the 15 tractable domains Bar-
man, Blocks, Blocks-clear, Blocks-on, Childsnack, Delivery,
Depots, Ferry, Gripper, Miconic, Reward, Satellite, Span-
ner, Visitall and Zenotravel; and the eight intractable do-
mains Driverlog, Freecell, Nomystery, N-Puzzle, Parking,
Pipesworld-NoTankage, Pipesworld-Tankage and Sokoban.

6.1 Learning Policies with ID2L
Table 1 summarizes the results of learning policies with ID2L
using A∗ and the LM-Cut heuristic [Helmert and Domshlak,
2009] from Fast Downward [Helmert, 2006] as the under-
lying optimal planner. The common training setting for all
domains is δ = 2 which forces policies to be 2-optimal over
the training data, a time limit of 10h and a memory bound
of 16 GiB. The maximum complexity k for computing fea-
tures ranges from 5 to 9, depending on the domain (see k∗
in Table 1). Note that T /∼ reports the total number of ob-
served transitions T and the number of equivalence transition
classes [Francès et al., 2021], where two transitions belong to
the same class iff they cannot be distinguished by the feature
pool F .
ID2L terminates in most tractable domains (10/15), from

which the last learned policy is general in 9 domains. This is
the case for Blocks, Blocks-clear, Blocks-on, Ferry, Gripper,
Miconic, Reward, Spanner and Visitall. The reasons for fail-
ing to learn a general policy in a tractable domain are diverse:
either k or δ are too low, or the training data is not represen-
tative enough of the state space. Modifying these parame-
ters could allow usto learn general policies but these changes
make it harder for optimal planners and MaxSAT solvers.

In the intractable domains, we cannot hope to find a general
policy but D2L even fails to find a policy that solves the small
set of training tasks. However, in these domains, it is still
possible to compute a partial policy using ID2L. This shows
the benefit of considering only fragments of the state spaces.

6.2 Planning With Transition Classifiers
Now, we analyze whether the learned policies capture use-
ful information by using the learned policies in a GBFS.
For the domains Barman, Depots, Driverlog, Freecell, Grip-
per, Miconic, Nomystery, Parking, Pipesworld-NoTankage,
Pipesworld-Tankage, Satellite, Sokoban, Visitall, Zenotravel
we use the Autoscale 20.10 tasks as our test set [Torralba et
al., 2021]. For the other domains, where no Autoscale tasks
are available, we generated 30 sufficiently difficult tasks our-
selves. For running the experiments, we use the Lab toolkit
[Seipp et al., 2017] on a compute cluster with Intel Xeon
Gold and Ubuntu 20.04 LTS 64-bit. We set a runtime limit
of 30 minutes, a 4 GB memory limit and use a total of eight
different configurations. All configurations use GBFS and
either the blind or the FF heuristic with boosting parameter
N = 1000 and are all part of or were implemented into Fast
Downward [Helmert, 2006].

Table 2 shows the number of solved tasks, and the expan-
sion and runtime scores for the eight configurations. The ex-
pansion and runtime score [Richter and Helmert, 2009] are
values between 0 and 1: The lowest score of 0 is reached
with 106 expansions (resp. 30 minutes search time) or when
the task is not solved. The highest score of 1 is reached with
102 or fewer expansions (resp. 1 second search time). Inter-
mediate values are interpolated on a log-scale to account for
the exponential scaling of problem difficulty.

Capturing Preferred Operators Information. The con-
figuration blindπ solves 14 more tasks than blind which does
not use preferred operators (148 vs. 134 solved tasks), and

|P| it. T /∼ |F| t cΦ |Φ| k∗ |πΦ|
Barman 1 5 – – – 14 5 4 30
Blocks 2 3 1374/763 894 1496 13 3 7 12
Blocks-clear 2 1 63/15 67 2 3 2 2 2
Blocks-on 1 5 228/90 249 7 9 3 4 16
Childsnack 3 8 – – – 21 6 7 43
Delivery 2 10 – – – 32 7 7 169
Depots 1 36 – – – 36 6 7 37
Driverlog 2 5 – – – 22 6 6 67
Ferry 12 2 789/531 900 172 13 3 7 8
Freecell 2 2 – – – 4 2 2 8
Gripper 1 2 420/44 78 8 6 2 4 5
Miconic 1 6 5254/817 153 1670 10 3 4 12
N-puzzle 3 14 – – – 57 8 9 141
Nomystery 1 7 – – – 41 8 7 68
Parking 1 6 – – – 21 5 5 16
Pipes-nt 1 5 – – – 19 4 7 41
Pipes-t 1 4 – – – 16 4 6 21
Reward 10 2 354/338 235 38 8 2 6 4
Satellite 2 4 – – – 26 8 4 51
Sokoban 1 2 – – – 31 5 9 46
Spanner 4 1 532/56 449 133 12 2 7 6
Visitall 1 2 114/29 29 2 7 2 5 4
Zenotravel 3 3 1540/852 382 561 30 7 6 39

Table 1: Overview of ID2L results. |P| is the size of the train-
ing set, “it.” is the number of iterations to compute a policy that
solves the training set, T /∼ is the number of observed transi-
tions/distinguishable equivalence classes, |F| is the size of the fea-
ture pool, t is the total training wall-clock time in seconds, cΦ is the
optimal cost of the MaxSAT solution, |Φ| is number of selected fea-
tures, k∗ is the complexity of the most complex feature in the policy,
|πΦ| is the number of rules in the policy. We omit t, T /∼ and |F|
when ID2L exceeds a 10h time limit.

achieves a slightly higher expansion score (0.13 vs. 0.08).
Furthermore, the per-domain expansion score of blindπ is al-
ways at least as high as the score of blind. Similarly, the
configuration FFπ solves 16 more tasks in comparison to
FF which does not use preferred operators, with 414 and 398
solved tasks, respectively, and again has a slightly higher ex-
pansion score. This indicates that the learned policies capture
useful information about preferred operators.

Policy Lookahead. We use the configuration FF∞ that per-
forms lookaheads with n = ∞ to test whether it pays off to
follow the policy greedily. If a policy is indeed a general pol-
icy, then this results in a single lookahead which is very fast
to compute. This is the case in the domains Blocks, Blocks-
clear, Blocks-on, Ferry, Gripper, Miconic, Reward, Spanner,
and Visitall. If the policy is not a general policy, as is the case
in Parking, then the policy lookahead can still pay off, as the
increase in coverage from 9 to 18 in Parking shows. We also
tested different values for the parameter n in the lookahead.
Yoon et al. [2008] report that n = 50 yielded the best results.
We compared this value to n = ∞, i.e., aborting the looka-
head only if no operator is compatible with the policy, and
found that the difference between the two versions is negli-
gible for most domains. For Spanner and Visitall, however,
n = ∞ solves many more tasks than n = 50, so we use
n =∞ for all lookaheads.

Preferring Policy-Compatible Operators. When compar-
ing FFr with FFπ , we observe that extracting preferred opera-
tors from relaxed plans usually works significantly better than
from for our learned policies. However, there are several do-
mains where FFπ has a higher expansion score and in Span-
ner where FFr fails to solve any task but FFπ solves 27 tasks.
Overall, FFr solves 475 tasks and FFπ solves 414 tasks. The
reason for the difference could be that we may have stopped
iterating in ID2L too early, the features are not sufficiently
complex for finding a classifier, or the feature grammar is not
sufficiently rich.

Preferred Operators With Policy Lookahead. In our last
configuration FFr∞, we combine the strongest methods from
our experiments which are the preferred operators from re-
laxed plans and the policy lookahead. We obtain the highest
number of solved tasks of 501, the highest expansion score of
0.62, and the highest runtime score of 0.58. The additional
coverage is mostly due to the domains Spanner and Visitall.

7 Related Work
The idea of using fragments of the state space for learning
policies was previously used in the context of generalized task
and motion planning where state spaces are usually infinitely
large due to variables having continuous domain. Curtis et
al. [2022] discretize the variables to obtain a finite state space
by sampling executable plans, i.e., poses and trajectories are
collision free. The relevant part of the state space then con-
sists only of states over facts that occur in these plans.

In contrast to filtering transitions, there is work on filter-
ing subgoals. A subgoal is a promising state that must not
necessarily be achieved in a single step. Baier et al. [2008]
use the high-level Golog language for defining subgoals
and their language representations are compiled directly into
PDDL, making it possible to use off-the-shelf classical plan-
ners. Segovia et al. [2016] compute DCK as a curricu-
lum of generalized planning tasks, where each solution is
a planning program that can call as a procedure previously
learned programs. Scala et al. [2020] use subgoaling-based
decomposition techniques for numeric planning that safely
relaxes those tasks for computing (in)admissible heuristics.
Drexler et al. [2021] use the same language of general poli-
cies [Francès et al., 2021] with different semantics for fil-
tering subgoals and learn task decompositions automatically
for tractable domains [Drexler et al., 2022]. Other works
aim at learning heuristics casting the problem as a black-
box function optimization, i.e., loss function optimization
[Orseau and Lelis, 2021], deep learning [Shen et al., 2020;
Karia and Srivastava, 2021], or a reinforcement learning
problem [Gehring et al., 2021]. The DCK learned in our
works is simpler and easier to explain because our partial
policies are representations of a target language with suitable
semantics and much smaller than neural networks consisting
of millions of parameters.

8 Acknowledgements
This work was partially supported by project TAILOR,
funded by EU Horizon 2020 (grant agreement no. 952215),

blind blindπ blind∞ FF FFr FFπ FF∞ FFr∞
S E T S E T S E T S E T S E T S E T S E T S E T

Barman (30) 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 6 0.05 0.08 23 0.50 0.34 8 0.06 0.09 7 0.08 0.11 20 0.39 0.28
Blocks (30) 2 0.02 0.07 2 0.06 0.07 30 0.99 0.84 26 0.85 0.48 26 0.86 0.48 26 0.86 0.47 24 0.80 0.44 26 0.86 0.43
Blocks-clear (30) 13 0.33 0.43 15 0.37 0.46 30 1.00 1.00 30 0.98 1.00 30 1.00 1.00 30 1.00 1.00 30 1.00 0.99 30 1.00 0.99
Blocks-on (30) 1 0.00 0.03 1 0.01 0.02 30 1.00 1.00 30 0.95 1.00 30 1.00 1.00 30 0.95 1.00 30 1.00 1.00 30 1.00 1.00
Childsnack (30) 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 1 0.00 0.01 7 0.12 0.16 3 0.02 0.03 1 0.02 0.03 8 0.20 0.21
Delivery (30) 30 0.43 0.95 30 0.78 0.91 30 0.78 0.91 30 0.99 1.00 30 1.00 1.00 30 1.00 1.00 30 1.00 1.00 30 1.00 1.00
Depots (30) 1 0.01 0.04 1 0.01 0.02 1 0.01 0.02 5 0.15 0.20 6 0.18 0.21 5 0.10 0.12 6 0.16 0.18 5 0.16 0.17
Driverlog (30) 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 8 0.13 0.16 18 0.34 0.29 4 0.06 0.07 6 0.10 0.10 7 0.14 0.13
Ferry (30) 10 0.09 0.29 19 0.32 0.45 30 1.00 1.00 30 1.00 1.00 30 1.00 1.00 30 1.00 1.00 30 1.00 1.00 30 1.00 1.00
Freecell (30) 9 0.03 0.20 16 0.12 0.31 16 0.27 0.40 27 0.49 0.63 26 0.54 0.65 26 0.40 0.57 26 0.48 0.62 27 0.52 0.65
Gripper (30) 0 0.00 0.00 0 0.00 0.00 30 0.87 1.00 30 0.61 0.81 30 0.68 0.80 30 0.54 0.57 30 0.87 0.94 30 0.87 0.94
Miconic (30) 0 0.00 0.00 0 0.00 0.00 30 0.90 0.85 30 0.90 0.97 30 0.90 0.96 30 0.90 0.76 30 0.90 0.84 30 0.90 0.84
N-puzzle (30) 20 0.21 0.67 20 0.37 0.62 20 0.37 0.62 30 0.88 1.00 30 0.87 1.00 30 0.89 1.00 30 0.88 1.00 30 0.87 1.00
Nomystery (30) 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 7 0.09 0.13 10 0.22 0.26 3 0.05 0.02 6 0.17 0.11 6 0.16 0.11
Parking (30) 0 0.00 0.00 0 0.00 0.00 2 0.04 0.06 9 0.21 0.18 11 0.29 0.25 6 0.10 0.08 18 0.51 0.35 17 0.49 0.35
Pipes-nt (30) 3 0.01 0.05 2 0.01 0.03 2 0.01 0.02 12 0.17 0.26 24 0.52 0.62 13 0.24 0.32 11 0.15 0.22 24 0.63 0.71
Pipes-t (30) 5 0.00 0.09 3 0.00 0.02 3 0.00 0.02 11 0.14 0.22 28 0.65 0.63 13 0.17 0.24 12 0.16 0.23 25 0.61 0.61
Reward (30) 26 0.57 0.85 29 0.79 0.83 30 0.99 1.00 30 0.92 1.00 30 0.94 1.00 30 0.99 0.99 30 0.99 1.00 30 0.99 1.00
Satellite (30) 1 0.01 0.05 1 0.01 0.02 1 0.01 0.02 10 0.33 0.36 14 0.47 0.44 10 0.31 0.34 10 0.33 0.36 13 0.43 0.42
Sokoban (30) 13 0.07 0.32 8 0.07 0.12 8 0.07 0.12 19 0.24 0.45 22 0.26 0.46 15 0.24 0.32 14 0.24 0.32 13 0.23 0.31
Spanner (30) 0 0.00 0.00 0 0.00 0.00 30 0.87 0.91 0 0.00 0.00 0 0.00 0.00 27 0.74 0.13 30 0.87 0.30 30 0.87 0.30
Visitall (30) 0 0.00 0.00 0 0.00 0.00 25 0.59 0.44 5 0.05 0.11 5 0.06 0.11 6 0.12 0.14 25 0.59 0.44 25 0.59 0.44
Zenotravel (30) 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 12 0.34 0.43 15 0.49 0.67 9 0.21 0.26 9 0.24 0.35 15 0.45 0.55

Sum (690) 134 0.08 0.18 148 0.13 0.17 348 0.42 0.44 398 0.45 0.50 475 0.56 0.58 414 0.48 0.46 445 0.54 0.52 501 0.62 0.58

Table 2: Number of solved tasks (S), expansion score (E), and runtime score (T) for different GBFS configurations. We highlight the
maximum value of all configurations with boldface. The configuration superscripts indicate that preferred operators are used: superscript r
indicates that an operator is preferred if it starts a relaxed plan and superscript π indicates that the configuration prefers policy-compatible
operators. The subscript ∞ denotes that the configuration uses policy lookahead.

and by the Wallenberg AI, Autonomous Systems and Soft-
ware Program (WASP) funded by the Knut and Alice Wal-
lenberg Foundation. The computations were enabled by re-
sources provided by the Swedish National Infrastructure for
Computing (SNIC), partially funded by the Swedish Re-
search Council through grant agreement no. 2018-05973.

9 Conclusions
We introduced the ID2L algorithm for learning DCK in the
form of a general policy that is refined by incrementally
exploring fragments of the input state spaces that are non-
compatible with the policy. In addition, we show that policy
lookaheads and preferring policy-compatible operators are
methods to take advantage of learned policies for planning
even if the policies are not general, which is always the case
for intractable domains. This is a promising line of research
to deal with harder tractable planning domains for which the
complexity can be studied with the computed policies. Also,
the ID2L algorithm can be improved if any of its baselines
are improved, e.g., more efficient computation of features,
optimal plans, or policy validation. Regarding intractable
domains, they could still contain tractable subproblems for
which general policies can be learned and used as multiple
transition classifiers for planning.

References
[Baader et al., 2003] Franz Baader, Diego Calvanese, Deb-

orah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge
University Press, 2003.

[Bacchus and Kabanza, 2000] Fahiem Bacchus and Frodu-
ald Kabanza. Using temporal logics to express search
control knowledge for planning. AIJ, 116(1–2):123–191,
2000.

[Baier et al., 2007] Jorge A. Baier, Christian Fritz, and
Sheila A. McIlraith. Exploiting procedural domain control
knowledge in state-of-the-art planners. In Proc. ICAPS
2007, pages 26–33, 2007.

[Baier et al., 2008] Jorge A. Baier, Christian Fritz, Meghyn
Bienvenu, and Sheila A. McIlraith. Beyond classical plan-
ning: Procedural control knowledge and preferences in
state-of-the-art planners. In Proc. AAAI 2008, pages 1509–
1512, 2008.

[Curtis et al., 2022] Aidan Curtis, Tom Silver, Joshua B.
Tenenbaum, Tomas Lozano-Perez, and Leslie Pack Kael-
bling. Discovering state and action abstractions for gener-
alized task and motion planning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
2022.

[De Giacomo and Vardi, 2013] Guiseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In Proc. IJCAI 2013, pages 854–860,
2013.

[de la Rosa et al., 2011] Tomás de la Rosa, Sergio Jiménez,
Raquel Fuentetaja, and Daniel Borrajo. Scaling up heuris-
tic planning with relational decision trees. JAIR, 40:767–
813, 2011.

[Doran and Michie, 1966] James E. Doran and Donald
Michie. Experiments with the graph traverser program.
Proceedings of the Royal Society A, 294:235–259, 1966.

[Drexler et al., 2021] Dominik Drexler, Jendrik Seipp, and
Hector Geffner. Expressing and exploiting the com-
mon subgoal structure of classical planning domains using
sketches. In Proc. KR 2021, pages 258–268, 2021.

[Drexler et al., 2022] Dominik Drexler, Jendrik Seipp, and
Hector Geffner. Learning sketches for decomposing plan-
ning problems into subproblems of bounded width. In
Proc. ICAPS 2022, 2022.

[Erol et al., 1996] Kutluhan Erol, James A. Hendler, and
Dana S. Nau. Complexity results for HTN planning. An-
nals of Mathematics and Artificial Intelligence (AMAI),
18(1):69–93, 1996.

[Fikes et al., 1972] Richard E Fikes, Peter E Hart, and Nils J
Nilsson. Learning and executing generalized robot plans.
Artificial intelligence, 3:251–288, 1972.

[Francès et al., 2019] Guillem Francès, Augusto B. Corrêa,
Cedric Geissmann, and Florian Pommerening. General-
ized potential heuristics for classical planning. In Proc.
IJCAI 2019, pages 5554–5561, 2019.

[Francès et al., 2021] Guillem Francès, Blai Bonet, and Hec-
tor Geffner. Learning general planning policies from small
examples without supervision. In Proc. AAAI 2021, pages
11801–11808, 2021.

[Gehring et al., 2021] Clement Gehring, Masataro Asai, Ro-
han Chitnis, Tom Silver, Leslie Pack Kaelbling, Shirin
Sohrabi, and Michael Katz. Reinforcement learning for
classical planning: Viewing heuristics as dense reward
generators. arXiv preprint arXiv:2109.14830, 2021.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning: Theory and Practice.
Morgan Kaufmann, 2004.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Proc. ICAPS 2009,
pages 162–169, 2009.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. JAIR, 26:191–246, 2006.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search. JAIR, 14:253–302, 2001.

[Jiménez et al., 2019] Sergio Jiménez, Javier Segovia-
Aguas, and Anders Jonsson. A review of generalized
planning. The Knowledge Engineering Review, 34, 2019.

[Karia and Srivastava, 2021] Rushang Karia and Siddharth
Srivastava. Learning generalized relational heuristic net-
works for model-agnostic planning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35,
pages 8064–8073, 2021.

[Orseau and Lelis, 2021] Laurent Orseau and Levi H. S.
Lelis. Policy-guided heuristic search with guarantees. In
Proc. AAAI 2021, pages 12382–12390, 2021.

[Palacios and Geffner, 2009] Hector Palacios and Hector
Geffner. Compiling uncertainty away in conformant plan-
ning problems with bounded width. JAIR, 35:623–675,
2009.

[Richter and Helmert, 2009] Silvia Richter and Malte
Helmert. Preferred operators and deferred evaluation
in satisficing planning. In Proc. ICAPS 2009, pages
273–280, 2009.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The LAMA planner: Guiding cost-based any-
time planning with landmarks. JAIR, 39:127–177, 2010.

[Scala et al., 2020] Enrico Scala, Patrik Haslum, Sylvie
Thiébaux, and Miquel Ramirez. Subgoaling techniques
for satisficing and optimal numeric planning. Journal of
Artificial Intelligence Research, 68:691–752, 2020.

[Segovia-Aguas et al., 2018] Javier Segovia-Aguas, Sergio
Jiménez-Celorrio, and Anders Jonsson. Computing hierar-
chical finite state controllers with classical planning. Jour-
nal of Artificial Intelligence Research, 62:755–797, 2018.

[Segovia-Aguas et al., 2019] Javier Segovia-Aguas, Sergio
Jiménez, and Anders Jonsson. Computing programs for
generalized planning using a classical planner. Artificial
Intelligence, 272:52–85, 2019.

[Segovia-Aguas et al., 2021] Javier Segovia-Aguas, Sergio
Jiménez, and Anders Jonsson. Generalized planning as
heuristic search. In Proceedings of the International
Conference on Automated Planning and Scheduling, vol-
ume 31, pages 569–577, 2021.

[Segovia-Aguas et al., 2022] Javier Segovia-Aguas, Sergio
Jiménez, Anders Jonsson, and Laura Sebastiá. Scaling-up
generalized planning as heuristic search with landmarks.
arXiv preprint arXiv:2205.04850, 2022.

[Segovia et al., 2016] Javier Segovia, Sergio Jiménez, and
Anders Jonsson. Generalized planning with procedural
domain control knowledge. In Proc. ICAPS 2016, pages
285–293, 2016.

[Seipp et al., 2017] Jendrik Seipp, Florian Pommerening,
Silvan Sievers, and Malte Helmert. Downward Lab. https:
//doi.org/10.5281/zenodo.790461, 2017.

[Shen et al., 2020] William Shen, Felipe Trevizan, and
Sylvie Thiébaux. Learning domain-independent planning
heuristics with hypergraph networks. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 30, pages 574–584, 2020.

[Ståhlberg et al., 2021] Simon Ståhlberg, Guillem Francès,
and Jendrik Seipp. Learning generalized unsolvability
heuristics for classical planning. In Proc. IJCAI 2021,
pages 4175–4181, 2021.

[Torralba et al., 2021] Álvaro Torralba, Jendrik Seipp, and
Silvan Sievers. Automatic instance generation for classical
planning. In Proc. ICAPS 2021, pages 376–384, 2021.

[Toyer et al., 2018] Sam Toyer, Felipe Trevizan, Sylvie
Thiébaux, and Lexing Xie. Action schema networks: Gen-
eralised policies with deep learning. In Proc. AAAI 2018,
pages 6294–6301, 2018.

[Veloso et al., 1995] Manuela Veloso, Jaime Carbonell, Ali-
cia Perez, Daniel Borrajo, Eugene Fink, and Jim Blythe.

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

Integrating planning and learning: The prodigy architec-
ture. Journal of Experimental & Theoretical Artificial In-
telligence, 7(1):81–120, 1995.

[Yoon et al., 2008] Sungwook Yoon, Alan Fern, and Robert
Givan. Learning control knowledge for forward search
planning. JMLR, 9:683–718, 2008.

	Introduction
	Background
	Classical Planning
	Heuristics and Greedy Best-First Search
	State Abstractions
	General Policies

	General Policies as Transition Classifiers
	Learning Helpful Actions
	Learning a Transition Classifier
	Incremental D2L

	Planning with a Helpful Actions Classifier
	Policy Lookahead
	Preferring Policy-Compatible Actions

	Experiments
	Learning Policies with ID2L
	Planning With Transition Classifiers

	Related Work
	Acknowledgements
	Conclusions

