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Abstract
We consider an agent acting to fulfil tasks in a non-
deterministic environment. When a strategy that
fulfills the task regardless of how the environment
acts does not exist, the agent should at least avoid
adopting strategies that prevent from fulfilling its
task. Best-effort synthesis captures this intuition.
In this paper, we devise and compare various sym-
bolic approaches for best-effort synthesis in Linear
Temporal Logic on finite traces (LTLf ). These ap-
proaches are based on the same basic components,
however they change in how these components are
combined, and this has a significant impact on the
performance of the approaches as confirmed by our
empirical evaluations.

1 Introduction
We consider an agent acting to fulfil tasks in a nondeter-
ministic environment, as considered in Planning in non-
deterministic (adversarial) domains [Cimatti et al., 2003;
Ghallab et al., 2004], except that we specify both the environ-
ment and the task in Linear Time Logic (LTL) [Aminof et al.,
2019], the formalism typically used for specifying complex
dynamic properties in Formal Methods [Baier et al., 2008].

In fact, in this paper we consider Linear Time Logic on
finite traces (LTLf ) [De Giacomo and Vardi, 2013; De Gi-
acomo and Vardi, 2015], which maintains the syntax of
LTL [Pnueli, 1977], but is interpreted on finite traces. In
this setting, we study synthesis [Pnueli and Rosner, 1989;
Finkbeiner, 2016; De Giacomo and Vardi, 2015; Aminof et
al., 2019], a general form of planning. In particular, we look
at how to synthesize a strategy that is guaranteed to satisfy the
task against all environment behaviors that conform to the en-
vironment specification.

When a winning strategy that fulfills the agent task regard-
less of how the environment acts does not exist, the agent
should at least avoid adopting strategies that prevent from
fulfilling its task. Best-effort synthesis captures this intu-
ition. More precisely, best-effort synthesis captures the game-
theoretic rationality principle that a player would not use a
strategy that is “dominated” by another of its strategies (i.e., if
the other strategy would fulfil the task against more environ-
ment behaviors than the one chosen by the player). Aminof

et al. [2021b] studied best effort strategies. Best-effort strate-
gies have some notable properties: (i) they always exist, (ii) if
a winning strategy exists then best-effort strategies are exactly
the winning strategies, (iii) best-effort strategies can be com-
puted in 2EXPTIME as computing winning strategies (best-
effort synthesis is indeed 2EXPTIME-complete).

Aminof et al. [2021b] presented algorithms for best-effort
synthesis in LTL and LTLf . These algorithms are based on
creating, solving and combining the solutions of three distinct
games, but of the same game arena. The arena is obtained
from the automata corresponding to the formulas E and φ
constituting the environment and the task specifications.

In particular, the algorithm for LTLf best-effort synthe-
sis appears to be quite promising in practice, since well-
performing techniques for each component of the algorithm
are available in the literature. These components are: (i)
transformation of the LTLf formulas E and φ into determinis-
tic finite automata (DFA), which can be double-exponential in
the worst case, but for which various good techniques have
been developed [Henriksen et al., 1995; Zhu et al., 2017;
Bansal et al., 2020; De Giacomo and Favorito, 2021b]; (ii)
Cartesian product of DFAs, which is polynomial; (iii) min-
imization of DFAs, which is also polynomial; (iv) fixpoint
computation over DFA to compute adversarial and coopera-
tive winning strategies for reaching the final states, which is
again polynomial.

In this paper, we refine the LTLf best-effort synthesis pre-
sented by Aminof et al. [2021b] by using symbolic tech-
niques [Bryant, 1992; Baier et al., 2008; Zhu et al., 2017]. In
particular, we show three different symbolic approaches that
combine the above operations in different ways (and in fact
allow for different level of minimization). We then compare
the three approaches through empirical evaluations. From
this comparison, a clear winner emerges. Interestingly, the
winner does not fully exploit DFA minimization to minimize
the DFA whenever it is possible. Instead, this approach uses
uniformly the same arena for all the three games (hence giv-
ing up on minimization at some level). Finally, it turns out
that the winner performs better in computing best-effort solu-
tions even than state-of-the-art tools that compute only adver-
sarial and cooperative solutions. These findings confirm that
LTLf best-effort synthesis is indeed well suited for efficient
and scalable implementations.

The rest of the paper is organized as follows. In Section 2,



we remind the main notions of LTLf synthesis, and LTLf syn-
thesis under environment assumption. In Section 3, we dis-
cuss LTLf best-effort synthesis, and the algorithm by Aminof
et al. [2021b]. In Section 4, we introduce three distinct sym-
bolic approaches for LTLf best-effort synthesis: the first (c.f.,
Subsection 4.2) is a direct symbolic implementation of the al-
gorithm by [Aminof et al., 2021b]; the second one (c.f., Sub-
section 4.3) favors maximally conducting DFA minimization,
thus getting the smallest possible arenas for the three games;
and the third one (c.f., Subsection 4.4) gives up DFA mini-
mization at some level, and creates a single arena for the three
games. In Section 5, we perform an empirical evaluation of
the three algorithms. We conclude the paper in Section 6.

2 Preliminaries
LTLf Basics. Linear Temporal Logic on finite traces (LTLf )
is a specification language to express temporal properties on
finite traces [De Giacomo and Vardi, 2013]. In particular,
LTLf has the same syntax as LTL, which is instead inter-
preted over infinite traces [Pnueli, 1977]. Given a set of
propositions Prop, LTLf formulas are generated as follows:

φ ::= a | (φ ∧ φ) | (¬φ) | (◦φ) | (φU φ).
a ∈ Prop is an atom, ◦ (Next), and U (Until) are tempo-
ral operators. We make use of standard Boolean abbrevia-
tions such as ∨ (or) and → (implies), true and false . In
addition, we define the following abbreviations Weak Next
•φ ≡ ¬◦¬φ, Eventually ♢φ ≡ true U φ and Always
□φ ≡ falseRφ, where R is for Release.

A trace π = π0π1 . . . is a sequence of propositional inter-
pretations (sets), where for every i ≥ 0, πi ∈ 2Prop is the
i-th interpretation of π. Intuitively, πi is interpreted as the
set of propositions that are true at instant i. We denote the
last instant (i.e., index) in a trace π by lst(π). A trace π is
an infinite trace if lst(π) = ∞, which is formally denoted
as π ∈ (2Prop)ω; otherwise π is a finite trace, denoted as
π ∈ (2Prop)∗. Moreover, by πk = π0 · · ·πk we denote the
prefix of π up to the k-th iteration, and πk = ϵ denotes an
empty trace if k < 0. LTLf formulas are interpreted over fi-
nite, nonempty traces. Given π, we define when an LTLf for-
mula φ holds at instant i, 0 ≤ i ≤ lst(π), written as π, i |= φ,
inductively on the structure of φ, as:

• π, i |= a iff a ∈ πi (for a ∈ Prop);
• π, i |= ¬φ iff π, i ̸|= φ;
• π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2;
• π, i |= ◦φ iff i < lst(π) and π, i+ 1 |= φ;
• π, i |= φ1 U φ2 iff ∃j such that i ≤ j ≤ lst(π) and
π, j |= φ2, and ∀k, i ≤ k < j we have that π, k |= φ1.

We say π satisfies φ, written as π |= φ, if π, 0 |= φ.

Reactive Synthesis Under Environment Assumptions.
Reactive synthesis is the problem of finding a strategy that
allows an agent to achieve a goal while continuously interact-
ing with the external environment. In reactive synthesis un-
der environment assumptions, we can intuitively think of the
environment assumption as the knowledge the agent knows
a-priori about how the environment can enact. Therefore, the
environment behaviors are restricted to those that are consis-
tent with the environment assumption. In this work, we spec-
ify environment assumptions and agent goals as LTLf formu-

las E and φ, respectively. We denote the variables under the
control of the environment and the agent by X and Y , respec-
tively (X and Y are disjoint).

An agent strategy is a function σag : (2X )+ → 2Y that
maps non-empty sequences of environment choices to an
agent choice. Similarly, an environment strategy is a func-
tion σenv : (2Y)∗ → 2X mapping (possibly empty) se-
quences of agent choices to an environment choice. A play
π = (X0 ∪ Y0)(X1 ∪ Y1) . . . is σag-consistent if Yk =
σag(X0X1 . . . Xk) for all k ≥ 0. Similarly, π is σenv-
consistent if X0 = σenv(ϵ), where ϵ denotes the empty trace,
and Xk = σenv(Y0Y1 . . . Yk−1) for all k > 0. We denote by
π(σag, σenv) the unique trace that is consistent with strategies
σag and σenv .

Consider LTLf formula φ over X ∪ Y , we say that agent
strategy σag realizes φ, denoted as σag ▷φ, if π(σag, σenv) |=
φ holds for every environment strategy σenv . φ is agent re-
alizable if there exists an agent strategy σag that realizes φ.
Environment realizability is defined similarly. Furthermore,
we say that agent strategy σag cooperatively realizes φ, de-
noted as σag ▶ φ, if there exists an environment strategy σenv
such that π(σag, σenv) |= φ. Hence, φ is agent cooperatively
realizable if such an agent strategy exists. Cooperative envi-
ronment realizability is defined similarly.

We define the problem of LTLf reactive synthesis under
environment assumptions as follows.
Definition 1. The LTLf reactive synthesis under environment
assumptions problem is defined as a pair P = (E , φ), where
LTLf formula E is an environment assumption, and LTLf for-
mula φ is the agent goal. Realizability of P checks whether
there exists an agent strategy σag that realizes φ under E , i.e.,

∀σenv ▷ E , π(σag, σenv) |= φ

Synthesis of P computes such a strategy if exists.
A naive approach to this problem is a reduction to stan-

dard synthesis of LTLf formula E → φ [Aminof et al., 2018].
Moreover, it has been shown that the problem of LTLf reac-
tive synthesis under environment assumptions is 2EXPTIME-
complete [Aminof et al., 2018].

3 Best-effort Synthesis Under Environment
Assumptions

Reactive synthesis, in general, considers that the environment
exhibits an adversarial behavior, thus aims at computing an
agent strategy such that no matter how the environment be-
haves, the agent will achieve the goal. In this setting, the
agent, instead of keep trying, just give up when the synthe-
sis procedure returns unrealizable, although the environment
can be possibly “over-approximated”. In this section, we syn-
thesize a strategy ensuring that the agent will do nothing that
would needlessly prevent it from achieving its task – which
we call a best-effort strategy. Best-effort synthesis is the prob-
lem of finding such a strategy [Aminof et al., 2021b]. As for
reactive synthesis under environment assumptions, in best-
effort synthesis environment behaviors are restricted to those
that are consistent with the environment assumption.

We start with showing how a strategy makes more effort
with respect to another. Let E and φ be two LTLf formulas

2



denoting an environment assumption and an agent goal, re-
spectively, and σ1 and σ2 be two agent strategies. We say
that σ1 dominates σ2 for goal φ under E , written ≥φ|E , if for
every σenv ▷ E , π(σ2, σenv) |= φ implies π(σ1, σenv) |= φ.
Furthermore, we say that σ1 strictly dominates σ2, written
σ1 >φ|E σ2, if σ1 ≥φ|E σ2 and σ2 ̸≥φ|E σ1. An agent
strategy σ∗ is best-effort, or maximal, for the goal φ under
the environment assumption E , if there is no agent strategy σ
such that σ >φ|E σ∗ Intuitively, σ1 >φ|E σ2 means σ1 does
at least as well as σ2 against every environment strategy re-
alizing E and strictly better against one such strategy. If σ1
strictly dominates σ2, then σ1 makes more effort than σ2 to
satisfy the goal. In fact, if σ2 is strictly dominated by σ1, then
an agent that uses σ2 does not its best to achieve the goal: if
it used σ1 instead, it could achieve the goal against a strictly
larger set of environment behaviors. Then, since best-effort
strategies achieve the goal against the largest possible set of
environment behaviors, an agent strategy is best-effort if it is
not strictly dominated by another strategy.

We define the problem of LTLf best-effort synthesis under
environment assumptions as follows:

Definition 2. The LTLf best-effort synthesis problem under
environment assumptions is defined as a pair P = (E , φ),
where LTLf formula E is an environment assumption, and
LTLf formula φ is the agent goal. Best-effort synthesis of
P computes an agent strategy that is best-effort.

In standard synthesis under assumptions, it is common to
first check whether the problem is realizable, indicating that
there exists an agent strategy that realizes the problem. How-
ever, it has been shown that in the best-effort synthesis, there
always exists an agent strategy that is best-effort for the goal
φ under environment assumption E .

Theorem 1 ([Aminof et al., 2021b]). Let P = (E , φ) be
an LTLf best-effort synthesis problem, there always exists an
agent strategy that is best-effort.

Aminof et al. [2021b] presented that LTLf best-effort syn-
thesis can be solved by a reduction to suitable DFA games,
and it has been shown to be 2EXPTIME-complete [Aminof
et al., 2021b].

DFA Games. A DFA game is a two-player game played
on a DFA, described as a pair (D, F ), where D is a deter-
ministic transition system such that D = (2X∪Y , S, s0, δ),
where δ : S × 2X∪Y → S is the transition function and
F ⊆ S is the set of the final states of the game. Given a
play π = (X0 ∪ Y0)(X1 ∪ Y1) . . . ∈ (2X∪Y)ω , running π on
D gives us an infinite sequence ρ = s0s1 . . . ∈ Sω such that
s0 is the initial state and si+1 = δ(si, Xi ∪ Yi) for all i ≥ 0.
Since the transitions in D are all deterministic, we thus de-
note by ρ = Run(π,D) the unique sequence of running π on
D. Analogously, we denote by ρk = Run(πk,D) the unique
finite sequence of running πk on D, and ρk = s0s1 . . . sk+1.
The set of final states F indicates the states in which the agent
wins the game. Then, a play π ∈ (2X∪Y)ω is a winning play
for the agent if ρ = Run(π,D) and ∃ℓ ≥ 0: ρℓ ∈ F . Intu-
itively, DFA games require F to be visited at least once.

Given σag and σenv denoting an agent strategy and
an environment strategy, respectively, we denote by

PLAY (σag, σenv) the unique play that is consistent with
both σag and σenv . An agent strategy σag is winning in
the game (D, F ) if ∀σenv it results that PLAY (σag, σenv)
is winning. An environment strategy σenv is winning in the
game (D, F ) if ∀σag it results that PLAY (σag, σenv) is not
winning for the agent. In DFA games, s ∈ S is a winning state
for the agent (resp. environment) if the agent (resp. the envi-
ronment) has a winning strategy in the game (D′, F ), where
D′ = (2X∪Y , S, s, δ), i.e., the same arena D but with the new
initial state s. By Wag(D, F ) (resp. Wenv(D, F )) we denote
the set of all agent (resp. environment) winning states. In-
tuitively, Wag represents the “agent winning region”, from
which the agent is able to win the game, no matter how the
environment behaves.

We also define cooperatively winning strategies for DFA
games. An agent strategy σag is cooperatively winning in
game (D, F ) if ∃σenv such that PLAY (σag, σenv) is a win-
ning play. An analogous definition holds for cooperatively
winning environment strategies. Hence, s ∈ S is a coop-
eratively winning state for the agent (resp. environment) if
the agent (resp. the environment) has a cooperatively winning
strategy in the game (D′, F ), where D′ = (2X∪Y , S, s0, δ).
By Wcoop

ag (D, F ) (resp. Wcoop
env (D, F ) we denote the set of all

agent (resp. environment) cooperative winning states.
If the agent makes its choices based only on the current

state of the game and on the choice of the environment, then
we say that the agent uses a positional strategy. An agent
positional strategy (a.k.a. agent memory-less strategy) is a
function τag : S × 2X → 2Y . Similarly, we can define an en-
vironment positional strategy as a function τenv : S → 2X .
An agent positional strategy τag induces an agent strategy
σag as follows: σag(X0) = τag(s0, X0) and for k > 0
σag(X0X1 . . . Xk) = τag(sk, Xk), where sk is the last state
in the finite sequence ρk−1 = Run(πk−1,D). Similarly, an
environment positional strategy induces an environment strat-
egy. An agent (resp. environment) positional strategy is win-
ning if the agent (resp. environment) strategy it induces is
winning. A positional strategy for a player that is winning
from every state in its winning region is called uniform win-
ning. Similarly, a positional strategy for a player is coop-
eratively winning if the strategy it induces is coopereatively
winning. Finally, a positional strategy for a player that is win-
ning from every state in the cooperatively winning region is
called uniform cooperatively winning.

The solution to LTLf best-effort synthesis presented by
Aminof et al. [2021b] can be summarized as follows.
Algorithm 0 [Aminof et al., 2021b]. Given LTLf best-effort
synthesis problem P = (E , φ), proceed as follows:

1. For every ξ ∈ {¬E , E → φ, E ∧ φ} compute the DFAs
Aξ = (Dξ, Fξ).

2. Form the product D = D¬E × DE→φ × DE∧φ. Lift the
final states of each component to the product i.e. if Aξ =
(Dξ, Fξ) is the DFA for ξ, then the lifted condition Gξ
consists of all states(s¬E , sE→φ, sE∧φ) s.t. sξ ∈ Fξ.

3. In the DFA game (D, GE→φ) compute a uniform posi-
tional winning strategy fag . LetWag ⊆ S be the agent’s
winning region.
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4. In the DFA game (D, G¬E) compute the environment’s
winning region V ⊆ Q.

5. Compute the environment restriction D′ of D to V .
6. In the DFA game (D′, GE∧φ) find a uniform coopera-

tively winning uniform positional strategy gag .
7. Return the agent strategy induced by the positional

strategy kag(s,X
′) = fag(s,X

′) if s ∈ W , and
kag(s,X

′) = gag(s,X
′) otherwise.

4 Symbolic Best-effort Synthesis
In this section, we present our symbolic approaches to
LTLf best-effort synthesis, consisting of 3 different versions,
namely monolithic, explicit-compositional, and symbolic-
compositional. In particular, we exploit the symbolic tech-
niques presented by Zhu et al. [2017] to deal with DFA games

4.1 Symbolic DFA Games
We consider the DFA game representation described in 3 is
an explicit-state representation. Instead, we are able to rep-
resent a DFA game compactly in a symbolic way. More
specifically, the game arena D = (2X∪Y , S, s0, δ) can be rep-
resented symbolically, by encoding the state space using a
logarithmic number of propositions. The symbolic represen-
tation of D is a tuple Ds = (X ,Y,Z, Z0, η), where Z is a
set of variables such that |Z| = ⌈log |S|⌉, and every state
s ∈ S corresponds to an interpretation Z ∈ 2Z over Z .
Z0 ∈ 2Z is the interpretation corresponding to the initial state
s0. η : 2X × 2Y × 2Z → 2Z is a Boolean function mapping
interpretations X , Y and Z of the propositions of X , Y and
Z to a new interpretation Z ′ of the propositions of Z , such
that if Z corresponds to a state s ∈ S then Z ′ corresponds to
the state δ(s,X ∪ Y ). The set of goal states is represented by
a Boolean formula f over Z that is only satisfied by the in-
terpretations of states in F . Accordingly, we denote the sym-
bolic reachability game as (Ds, f). Note that the transition
function η can be represented by an indexed family consist-
ing of a Boolean formula ηz for each state variable z ∈ Z ,
which when evaluated over an assignment to X ∪ Y ∪ Z re-
turns the next assignment to z.

We also define the product of two symbolic transition sys-
tems Ds

1 = (X ,Y,Z1, Z01, η1), Ds
2 = (X ,Y,Z2, Z02, η2)

as Ds
1 × Ds

2 = (X ,Y,Z, Z0, η), where X ,Y are as de-
fined for Ds

1 and Ds
2, Z = Z1 ∪ Z2, Z0 = (Z01, Z02) and

η : 2X × 2Y × 2Z1 × 2Z2 → 2Z1 × 2Z2 . Since the transition
functions can be represented by an indexed family, the prod-
uct transition function η is, in fact, a union of the two indexed
families of η1 and η2.

Given a symbolic DFA game (Ds, f), we can compute
a uniform winning positional agent strategy by a least fix-
point computation over two Boolean formulas w over Z and
t over Z ∪ X ∪ Y , which represent the agent winning re-
gion Wag(Ds, f) and tuples of winning states, environment
actions with suitable agent actions, respectively. w and t are
initialized as w0(Z) = f(Z) and t0(Z,X ,Y) = f(Z), since
every goal state is an agent winning state. Note that t0 is inde-
pendent of the propositions from X ∪ Y , since once the play
reaches goal states, the agent can do whatever it wants. ti+1

and wi+1 are constructed as follows:

ti+1(Z, Y, Y ) = ti(Z,X, Y ) ∨ (¬wi(Z) ∧ wi(η(X,Y, Z)))
wi+1(Z) = ∀X.∃Y.ti+1(Z,X, Y );

The computation reaches a fixpoint when wi+1 ≡ wi. At
this point, no more states will be added, and so all agent win-
ning states have been collected. By evaluating Z0 on wi+1

we can know if there exists a winning strategy. If that is
the case, ti+1 can be used to compute a uniform positional
winning strategy through the mechanism of Boolean synthe-
sis [Fried et al., 2016]. More specifically, passing ti to a
Boolean synthesis procedure, setting Z ∪ X as input vari-
ables and Y as output variables, we obtain a uniform winning
positional strategy τ : 2Z × 2X → 2Y that can be used to
induce an agent winning strategy.

Also computating a uniform cooperatively winning posi-
tional strategy can be performed by a least fixpoint computa-
tion. To do this, we define again Boolean functions ŵ over
Z and t̂ over Z ∪ X ∪ Y , now representing the agent co-
operatively winning region and tuples of cooperatively win-
ning states and cooperative agent and environment actions,
respectively. As before, we initialize ŵ0(Z) = f(Z) and
t̂0(Z,X ,Y) = f(Z), since every goal state is a cooperatively
winning state. Then, we construct t̂i+1 and ŵi+1 as follows:

t̂i+1(Z, Y, Y ) = t̂i(Z,X, Y ) ∨ (¬ŵi(Z) ∧ ŵi(η(X,Y, Z)))
ŵi+1(Z) = ∃X.∃Y.t̂i+1(Z,X, Y );

Once the computation reaches a fixpoint, checking the ex-
istence and computing a uniform cooperatively winning po-
sitional strategy can be done as shown above.

Intuitively, when computing a uniform winning positional
strategy we look for agent actions for which, no matter how
the environment behaves, the agent is able to reach the win-
ning region Wag(Ds, f). Differently, when computing a uni-
form cooperatively winning positional strategy we’re looking
for agent actions for which, if the environment acts cooper-
atively, the agent is able to reach the cooperatively winning
region Wcoop

ag (D, f).

4.2 Monolithic Approach
The monolithic approach is a direct implementation of the
best-effort synthesis by Aminof et al. [2021b] (i.e., of Al-
gorithm 0), utilizing the symbolic synthesis framework intro-
duced by Zhu et al. [2017]. Given a best-effort synthesis
problem P = (E , φ), we first construct the DFAs following
the synthesis algorithm described in Section 3, and convert
them into a symbolic representation. Finally, we solve suit-
able games on the symbolic DFAs and obtain a best-effort
strategy. More specifically, this approach solves the best-
effort synthesis problem P = (E , φ) as follows.

Algorithm 1.
1. For LTLf formulas E → φ, ¬E and E ∧ φ compute

the corresponding minimal explicit-state DFAs AE→φ =
(DE→φ, FE→φ), A¬E = (D¬E , F¬E) and AE∧φ =
(DE∧φ, FE∧φ), and convert the DFAs to a symbolic
representation and obtain As

E→φ = (Ds
E→φ, fE→φ),

As
¬E = (Ds

¬E , f¬E) and As
E∧φ = (Ds

E∧φ, fE∧φ).
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2. Construct symbolic DFA games (Ds, f¬E) and
(Ds, fE→φ), where Ds = Ds

¬E ×Ds
E→φ ×Ds

E∧φ is the
product of the symbolic transition systems Ds

¬E , Ds
E→φ,

and Ds
E∧φ.

3. In the DFA game (Ds, fE→φ) compute a uniform posi-
tional strategy τag , and the agent winning region, which
is represented as Boolean formula Wag(Ds, fE→φ) over
state variables Z .

4. In the DFA game (Ds, f¬E) compute the environ-
ment’s winning region, represented as Boolean formula
Wenv(Ds, f¬E) over Z .

5. Construct symbolic DFA game (D′s, fE∧φ), where
D′s = Ds ∧ Wenv(Ds, f¬E) such that restricting
the state space of transition system Ds to considering
Wenv(Ds, f¬E) only.

6. In the DFA game (D′s, fE∧φ) find a positional coopera-
tively winning strategy γag .

7. Return the best-effort strategy σag induced by the po-
sitional strategy constructed as follows: κag(Z,X) =
τag(Z,X) if Z |= Wag(Ds, fE→φ) and κag(Z,X) =
γag(Z,X) otherwise.

The operations workflow of the monolithic approach is
shown in Figure 1. First, we to transform the formulas E →
φ, ¬E and E ∧ φ into minimal explicit-state DFAs AE→φ,
A¬E and AE∧φ. Then, we transform these explicit-state DFA
into symbolic representations As

E→φ, As
¬E and As

E∧φ. At this
point, the arena of the games played by the algorithm is con-
structed through product as Ds

E→φ × Ds
¬E × Ds

E∧φ. Then,
the games of the algorithms are constructed as: (Ds, fE→φ),
(Ds, f¬E) and (Ds, fE∧φ). These DFA games are left unmin-
imized. Here, games (Ds, fE→φ), (Ds, fE∧φ) and (Ds, f¬E)
are solved as shown in Section 4.1.

After computing the winning positional strategy τag and
the cooperatively winning positional strategy γag , we con-
struct the positional best-effort strategy κag(Z,X) as fol-
lows: κag(Z,X) = τag(Z,X) if Z |= Wag(Ds, fE→φ) and
κag(Z,X) = γag(Z,X) otherwise, i.e., the best-effort strat-
egy is constructed so as to prefer the output of the winning
positional strategy to that of the cooperatively winning posi-
tional strategy. Only in case the winning positional strategy is
not defined in a state Z, then the output of the cooperatively
winning positional strategy is used. Note that the positional
best-effort strategy induces an LTLf best-effort strategy.

The main challenge in the monolithic approach comes
from the LTLf -to-DFA conversion, which can take, in the
worst case, doubly exponential time [De Giacomo and Vardi,
2013], and thus also considered as the bottleneck of LTLf syn-
thesis [Zhu et al., 2017]. To that end, we propose an explicit
compositional approach to diminish this difficulty by decreas-
ing the number of performing LTLf -to-DFA conversions.

4.3 Explicit-Compositional Approach
As described in Section 4.2, the monolithic approach to a
best-effort synthesis problem P = (E , φ) involves three
rounds of LTLf -to-DFA conversions with respect to LTLf for-
mulas E → φ, ¬E and E ∧φ. We observe that the constructed
DFAs AE→φ, A¬E and AE∧φ can, in fact, be constructed by

Figure 1: Algorithm 1. Here Ds = Ds
E→φ ×Ds

¬E ×Ds
E∧φ.

manipulating the two DFAs Aφ and AE of LTLf formulas E
and φ, respectively. Specifically, given explicit-state DFAs
Aφ and AE , we obtain AE→φ, A¬E and AE∧φ as follows:

• AE→φ = Comp(Inter(AE ,Comp(Aφ));
• A¬E = Comp(AE);
• AE∧φ = Inter(AE ,Aφ);

where Comp and Inter denote complement and intersection
on explicit-state DFA, respectively. Note that, the LTLf -to-
DFA is 2EXPTIME-complete, while DFA complement and
intersection only takes linear time in the size of the DFA.

Thus, Algorithm 2, which follows the explicit-
compositional approach to a best-effort synthesis problem
P = (E , φ), proceeds as shown in Figure 2. Here, we
first translate directly the formulas E and φ into minimal
explicit-state DFAs AE and Aφ. Then, the DFA complement
and intersection are performed to build DFAs AE→φ, A¬E
and AE∧φ. Indeed, the constructed explicit-state DFAs can
also be minimized. The remaining steps are the same as in
the monolithic approach.

4.4 Symbolic-Compositional Approach
A few aspects, however, make the explicit-compositional ap-
proach unsatisfactory to us. Let us start with focusing on
the two DFAs AE→φ and AE∧φ. Suppose we put automata
minimization aside, the initial states and transition functions
of both DFAs are essentially the same, and they only differ
in accepting conditions. This is because the initial states
and transition functions of AE→φ and AE∧φ are obtained
by performing cross product of AE and Aφ. Consequently,
if no minimization takes place, symbolic DFAs As

E→φ =

(Ds
E→φ, fE→φ) and As

E∧φ = (Ds
E∧φ, fE∧φ) share the same

transition system such that Ds
E→φ = Ds

E∧φ. Moreover, since
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Figure 2: Algorithm 2. Here Ds = Ds
E→φ ×Ds

¬E ×Ds
E∧φ.

we represent the symbolic transition function as an indexed
family, the transition function of Ds

¬E in As
¬E = (Ds

¬E , f¬E)
is in fact a subset of the transition function of Ds

E→φ (indeed
also Ds

E∧φ). As a result, we have the following lemma.

Lemma 1. Let E and φ be two LTLf formulas over X ∪ Y .
We have that Ds

E→φ ×Ds
¬E ×Ds

E∧φ = Ds
E ×Ds

φ.

Proof. First, we show that Ds
E→φ = Ds

E∧φ, where
Ds

E→φ = (X ,Y,ZE→φ, Z(0,E→φ), ηE→φ) and Ds
E∧φ =

(X ,Y,ZE∧φ, Z(0,E∧φ), ηE∧φ). To see this, note that
Ds

E→φ = Ds
¬(E∧¬φ). Now, since for every LTLf formula ψ,

it holds that Ds
ψ = Ds

¬ψ , we have that Ds
¬(E∧¬φ) = Ds

E∧¬φ
holds. The transition system Ds

E∧¬φ can indeed be obtained
by performing symbolic product of two transition systems Ds

E
and Ds

¬φ, such that Ds
E∧¬φ = Ds

E×Ds
¬φ. As a result, it holds

that Ds
E→φ = Ds

¬(E∧¬φ) = Ds
E∧¬φ = Ds

E × Ds
¬φ = Ds

E ×
Ds
φ = Ds

E∧φ. Thus, we can simplify Ds
E→φ × Ds

¬E × Ds
E∧φ

as Ds
¬E ×Ds

E∧φ.
Furthermore, since Ds

¬E = Ds
E = (X ,Y,ZE , Z0,E , ηE)

and Ds
E∧φ = Ds

E × Ds
φ = (X ,Y, (ZE ∪ Zφ), (Z0,E ∧

Z0,φ), (ηE ∪ ηφ)), the state variables ZE and the transition
function ηE , represented as an indexed family, of Ds

¬E are
actually, the subsets of the state variables (ZE ∪ Zφ) and
the transition function (ηE ∪ ηφ) of Ds

E × Ds
φ, respectively.

Hence, Ds
¬E × Ds

E∧φ can be further simplified as Ds
E∧φ,

which is equivalent to Ds
E × Ds

φ. We thus conclude that
Ds

E→φ ×Ds
¬E ×Ds

E∧φ = Ds
E ×Ds

φ.

Figure 3: Algorithm 3. Here Ds = Ds
E ×Ds

φ.

Furthermore, since no DFA minimization takes place then
the DFAs have the following form: As

E→φ = (Ds, fE→φ),
As

¬E = (Ds, f¬E) and As
E∧φ = (Ds, fE∧φ). This means that

we can construct Ds = Ds
E × Ds

φ once and for all and then
get the three automata by defining the final states functions
(which are Boolean functions) from fE and fφ as follows:

• fE→φ = ¬(fE ∧ ¬(fφ));
• f¬E = ¬fE ;
• fE∧φ = fE ∧ fφ;
Thus, given a best-effort synthesis problem P = (E , φ),

the symbolic-compositional approach solves it as follows.

Algorithm 3.

1. Compute the minimal explicit-state DFAs AE =
(DE , FE) and Aφ = (Dφ, Fφ) and convert the DFAs
to a symbolic representation and obtain As

E = (Ds
E , fE)

and As
φ = (Ds

φ, fφ).

2. Construct the symbolic DFA games Gs¬E = (Ds,¬fE)
and GsE→φ = (Ds,¬(fE ∧ ¬(fφ))).

3. In the DFA game GsE→φ = (Ds,¬(fE ∧ ¬(fφ))) com-
pute a uniform positional winning strategy τag , and the
agent winning region, represented as Boolean formula
Wag(Ds,¬(fE ∧ ¬(fφ))) over state variables Z .

4. In the DFA game (Ds,¬fE) compute the environ-
ment’s winning region, represented as Boolean formula
Wenv(Ds,¬fE) over Z .

5. Construct symbolic DFA game (D′s, fE ∧ fφ), where
D′s = Ds ∧ Wenv(Ds,¬fE) such that restricting
the state space of transition system Ds to considering
Wenv(Ds,¬fE) only.
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6. In the DFA game (D′s, fE ∧ fφ) find a positional coop-
eratively winning strategy γag .

7. Return the best-effort strategy σag induced by the po-
sitional strategy constructed as follows: κag(Z,X) =
τag(Z,X) if Z |= Wag(Ds,¬(fE ∧ ¬(fφ))) and
κag(Z,X) = γag(Z,X) otherwise.

As shown in Figure 3, the symbolic-compositional ap-
proach first transforms formulas E and φ into minimal
explicit-state DFAs AE and Aφ, and then directly into a sym-
bolic representation As

E and As
φ. Hence, we construct the

arena of the games as Ds
E × Ds

φ. Note that the result of
this product is unminimized. At this point the games played
by the algorithm are constructed as (Ds,¬(fE ∧ ¬(fφ))),
(Ds,¬fE) and (Ds, fE ∧ fφ). From now on, the remaining
steps are the same as in the monolithic approach, indeed also
the explicit-compositional approach.

5 Empirical Evaluations
In this section, we first describe how we implemented our
symbolic LTLf best-effort synthesis approaches described in
Section 4. Then, by empirical evaluation, we show that Al-
gorithm 3, i.e., the symbolic-compositional approach, shows
an overall best-performance. In particular, we show that per-
forming best-effort synthesis only brings a minimal overhead
with respect to standard synthesis.

5.1 Implementation
We implemented the three different symbolic best-effort syn-
thesis approaches described in Section 4 in a tool called
BeSyft, by extending the symbolic synthesis framework [Zhu
et al., 2017; Tabajara and Vardi, 2019] integrated in state-
of-the-art synthesis tools [Bansal et al., 2020; De Giacomo
and Favorito, 2021a]. In particular, we based on LYDIA 1,
the overall best performing LTLf -to-DFA conversion tool, to
construct the explicit-state DFA from LTLf formulas. It
should be noted that all the explicit-state DFAs constructed
by LYDIA are minimized. Moreover, BeSyft borrows the
rich APIs from LYDIA to perform the relevant explicit-state
DFA manipulations required by both of Algorithm 1, i.e.,
the monolithic approach (c.f., Subsection 4.2) and Algo-
rithm 2, i.e., the explicit-compositional approach (c.f., Sub-
section 4.3), such as complement, intersection, minimiza-
tion. As in [Zhu et al., 2017; Tabajara and Vardi, 2019],
the symbolic DFA games are represented in Binary De-
cision Diagrams (BDDs) [Bryant, 1992], utilizing CUDD-
3.0.0 [Somenzi, 2016] as the BDD library. Thereby, BeSyft
constructs and solves symbolic DFA games by making use
of the Boolean operations provided by CUDD-3.0.0, such as
negation, conjunction, qualification. The positional winning
strategy τag and the positional cooperatively winning strat-
egy γag are abstracted utilizing Boolean synthesis [Fried et
al., 2016]. The positional best-effort strategy is obtained by
applying suitable Boolean operations on τag and γag . As a
result, we have three derivations of BeSyft, namely BeSyft-
Alg-1, BeSyft-Alg-2 and BeSyft-Alg-3, corresponding to the
monolithic approach, the explicit-compositional approach,
and the symbolic-compositional approach, respectively.

1https://github.com/whitemech/lydia

Figure 4: Comparison of the 3 best-effort synthesis algs in log scale.

5.2 Experiment Methodology
Experiment Setup. All experiments were run on a laptop
with operating system 64-bit Ubuntu 20.04, 3.6 GHz CPU,
and 12 GB of memory. Time out was set to 1000 seconds.

Benchmark. We devised a counter game benchmark, based
on the one proposed by Zhu et al. [2020]. More specifically,
there is an n-bit binary counter. At each round, the environ-
ment chooses whether to issue an increment request for the
counter or not. The agent can choose to grant the request or
ignore it. The goal is to get the counter having all bits set to
1. The increment requests only come from the environment,
and occur in accordance with the environment assumption.
Note that the size of the corresponding minimal DFA grows
exponentially as the size of the counter game n grows.

In the experiments, we considered two types of environ-
ment assumptions: E□ = □(add) and E♢ = ♢(add). We
name the counter game instances with the assumption E□
as □-instances, and the ones with the assumption E♢ as ♢-
instances. It is easy to see that □-instances are always agent
realizable, i.e., the agent has a strategy to realize the goal un-
der environment assumption E□. Indeed, such a strategy is
to grant all increment request coming from the environment.
Instead, ♢-instances are agent realizable for 1-bit counter
games, and cooperatively realizable otherwise. Indeed, in the
first case, a winning strategy for the agent is to grant the in-
crement request that will eventually occur. Differently, in the
second case, the agent can achieve the goal only if the envi-
ronment behaves cooperatively such that issuing more incre-
ment requests than that specified by the environment assump-
tion. That is to say, the agent needs a best-effort strategy.

5.3 Experimental Results and Analysis.
Figure 4 (note that the y-axis is in log scale) shows the run-
ning time of each derivation of BeSyft on every instance of
the counter games. Figure 5 shows the same result as Fig-
ure 4, but having the y-axis in linear scale, thus showing a
clearer view of the performance of three derivations of BeSyft.
Across these instances, we see that all the derivations were
able to manage instances with up to 8 bits, for both □- and
♢- counter instances. In particular, BeSyft-Alg-1 is beaten
by the other two derivations, since it requires three rounds of
LTLf -to-DFA conversions, which in the worst case, can lead

7



Figure 5: Same comparison of Figure 4 in linear scale.

Figure 6: Relative time costs of each step in Algorithm 3.

to a double-exponential blowup. Note that the time cost of all
derivations of BeSyft grows exponentially, instead of double-
exponential. This is because LYDIA always returns the min-
imal explicit-state DFA of a given LTLf formula, and the
powerful automata minimization can possibly disappear the
exponential gap, as observed in [Tabajara and Vardi, 2019;
Zhu et al., 2020]. This also enables the state-of-the-art LTLf
synthesis tools to take the maximal advantage of automata
minimization [Bansal et al., 2020; De Giacomo and Favorito,
2021a]. Nevertheless, it is not the case that automata mini-
mization always leads to an improvement. Instead, there is
a tread-off of performing automata minimization. As shown
in Figures 4 and 5, BeSyft-Alg-3 shows better performance
comparing to BeSyft-Alg-2, though the former cannot min-
imize the game arena after symbolic product, and the latter
minimizes the game arena as much as possible.

On a closer inspection, we evaluated the time cost of each
major operation of BeSyft-Alg-3, and present the results on
♢-counter instances in Figure 6. First, the results show that
LTLf -to-DFA conversion is the bottleneck of LTLf best-effort
synthesis, the cost of which dominates the total running time.
Moreover, we can see that the total time cost of cooperative
DFA game and strategy merging of best-effort synthesis, only
counts for 20% ∼ 30% of the total time cost. As a result,
we conclude that, in general, performing best-effort synthesis
only brings a minimal overhead.

Figure 7: Comparison of BeSyft-Alg-3 and state-of-the-art algo-
rithms for LTLf adversarial and cooperative synthesis.

Furthermore, we also compared the time cost of BeSyft-
Alg-3 with that of standard synthesis on counter games. More
specifically, we consider two kinds of reactive synthesizer:
adversarial synthesizer that computes an agent winning strat-
egy for LTLf formula E → φ; cooperative synthesizer that
computes an agent cooperatively winning strategy for LTLf
formula E ∧φ. Figure 7 shows that for small instances (up to
7 bits), BeSyft-Alg-3 only takes minor extra time than those
of adversarial synthesizer and cooperative synthesizer. Inter-
estingly, for the 8-bit counter instances, BeSyft-Alg-3 even
takes less time. Although BeSyft-Alg-3 performs LTLf -to-
DFA conversion of LTLf formulas φ and E separately and
combines them to obtain the final game arena without hav-
ing automata minimization, it can happen that the total time
cost of such is even less than the LTLf -to-DFA conversion of
a larger formula E → φ. This, again, confirms that perform-
ing best-effort synthesis only brings a minimal overhead with
respect to standard synthesis.

6 Conclusion
We presented three different symbolic LTLf best-effort syn-
thesis approaches: monolithic, explicit-compositional and
symbolic-compositional. Empirical evaluations proved the
outperformance of the symbolic-compositional approach. An
interesting observation is that, although previous studies sug-
gest taking the maximal advantage of automata minimiza-
tion [Tabajara and Vardi, 2019; Zhu et al., 2020], in the case
of LTLf best-effort synthesis, there can be a trade-off of do-
ing so. Another significant finding is that the best-performing
LTLf best-effort synthesis approach only brings a minimal
overhead comparing to standard synthesis. Given this nice
computational result, a natural future direction would be
looking into LTL best-effort synthesis [Aminof et al., 2021b]
and LTLf best-effort synthesis with multiple environment as-
sumptions [Aminof et al., 2021a].
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