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Abstract
Devising a strategy to make a system mimicking
behaviors from another system is a problem that
naturally arises in many areas of Computer Sci-
ence. In this work, we interpret this problem in the
context of intelligent agents, from the perspective
of LTLf , a formalism commonly used in AI for ex-
pressing finite-trace properties. Our model consists
of two separated dynamic domains, DA and DB ,
and an LTLf specification that formalizes the notion
of mimicking by mapping properties on behaviors
(traces) of DA into properties on behaviors of DB .
The goal is to synthesize a strategy that step-by-step
maps every behavior of DA into a behavior of DB

so that the specification is met. We consider sev-
eral forms of mapping specifications, ranging from
simple ones to full LTLf , and for each we study syn-
thesis algorithms and computational properties.

1 Introduction
Mimicking a behavior from a system A to a system B is a
common practice in Computer Science (CS) and Software
Engineering (SE). Examples include a robot that has to real-
time adapt a human behavior [Mitsunaga et al., 2008], or si-
multaneous interpretation of a speaker [Yarmohammadi et al.,
2013; Zheng et al., 2020]. The challenge in behavior mimick-
ing is twofold. Firstly, a formal specification of mimicking is
needed; indeed, being potentially different, systems A and B
may show substantially different behaviors, not directly com-
parable, thus a relationship, or map, between them must be
formally defined to capture when a behavior from A is cor-
rectly mimicked by one from B. Secondly, since B ignores
what A will do next, B must monitor the actions performed
by A and perform its own actions, in such a way that the re-
sulting behavior of B mimics that of A.

In this work, we look at the problem of devising a
strategy for mimicking behaviors when the mapping spec-
ification is expressed in Linear Temporal Logic on finite
traces (LTLf ) [De Giacomo and Vardi, 2013], a formalism
commonly used in AI for expressing finite-trace properties.
In our framework, systems A and B are modeled by two sep-
arated dynamic domains, DA and DB , in turn modeled as
transition systems, over which there are agents A and B that

respectively act, without affecting each other. The mapping
specification is then a set of LTLf formulas to be taken in con-
junction, called mappings, that essentially relate the behav-
iors of A to those of B. While B has full knowledge of both
domains and their states, it has no idea which action A will
take next. Nevertheless, in order to perform mimicking, B
must respond to every action that A performs on DA by per-
forming one action on DB . As this interplay proceeds, DA

and DB traverse two respective sequences of states (traces)
which we call the behaviors of A and B, respectively. The
process carries on until either A or B (depending on the vari-
ant of the problem considered) decides to stop. The mim-
icking from A has been accomplished correctly, i.e., agent B
wins, if the resulting traces satisfy the LTLf mapping spec-
ification. Our goal is to synthesize a strategy for B, i.e., a
function returning an action for B given those executed so
far by agent A, which guarantees that B wins, i.e., is able to
mimic, respecting the mappings, every behavior ofA. We call
this the Mimicking Behavior in Separated Domains (MBSD)
problem.

The mapping specifications can vary, consequently chang-
ing the nature of the mimicking, and consequently the diffi-
culty of synthesizing a strategy for B. We study three dif-
ferent types of mappings. The first is the class of point-wise
mappings, which establish a sort of local connection between
the two separated domains. Point-wise mapping specifica-
tions have the form

∧
i≤k �(φi → ψi) (see Section 2.2 for

proper LTLf definition) where each φi is a Boolean property
over DA and each ψi is a Boolean property over DB . Point-
wise mappings indicate invariants that are to be kept through-
out the interaction between the agents. In Section 4.1 we give
a detailed example of point-wise mappings from the Pac-Man
world.

The second class is that of target mappings, which re-
late the ability of satisfying corresponding reachability goals
(much in the same fashion as Planning) in the two sepa-
rate domains. Target mapping specifications have the form∧

i≤k(♦φi → ♦ψi), where φi and ψi are Boolean properties
over DA and DB , respectively. Target mappings define ob-
jective for A and B and require that if A meets its objective
then B must meet its own as well, although not necessarily
at the same time. We give a detailed example of target map-
pings in Section 5.1, from the Rubik’s cube world. The last
class is that of general LTLf mappings. A general LTLf map-



ping specification has the form of an arbitrary LTLf formula
Φ with properties over DA and DB .

Our objective is to characterize solutions for strategy syn-
thesis for mimicking behaviors under the types of mapping
specifications described above, from both the algorithmic and
the complexity point of view. The input we consider includes
both domains DA and DB , and the mapping specification.
Since it is common to focus on problems in which either of
the two is fixed (e.g. [De Giacomo and Rubin, 2018]), we
provide solutions in terms of: combined complexity, where
neither the size of the domain nor that of the mapping speci-
fication are fixed; mapping complexity, where domains’ size
are fixed but mapping specification’s varies; and domain com-
plexity, where the mapping specification’s size is fixed but
domains’ vary.

For our analysis, we formalize the problem as a two-player
game between agent A (Player 1) and agent B (Player 2)
over a game graph that combines both domains DA and DB ,
with the winning objective varying in the classes discussed
above. We start with point-wise mappings where A decides
when to stop and derive a solution in the form of a winning
strategy for a safety game in PTIME wrt combined, mapping
and domain complexity. The scenario becomes more com-
plex for target mappings, where the agent B decides when
to stop, and where some objectives met during the agent’s
interplay must be recorded. We devise an algorithm expo-
nential in the number of constraints, and show that the prob-
lem is in PSPACE for combined and mapping complexity, and
PTIME in domain complexity. To seal the complexity of the
problem, we provide a PSPACE-hardness proof for combined
complexity, already for simple acyclic graph structures. For
domains whose transitions induce a tree-like structure, how-
ever, we show that the problem is still in PTIME for com-
bined, mapping and domain complexity. Finally, we show
that the problem with general LTLf mapping specifications is
in 2EXPTIME for combined and mapping complexity, due to
the doubly-exponential blowup of the DFA construction for
LTLf formulas, and is PTIME in domain complexity.

The rest of the paper goes as follows. In Section 2 we give
preliminaries, and we formalize our problem in Section 3. We
give detailed examples and analyses of point-wise and target
mapping specifications in Sections 4 and 5 respectively. We
discuss solution for general mapping specifications in Sec-
tion 6. Then we provide a more detailed discussion about
related work in Section 7, and conclude in Section 8.1

2 Preliminaries
We briefly recall preliminary notions that will be used
throughout the paper.

2.1 Boolean Formulas
Boolean (or propositional) formulas are defined, as standard,
over a set of propositional variables (or, simply, propositions)
Prop, by applying the Boolean connectives ∧ (and), ∨ (or)
and ¬ (not). Standard abbreviations are → (implies), true
(also denoted >) and false (also denoted ⊥). A proposition

1The proofs are omitted due to the sake of brevity. Please refer
to (https://arxiv.org/abs/2205.09201) for an extended version.

p ∈ Prop occurring in a formula is called an atom, a literal
is an atom or a negated atom ¬p, and a clause is a disjunc-
tion of literals. A Boolean formula is in Conjunctive Normal
Form (CNF), if it is a conjunction of clauses. The size of a
Boolean formula ϕ, denoted |ϕ|, is the number of connec-
tives occurring in ϕ. A Quantified Boolean Formula (QBF)
is a Boolean formula, all of whose variables are universally
or existentially quantified. A QBF formula is in Prenex Nor-
mal Form (PNF) if all quantifiers occur in the prefix of the
formula. True Quantified Boolean Formulas (TQBF) is the
language of all QBF formulas in PNF that evaluate to true.
TQBF is known to be PSPACE-complete.

2.2 LTLf Basics
Linear Temporal Logic over finite traces (LTLf ) is an exten-
sion of propositional logic to describe temporal properties
on finite (unbounded) traces [De Giacomo and Vardi, 2013].
LTLf has the same syntax as LTL, one of the most popular log-
ics for temporal properties on infinite traces [Pnueli, 1977].
Given a set of propositions Prop, the formulas of LTLf are
generated by the following grammar:

ϕ ::= p | (ϕ1 ∧ ϕ2) | (¬ϕ) | (◦ϕ) | (ϕ1 U ϕ2)

where p ∈ Prop, ◦ is the next temporal operator and U is
the until temporal operator, both are common in LTLf . We
use common abbreviations for eventually ♦ϕ ≡ true U ϕ and
always as �ϕ ≡ ¬♦¬ϕ.

A word over Prop is a sequence π = π0π1 · · · , s.t. πi ⊆
2Prop , for i ≥ 0. Intuitively, πi is interpreted as the set
of propositions that are true at instant i. In this paper we
deal only with finite, nonempty words, i.e., π = π0 · · ·πn ∈
(2Prop)+. last(π) denotes the last instant (index) of π.

Given a finite word π and an LTLf formula ϕ, we in-
ductively define when ϕ is true on π at instant i ∈
{0, . . . , last(π)}, written π, i |= ϕ, as follows:

• π, i |= p iff p ∈ πi (for p ∈ Prop);

• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2;

• π, i |= ¬ϕ iff π, i 6|= ϕ;

• π, i |= ◦ϕ iff i < last(π) and π, i+ 1 |= ϕ;

• π, i |= �ϕ iff ∀j.i ≤ j ≤ last(π) and π, j |= ϕ;

• π, i |= ♦ϕ iff ∃j.i ≤ j ≤ last(π) and π, j |= ϕ;

• π, i |= ϕ1 U ϕ2 iff ∃j.i ≤ j ≤ last(π) and π, j |= ϕ2,
and ∀k.i ≤ k < j we have that π, k |= ϕ1.
In this paper, we make extensive use of �ϕ and ♦ϕ.

We say that π ∈ (2Prop)+ satisfies an LTLf formula ϕ, writ-
ten π |= ϕ, if π, 0 |= ϕ. For every LTLf formula ϕ de-
fined over Prop, we can construct a Deterministic Finite Au-
tomaton (DFA) Fϕ that accepts exactly the traces that sat-
isfy ϕ [De Giacomo and Vardi, 2013]. More specifically,
Fϕ = (2Prop , Q, q0, η, acc), where 2Prop is the alphabet of
the DFA,Q is the finite set of states, q0 ∈ Q is the initial state,
η : Q × 2Prop → Q is the transition function, and acc ⊆ Q
is a set of accepting states.
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2.3 Two-player Games
A (turn-based) two-player game models a game between two
players, Player 1 (P1) and Player 2 (P2), formalized as a
pair G = (A,W ), withA the game arena and W the winning
objective. The arena A = (U, V, u0, α, β) is essentially a
bipartite-graph, where:

• U is a finite set of P1 nodes;
• V is a finite set of P2 nodes;
• u0 ∈ U is the initial node;
• α ⊆ U × V is the transition relation of P1;
• β ⊆ V × U is the transition relation of P2.

Intuitively, a token initially in u0 is moved in turns from
nodes in U to nodes in V and vice-versa. P1 moves when
the token is in a node u ∈ U , by choosing a destination node
v ∈ V for the token, such that (u, v) ∈ α. P2 acts analo-
gously, when the token is in a node v ∈ V , by choosing a
node u ∈ U according to β. Thus, P1 and P2 alternate their
moves, with P1 playing first, until at some point, after P2
has moved, the game stops. As the token visits the nodes of
the arena, it defines a sequence of alternating U and V nodes
called play. If, when the game stops, the play meets W , then
P2 wins, otherwise P1 wins.

Formally, a play (of A) ρ = ρ0 · · · ρn ∈ (U ∪ V )+ is a
finite, nonempty sequence of nodes such that:

• ρ0 = u0;
• (ρi, ρi+1) ∈ α, for i even;
• (ρi, ρi+1) ∈ β, for i odd;
• n is even (which implies, by α and β, that ρn ∈ U).

Let PlaysA be the set of all plays of A and let last(ρ) = n
be the last position (index) of play ρ. ρ|U = ρ0ρ2 · · · ρn is
the projection of ρ on U . and ρ|V = ρ1ρ3 · · · ρn−1 is the
projection of ρ on V . The prefix of ρ ending at the i-th state
is denoted as ρi = ρ0 · · · ρi.

The winning objective W is a (compact) representation of
a set of plays, called winning plays. P2 wins if the game
produces a winning play, otherwise P1 wins. A strategy for
P2 is a function σ : V + → U , which returns a P1 node
u ∈ U , given a finite sequence of P2 nodes. A strategy σ is
said to be memory-less if, for every two sequences of nodes
w = w0 · · ·wn and w′ = w′0 · · ·w′m ∈ V +, whenever wn =
wm, it holds that σ(w) = σ(w′); in other words, the move
returned by σ is a function of the last node in the sequence. A
play ρ is compatible with a P2 strategy σ if ρi+1 = σ(ρi|V ),
for i = 0, . . . , last(ρ) − 1. A P2 strategy σ is winning in
G = (A,W ), if every play ρ compatible with σ is winning.

In this paper we consider two classes of games. The first
class is that of reachability games in which for a set g ⊆ U
of P1 nodes, W = Reach(g), where Reach(g) (reachability
objective) is the set of plays containing at least one node from
g. Formally Reach(g) = {ρ ∈ PlaysA | there exists k.0 ≤
k ≤ last(ρ) : ρk ∈ g}.

The second class is that of safety games, in which again
for a set g ⊆ U of P1 nodes, W = Safe(g), where
Safe(g) (safety objective) is the set of plays where all P1
nodes are from g. Formally, Safe(g) = {ρ ∈ PlaysA |

for all even k.0 ≤ k ≤ last(ρ) : ρk ∈ g}. Both reachabil-
ity and safety games can be solved in PTIME in the size of
G, and if there is a winning strategy for P2 in G then, and
only then, there is a winning memory-less strategy for P2 in
G [Martin, 1975].

3 Mimicking Behaviors in Separated Domains
The problem of mimicking behaviors involves two agents, A
and B, each operating in its own domain, DA and DB re-
spectively, and requires B to “correctly” mimic in DB , the
behavior (i.e., a trace) exhibited by A in DA. The notion of
“correct mimicking” is formalized by a mapping specifica-
tion, or simply mapping, which is an LTLf formula, specify-
ing when a behavior of A correctly maps into one of B. The
agents alternate their moves on their respective domains, with
A starting first, until one of the two decides to stop. Only one
agent A and B, designated as the stop agent, has the power to
stop the process, and can do so only after both A and B have
moved in the last turn. The mapping constraint is evaluated
only when the process has stopped.

The dynamic domains where agents operate are modeled
as labelled transition systems.
Definition 1 (Dynamic Domain). A dynamic domain over a
finite set Prop is a tuple D = (S, s0, δ, λ), s.t.:

• S is the finite set of domain states;

• s0 ∈ S is the initial domain state;

• δ ⊆ S × S is the transition relation;

• λ : S 7→ 2Prop is the state-labeling function.

With a slight abuse of notation, for every state s ∈ S, we
define the set of possible successors of s as δ(s) = {s′ |
(s, s′) ∈ δ}. D is deterministic in the sense that given s,
the agent operating in D can select the transition leading to
the next state s′ from those available in δ(s). Without loss
of generality, we assume that D is serial, i.e., δ(s) 6= ∅ for
every state s ∈ S. A finite trace of D is a sequence of states
τ = s0 · · · sn s.t. si+1 ∈ δ(si), for i = 0, . . . , n− 1. Infinite
traces are defined analogously, except that i = 0, . . . ,∞. By
|τ | we denote the length of τ , i.e., the (possibly infinite) num-
ber of states it contains. In the following, we simply use the
term trace for a finite trace, and explicitly specify when it is
infinite.

We next model the problem of mimicking behaviors by two
dynamic systems over disjoint sets of propositions, together
with an LTLf formula specifying the mapping, and the desig-
nation of the stop agent.
Definition 2. An instance of the Mimicking Behaviors
in Separated Domains (MBSD) problem is a tuple P =
(DA,DB ,Φ, Agstop), where:

• DA = (S, s0, δ
A, λA) is a dynamic domain over PropA;

• DB = (T, t0, δ
B , λB) is a dynamic domain over PropB ,

with PropA ∩ PropB = ∅;
• Φ is the mapping specification, i.e., an LTLf formula

over PropA ∪ PropB;

• Agstop ∈ {A,B} is the designated stop agent.
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Intuitively, a solution to the problem is a strategy for agent
B that allowsB to step-by-step map the observed behavior of
agent A into one of its behaviors, in such a way that the map-
ping specification is satisfied, according to the formalization
provided next.

Formally, a strategy for agent B is a function σ : (S)+ →
T which returns a state of DB , given a sequence of states of
DA. Observe that this notion is fully general and is defined
on all DA’s state sequences, even non-traces. Among such
strategies, we want to characterize those that allow B to sat-
isfy the mapping specification by executing actions only on
DB .

We say that a strategy σ is executable in P if:
• σ(s0) = t0;
• σ(τA) is defined on every trace τA of DA;
• for every trace τA = s0 · · · sn of DA, the sequence
τB = σ(s0)σ(s0s1) · · ·σ(s0s1 · · · sn) is a trace of DB

(of same length as that of τA).
When σ is executable, the trace τB as above is called the
trace induced by σ on τA, and denoted as σ̃(τA).

For two traces τA = s0 · · · sn and τB = t0 · · · tn of
DA and DB , respectively, we define their joint trace la-
bel, denoted λ(τA, τB) as the word over 2PropA∪PropB

s.t. λ(τA, τB) = (λA(s0) ∪ λB(t0)) · · · (λA(sn) ∪ λB(tn)).
In words, λ(τA, τB) is the word obtained by joining the la-
bels of the states of τA and τB at same positions.

We can now characterize solution strategies.
Definition 3. A strategy σ is a solution to an MBSD problem
instance P = (DA,DB ,Φ, Agstop), if σ is executable in P
and either:

1. Agstop = A and every trace τA of DA is
s.t. λ(τA, σ̃(τA)) |= Φ; or

2. Agstop = B and every infinite trace τA∞ of DA has a
finite prefix τA s.t. λ(τA, σ̃(τA)) |= Φ.

The definition requires that the strategy σ be executable in
P , i.e., that σ returns an executable move for B, whenever
A performs an executable move. Then, two cases are identi-
fied, which correspond to the possible designations of the stop
agent. In case 1, the stop agent is A. In this case, since A can
stop at any time point (unknown in advance by B), B must
be able to continuously (i.e., step-by-step) mimic A’s behav-
ior, otherwise A could stop at a point where B fails to mimic.
Case 2 is slightly different, as B can choose when to stop. In
this case, σ must prescribe a sequence of moves, in response
to A’s, such that Φ is eventually (as opposed to continuously)
satisfied, at which point B can stop the execution. Seen dif-
ferently, σ must prevent A from moving indefinitely, over an
infinite horizon (without B ever being able to mimic A).

4 Mimicking Behaviors with Point-wise
Mapping Specifications

In this section, we explore mimicking specifications that are
of point-wise nature. This setting requires thatB, while mim-
icking A, constantly satisfies certain conditions, which can
be regarded as invariants. Such a requirement is formally

captured by the following specification, where ϕi and ψi are
Boolean formulas over DA and DB , respectively:

ϕ =

k∧
i=1

�(ϕi → ψi).

We first provide an illustrative example that demonstrates
the use of point-wise mappings, then explore algorithmic and
complexity results.

4.1 Point-wise Mapping Specifications in the
Pac-Man World

In the popular game Pac-Man, the eponymous character
moves in a maze to eat all the candies. Four erratic ghosts,
Blinky, Pinky, Inky and Clyde, wander around, threatening
Pac-Man, which cannot touch them or looses (we neglect the
special candies with which Pac-Man can fight the ghosts).
The ghosts cannot eat the candies. In the real game, the maze
is continuous but, for simplicity, we consider a grid model
where cells are identified by two coordinates. Also, we imag-
ine a variant of the game where the ghosts can walk through
walls. Pac-Man wins the stage when it has eaten all the can-
dies. The ghosts end the game when this happens.

We model this scenario as an MBSD problem Q =
(G,P,Φ, A), with domains P(ac-Man, agentB) and G(hosts,
agent A). In P , states model Pac-Man’s and candies’s posi-
tion, while transitions model Pac-Man’s move actions. Pac-
Man cannot walk through walls. A candy disappears when
Pac-Man moves on it. Similarly, states of G model (all)
ghosts’ position, and transitions model ghosts’ movements
through cells. Each transition corresponds to a move of all
ghosts at once. G does not model candies or walls, as they do
not affect nor are affected by ghosts.

Assuming an N × N grid with some cells occupied by
walls, domain P = (S, s0, δ

p, λp) is as follows, where C is
the set of cells (x, y) not containing a wall:

• for every (x, y) ∈ C, introduce the Boolean propositions
px,y (Pac-Man at (x, y)) and cx,y (candy at (x, y)), and
let Propp be the set of all such propositions;

• S ⊆ 2(Propp) is the set of all interpretations over Propp

(represented as subsets of Propp), such that:
– every s ∈ S contains exactly one proposition px,y

(Pac-Man occupies exactly one cell);
– for every s ∈ S, if px,y ∈ s then cx,y /∈ s (if Pac-

Man is in (x, y) the cell contains no candy);
• let s0 = {p0,0} ∪ {cx,y | (x, y) ∈ C \ (0, 0)} (Pac-

Man in (0, 0); cells without Pac-Man or walls contain a
candy);

• δp is such that (s, s′) ∈ δp iff, for all (x, y) ∈ C:
– if px,y ∈ s then px′,y′ ∈ s′, with (x, y) ∈
{(x, y), (x, y+1), (x, y−1), (x+1, y), (x−1, y))}
(Pac-Man moves at most by one cell, either hori-
zontally or diagonally);

– if cx,y ∈ s and px,y /∈ s′ then cx,y ∈ s′ (all candies
available in s remain so if not eaten by Pac-Man).

• λp(s) = s.
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Domain G = (T, t0, δ
g, λg) is defined in a similar

way (we omit the formal details): we use propositions
bkx,y, pkx,y, ikx,y, cdx,y for Blinky, Pinky, Inky and Clyde’s
position, respectively; T is the set of interpretations where
each ghost occupies exactly one cell (possibly containing a
wall; many ghosts may be in the same cell); the ghosts start
at (N/2, N/2) (t0); δg models a 1-cell horizontal or diagonal
move for all ghosts at once; λg is the identity.

Pac-Man’s primary goal (besides eating all candies) is to
stay alive, which we formalize with the following point-wise
mapping:

Φ =
∧

(x,y)∈C

�((bkx,y ∨ pkx,y ∨ ikx,y ∨ clx,y)→ ¬px,y).

Any strategy σ that is a solution to Q = (G,P,Φ, B) keeps
Pac-Man alive. To enforce Φ, Pac-Man needs a strategy that
prevents ending up in a cell where a ghost is. Notice that, to
compute σ, one cannot proceed greedily by considering only
one step at a time, but must plan over all future evolutions,
to guarantee that Pac-Man does not eventually get trapped.
With such σ, no matter when the ghosts end the game, Pac-
Man will never lose (and, in fact, it will win, if the ghosts stop
when all candies on the maze have been eaten).

4.2 Solving MBSD with Point-wise Mapping
Specifications

We show how to solve an MBSD instance P by reduction
to the problem of finding a winning strategy in a two-player
game, for which algorithms are well known [Martin, 1975].
Specifically, we construct a two-player game GP = (A,W )
that has a winning strategy iff P has a solution.

Given an MBSD instance P = (DA,DB ,Φ, Agstop), with
DA = (S, s0, δ

A, λA) and DB = (T, t0, δ
B , λB), we con-

struct the game arena A = (U, V, u0, α, β), where:
• U = S × T ;
• V = S × T ;
• u0 = (s0, t0);
• α = {(s, t), (s′, t) | (s, s′) ∈ δA};
• β = {(s, t), (s, t′) | (t, t′) ∈ δB}.

Intuitively, the nodes ofA represent joint state configurations
of bothDA andDB (initially in their respective initial states),
while the transition functions account for the moves A (mod-
eled by P1) and B (modeled by P2) can perform, imposing,
at the same time, their strict alternation.

As for the winning objective W , the key idea is that, since
in point-wise mappings the temporal operator � (always) dis-
tributes over conjunction, and since Agstop = A, the con-
juncts of the mapping are in fact propositional formulae to be
guaranteed all along the agent behaviors, captured by plays
ofA. This can be easily expressed as a safety objective onA,
as shown below.

Let Φ =
∧k

i=1 �(ϕi → ψi) be the (point-wise) map-
ping specification. We have that Φ ≡ �Φ′, where Φ′ ≡∧k

i=1(ϕi → ψi) is a Boolean formula where every ϕi is
over PropA only and every ψi over PropB only. There-
fore, in order to solve P , we need to find a strategy σ such

that for every trace τA of DA, λ(τA, σ̃(τA)) |= �Φ′, that is,
λA(sj) ∪ λB(tj) |= Φ′ for j = 0, . . . , |τA|. Thus we can set
W = Safe(g), with g = {(s, t) ∈ U | λA(s)∪ λB(t) |= Φ′}.

As a consequence of the above construction, we obtain the
following result.

Lemma 1. There is a solution to P if and only if there is a
solution to the safety game GP .

Finally, the construction of the safety game GP together
with Lemma 1 gives us the following result.

Theorem 1. Solving MBSD for point-wise mapping specifi-
cations is in PTIME for combined complexity, mapping com-
plexity and domain complexity.

Observe that if DA and DB are represented com-
pactly (logarithmically) using, e.g., logical formulas or
PDDL specifications [Haslum et al., 2019], then the domain
(and hence the combined) complexity becomes EXPTIME,
and mapping complexity remains PTIME. Similar considera-
tions hold also for the other cases that we analyze throughout
the paper.

5 Mimicking Behaviors with Target Mapping
Specifications

We now explore mimicking specifications that are of target
nature. In this setting, B has to mimic A in such a way that
whenever A reaches a certain target, so does B, although not
necessarily at the same time step: B is free to reach the re-
quired target at the same time, later, or even before A does.
For this to be possible, B must have the power to stop the
game, which is what we assume here. Formally, target map-
ping specifications are formulas of the following form, where
ϕi and ψi are Boolean properties over DA and DB , respec-
tively:

ϕ =

k∧
i=1

(♦ϕi)→ (♦ψi)

As before, we first give an illustrative example that demon-
strates the use of target mappings, then we explore algorith-
mic and complexity results.

5.1 Target Mapping Specifications in Rubik’s
Cube

Two agents, teacher H and learner L are provided with two
Rubik’s cubes of different sizes: H has edge of size 4 whereas
L has one of size 3. Lwants to learn fromH the main steps to
solve the cube; to this end, H shows L how to reach certain
milestone configurations on the cube of size 4 and asks L
to replicate them on the cube of size 3, even in a different
order. Milestones are simply combinations of solved faces,
e.g., red and green, white and blue and yellow, or simply
white. Obviously, L cannot blindly replicate H’s moves, as
the cubes are of different sizes and the actual sequences to
solve the faces are different; thus, Lmust find its way to reach
the same milestones asH , possibly in a different order. When
L is tired, it can stop the learning process.

We model this scenario as an MBSD problem instance
R = (H,L,Φ, B), where H and L model, respectively, H’s
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and L’s dynamic domain, i.e., the two cubes. The two do-
mains are conceptually analogous but, modeling cubes of dif-
ferent sizes, they feature different sets of states and transi-
tions, which correspond to cube configurations and possible
moves, respectively. We model such domains parametrically
w.r.t. the size E of the edge.

Fix the cube in some position, name the faces as U (p),
D(own), L(eft), R(ight), F (ront), B(ack), let Fac =
{U,D,L,R, F,B}, and associate a pair of integer coordi-
nates to each position in a face, so that every position is iden-
tified by a triple (f, x, y) ∈ Pos = Fac × {0, . . . , E −
1}2. To model the color assigned to tile (f, x, y), we
use propositions of the form cf,x,y, with c ∈ Col =
{white, green, red, yellow, blue, orange}. Let Prop be the
set of all such propositions. Finally, index the horizontal and
vertical “slices” of the cube from 0 to E − 1.

The (parametric) dynamic domain for a Rubik’s cube with
edge of size E is the domain D(E) = (S, s0, δ, λ), where:

• S ⊆ 2PropE

is the set of all admissible (i.e., reachable)
cube’s configurations; among other constraints, omitted
for brevity, this requires that, for every s ∈ S:

– for every (f, x, y) ∈ Pos, there exists exactly one
c ∈ C such that cf,x,y ∈ s (every position has ex-
actly one color);

• s0 is an arbitrary state from S;
• δ allows a transition from s to s′ iff s′ models a configu-

ration reachable from s by a 90◦ (clockwise or counter-
clockwise) rotation of one of its 2 ∗ E slices;

• λ(s) = s.
We then define H = D(4) and L = D(3). To distinguish

the elements of H from those of L, we use a primed version
in the latter, e.g., Pos′ for positions, c′f,x,y for propositions,
and so on.

As said, L’s goal is to replicate the milestones shown by
H . For every face f ∈ Fac, we define formula Cf =∧

(f,x,y)∈Pos cf,x,y to express that the tiles of face f have all
the same color c. For L, we correspondingly have C ′f =∧

(f,x,y)∈Pos′ c
′
f,x,y.

We report below an example of target mappings:

(♦blueR)→ (♦blue′R)
(♦(redU ∧ whiteL))→ (♦(red′U ∧ white′L))
(♦(redU ∧ ¬whiteL))→ (♦(red′U ∧ ¬white′L)).

Observe that L has many ways to fulfill H’s requests: for
instance, by reaching a configuration where blue′R ∧ red′U ∧
white′L holds, it has fulfilled the first and the second request,
even if the configuration was reached before H showed the
milestones. Obviously, however, the last request cannot be
fulfilled at the same time as the second one, aswhite′L clearly
excludes ¬white′L, thus an additional effort by L is required
to satisfy the specification.

5.2 Solving MBSD with Target Mapping
Specifications

For target mappings as well, we reduce MBSD to strategy
synthesis for a two-player game. To this end, assume an

MBSD instance P = (DA,DB ,Φ, B) with mapping speci-
fication Φ =

∧k
i=1(♦ϕi)→ (♦ψi). To solve P , we must find

a strategy σ such that for every infinite trace τA∞ = s0s1 · · ·
of DA and every conjunct (♦ϕi) → (♦ψi) of Φ, if there ex-
ists an index ji such that λA(sji) |= ϕi, then there exist a
finite prefix τA = s0 · · · sn of τA∞ and an index li such that,
for σ(τ) = t0 · · · tn, we have that λB(tli) |= ψi (recall ϕi

and ψi are Boolean formulae over PropA only and PropB

only, respectively). As per Definition 3, this is equivalent to
requiring that λ(τA, σ̃(τA)) |= (♦ϕi)→ (♦ψi).

The challenge in constructing σ is that the index li may
be equal, smaller or larger then ji. Thus σ needs to record
which ϕi or ψi were already met during the trace, up to the
current point. Since the number of possible traces to the cur-
rent state may be exponential, keeping count of all possible
options may be expensive. We first discuss general domain
structure, then in Section 5.2 we explore a very specific tree-
like structure.

For general domains, there may exist many traces ending
in a given state, and each such trace contains states that sat-
isfy, in general, different sub-formulas ϕi and ψi occurring
in the mappings. Thus satisfaction of sub-formulas cannot be
associated to states as done before, but must be associated to
traces. In fact, to check whether a target mapping is satisfied,
it is enough to remember, for every i = 1, . . . , k, whether
A has satisfied ϕi and/or B has satisfied ψi, along a trace.
This observation suggests to introduce a form of memory to
record satisfaction of sub-formulas along traces. We do so
by augmenting the game arena constructed in Section 4. In
particular, we extend each node in the arena with an array of
bits of size 2k to keep track of which sub-formulas ϕi and ψi

were satisfied, along the play that led to the node, by some of
the domain states contained in the nodes of the play.

Formally, let M = ({0, 1}2)k and let [cd] =
((c1, d1), . . . , (ck, dk)) denote the generic element of M .
Given an MBSD instance P = (DA,DB ,Φ, B), where
DA = (S, s0, δ

A, λA) and DB = (T, t0, δ
B , λB), we define

the game arena A = (U, V, u0, α, β) as follows:
• U = S × T ×M ;
• V = S × T ×M ;
• u0 = (s0, t0, [cd]) such that, for every i ≤ k, ci = 1 iff
λA(s0) |= φi and di = 1 iff λB(t0) |= ψi;

• ((s, t, [cd]), (s′, t, [c′d])) ∈ α iff (s, s′) ∈ δA, and for
i = 1, . . . , k, if λA(s′) |= φi then c′i = 1, otherwise
c′i = ci;

• ((s, t, [cd]), (s, t′, [cd′])) ∈ β iff (t, t′) ∈ δB , and for
i = 1, . . . , k, if λB(t′) |= ψi then d′i = 1, otherwise
d′i = di.

We then define the game structure GP = (A,W ),
where W = Reach(g), with g = {u ∈ U | u =
(s, t, [cd]), where [cd] is s.t. ci = 0 or di = 1, for every i =
1, . . . , k}. Intuitively, g is the set of all nodes reached by a
play such that if φi is satisfied in the play (by a state of DA

in some node of the play), then so is ψi, for i = 1, . . . , k (by
a state of DB in some node of the play). Thus, if a play con-
tains a node from g then the corresponding traces of DA and
DB , combined, satisfy all the mapping’s conjuncts.
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As a consequence of this construction, we obtain the fol-
lowing result.
Lemma 2. There is a solution to P if and only if there is a
winning strategy for the reachability game GP .

Then, Lemma 2 gives us the following.
Theorem 2. MBSD with target mapping specifications can
be solved in time polynomial in |DA×DB |×|Φ|×4k, with Φ
the mapping specification and k the number of its conjuncts.

An immediate consequence of Theorem 2 is that, for map-
pings of fixed size, the domain-complexity of the problem is
in PTIME. For combined complexity, note that the memory-
keeping approach adopted in GP is of a monotonic nature,
i.e., once set, the bits corresponding to the satisfaction of ψi

and φi cannot be unset. We use this insight to tighten our re-
sult and show that the presented construction can be in fact
carried out in PSPACE.
Theorem 3. MBSD for target mapping specifications is in
PSPACE for combined complexity and mapping complexity,
and in PTIME for domain complexity.

We continue our analysis of the case of MBSD target map-
ping specifications by exploring whether memory-keeping
is avoidable and a more effective solution approach can be
found. As the following result implies, this is, most likely,
not the case.
Theorem 4. MBSD for target mapping specifications is
PSPACE-hard in combined complexity (even for DA, DB as
simple DAGs).

MBSD for Tree-like Domains
We conclude this section by discussing a very specific tree-
like domain structure. We say that a dynamic domain D =
(S, s0, δ, λ) is tree-like if the transition relation δ induces a
tree structure on the states, except for some states which may
admit self-loops as their only outgoing transition (therefore
such states would be leaves, if self-loops were not present).
For this class of domains, the exponential blowup on the num-
ber of traces does not occur, as for every state s there exists
only a unique trace ending in s (modulo a possible suffix due
to self-loops).
Theorem 5. Solving MBSD for target mapping specifications
and tree-likeDA andDB is in PTIME for combined complex-
ity, domain complexity, and mapping complexity.

As before, the combined and domain complexities are EX-
PTIME, for DA and DB described succinctly.

6 Solving MBSD with General Mapping
Specifications

The final variant of mapping specifications that we study is
of the most general form, where Φ can be any arbitrary LTLf

formula over PropA ∪ PropB . For this, we exploit the fact
that for every LTLf formula Φ, there exists a DFA FΦ that
accepts exactly the traces that satisfy Φ [De Giacomo and
Vardi, 2013]. Depending on which agent stops, the problem
specializes into one of the following:

• if A stops: find a strategy for B such that every trace
always visits an accepting state of FΦ;

• if B stops: find a strategy for B such that every trace
eventually reaches an accepting state of FΦ.

To solve this variant, we again reduce MBSD to a two-
player game structure GP = (A,W ), as in our previous con-
structions, then solve a safety game, if A stops, and a reach-
ability game, if B stops. To follow the mapping as the game
proceeds, we incorporate FΦ into the arena. This requires a
careful synchronization, as the propositional labels associated
with the states of dynamic domains affect the transitions of
the automaton.

Formally, given an MBSD instance P =
(DA,DB ,Φ, Agstop), where DA = (S, s0, δ

A, λA)
and DB = (T, t0, δ

A, λA), we construct the DFA
FΦ = (Σ, Q, q0, η, acc) as in [De Giacomo and Vardi,
2013], where Σ = 2PropA∪PropB

is the input alphabet.
Then, we define a two-player game arena A =

(U, V, u0, α, β) as follows:

• U = S × T ×Q;

• V = S × T ×Q;

• u0 = (s0, t0, q
′
0), where q′0 = η(q0, λ(s0) ∪ λ(t0));

• α ={(s, t, q), (s′, t, q) | (s, s′) ∈ δA};

• β ={(s, t, q), (s, t′, q′) | (t, t′) ∈ δB and

η(q, λ(s) ∪ λ(t′)) = q′}.

Intuitively,Amodels the synchronous product of the arena
defined in Section 4, with the DFA FΦ. As such, the DFA
first needs to make a transition from its own initial state q0

to read the labelling information of both initial states s0 and
t0 of DA and DB , respectively. This is already accounted for
by q′0, in the initial state u0 of the arena. At every step, from
current node u = (s, t, q), P1 first chooses the next state s′
of DA, then P2 chooses a state t′ of DB , both according to
their transition relation, and finally FΦ progresses, according
to its transition function η and by reading the labeling of s′
and t′, from q to q′ = η(q, λA(s′) ∪ λB(t′)).

For the winning objective W , define the set of goal nodes
g = {u ∈ U | u = (s, t, q) such that q ∈ acc}. That is, g
consists of the nodes in the arena where FΦ is in an accepting
state. Then, we define W = Safe(g) (to play a safety game),
if Agstop = A, and W = Reach(g) (to play a reachability
game), if Agstop = B.

The following theorem states the correctness of the con-
struction.

Theorem 6. There is a solution to P if and only if there a
solution to GP .

Clearly, the constructed winning strategy σ from the re-
duced game GP is a solution to P .

Finally, we obtain the following complexity result for the
problem in its most general form.

Theorem 7. Solving MBSD for general mapping specifica-
tions can be done in 2EXPTIME in combined complexity and
mapping complexity, and in PTIME in domain complexity.
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7 Related Work
Linear Temporal Logic on finite traces (LTLf ) [De Giacomo
and Vardi, 2013] has been widely adopted in different ar-
eas of CS and AI, as a convenient way to specify finite-trace
properties, due to the way it finely balances expressive power
and reasoning complexity. It has been used, e.g., in Ma-
chine Learning to encode a-priori knowledge [Camacho et
al., 2019; De Giacomo et al., 2019; Xie et al., 2021]; in
strategy synthesis to specify desired agent tasks [De Giacomo
and Vardi, 2015; Zhu et al., 2017; Camacho et al., 2018]; in
Business Process Management (BPM) as a specification lan-
guage for process execution monitoring [Pesic et al., 2007;
De Giacomo et al., 2014; Di Ciccio et al., 2017]. It has also
found application as a natural way to capture non-Markovian
rewards in Markov Decision Processes (MDPs) [Brafman et
al., 2018], MDPs policy synthesis [Wells et al., 2020], and
non-Markovian planning and decision problems [Brafman
and De Giacomo, 2019]. Here we show yet another use of
LTLf . We use it to relate the behaviors in two separated
domains through mapping specifications so as to control the
mimicking between the two domains.

Mimicking has been recently studied in Formal Meth-
ods [Amram et al., 2021]. In [Amram et al., 2021], the
notion of mimicking is specified in separated GR(k) formu-
las, a strict fragment of LTL. This makes the setting there
not suitable for specifying mimicking behaviors of intelligent
agents, since an intelligent agent will not keep acting indef-
initely long, but only for a finite (but unbounded) number of
steps. Moreover, the distinctions between the two systems
and the mimicking specification were not singled out. This
makes it difficult to provide a precise computational complex-
ity analysis with respect to the systems, and the mimicking
specification, separately.

A strictly related work, though more specific, is Automatic
Behavior Composition [De Giacomo et al., 2013], where a set
of available behaviors must be orchestrated in order to mimic
a desired, unavailable, target behavior. That work deals with
a specific mapping specification over actions, corresponding
to the formal notion of simulation [Milner, 1971]. This cur-
rent work devises a more general framework and a solution
approach for a wider spectrum of mapping specifications, in
a finite-trace framework.

Finally, we want to notice that our framework is simi-
lar to what studied in data integration and data exchange
[Lenzerini, 2002; Fagin et al., 2005; Giacomo et al., 2007;
Kolaitis, 2018], where there are source databases, target
databases, and mapping between them that relate the data in
one with the data in the other. While similar concepts can
certainly be found in our framework, here we do not consider
data but dynamic behaviors, an aspect which makes the tech-
nical development very different.

8 Conclusion and Discussion
We have studied the problem of mimicking behaviors in sep-
arated domains, in a finite-trace setting where the notion of
mimicking is captured by LTLf mapping specifications. The
problem consists in finding a strategy that allows an agent
B to mimic the behavior of another agent A. We have de-

vised an approach for the general formulation, based on a re-
duction to suitable two-player games, and have derived cor-
responding complexity results. We have also identified two
specializations of the problem, based on the form of their
mappings, which show simpler approaches and better com-
putational properties. For these, we have also provided illus-
trative examples.

A question that naturally arises, for which we have no con-
clusive answer yet, is to what extent domain separation and
possibly separated types of conditions can be exploited to
obtain complexity improvements in general, not only on the
problems analyzed here. In this respect, we take the following
few points for discussion.

We first note that the framework in [Amram et al.,
2021] can be adapted to an infinite-trace variant of MBSD,
with target mapping specifications of the form Φ =∧k

l=1(
∧nl

i=1 �♦(ϕl,i) →
∧ml

j=1 �♦(ψl,j)). The results
in [Amram et al., 2021], which build heavily on domain
separation, can be tailored to obtain a polynomial-time al-
gorithm for (explicit) separated domains in combined com-
plexity. In contrast, Theorem 4 in this paper shows that the
finite variant is PSPACE-hard already for much simpler map-
pings. This gap seems to suggest that domain separation
cannot prevent the book-keeping that is possibly mandatory
for the finite case. Note however that Theorem 2 of this
paper can be easily extended to specifications of the form
Φ′ =

∧k
l=1(

∧nl

i=1 ♦(ϕl,i) →
∧ml

j=1 ♦(ψl,j)), yielding an al-
gorithm of time polynomial in the domain size but exponen-
tial in the number of Boolean subformulas in Φ′.

A second point of observation is the following. While the
result in Section 6 provides an upper bound for mappings ex-
pressed as general LTLf formulas, one can consider a more
relaxed form Φ =

∧
i≤k(φi → ψi) where each φi (resp. ψi)

is an LTLf formulas over PropA (resp. PropB) only. While
still PSPACE-hard (see Theorem 4), it is tempting to use some
form of memory keeping as done in Theorem 2 to avoid the
2EXPTIME complexity. The challenge, however, is that ev-
ery attempt to monitor satisfaction for even a single LTLf sub-
formula, whether φi or ψi, seems to require an LTLf to DFA
construction that already yields the 2EXPTIME cost. An-
other approach could be to construct a DFA separately for
each LTLf sub-formula, then combine them along with the
product of the domains and continue as in Section 6. This
however involves a game with a state space to explore that is
the (non-minimized) product of the respective DFAs, and is
typically much larger than the (minimized) DFA constructed
directly from Φ (as observed in [Tabajara and Vardi, 2019;
Zhu et al., 2021]). Moreover, in practice, state-of-the-art
tools for translating LTLf to DFAs [Bansal et al., 2020;
De Giacomo and Favorito, 2021] tend to take maximal advan-
tage of automata minimization. How to avoid the DFA con-
struction in such separated mappings to gain computational
complexity advantage is yet to be explored.
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