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Abstract

The goal of generalized planning is to find a solu-
tion that works for all tasks of a specific planning
domain. Ideally, this solution is also efficient (i.e.,
polynomial) in all tasks. One possible approach is
to learn such a solution from training examples and
then prove that this generalizes for any given task.
However, such proofs are usually pen-and-paper
proofs written by a human. In our paper, we aim
at automating these proofs so we can use a theorem
prover to show that a solution generalizes for any
task. Furthermore, we want to prove that this gen-
eralization works while still preserving efficiency.
Our focus is on generalized potential heuristics en-
coding tiered measures of progress, which can be
proven to lead to a find in a polynomial number of
steps in all tasks of a domain. We show our ongoing
work in this direction using the interactive theorem
prover Isabelle/HOL. We illustrate the key aspects
of our implementation using the Miconic domain
and then discuss possible obstacles and challenges
to fully automating this pipeline.

1 Introduction
Generalized planning is the problem of finding a solution that
solves all tasks in a planning domain. Due to the PSPACE-
completeness of classical STRIPS planning the performance
of such solutions is usually unpredictable. However, for some
domains polynomial solvers exist and can be synthesized au-
tomatically [e.g., Francès et al. 2019a]. This is particularly
interesting for situations where a given domain can be ana-
lyzed for some time before tasks of that domain have to be
solved but time for solving the tasks is limited. For exam-
ple, in space applications, domains can be analyzed on the
ground before a mission, while calling a planner with poten-
tially exponential running time during a mission is not fea-
sible. Most methods to synthesize polynomial solvers are
based on a supervised learning approach [Yoon et al., 2006;
Arfaee et al., 2011; Francès et al., 2019a; Shen et al., 2020],
where the solver is learned from example tasks in the do-
main. The performance guarantee then relies on the fact that
the learned solver generalizes to the whole domain. So far,

the proofs for this generalization have been manual pen-and-
paper proofs. This has two problems. Firstly, the manual
proof can be cumbersome and detailed, especially given that
it might depend on all the action schemata in the given do-
main. Secondly, due to the cumbersomeness of these man-
ual proofs, they are error-prone, which might not suffice for
resource-restrained applications, especially when such appli-
cations are safety-critical.

In this paper, we work towards a system where such proofs
are machine-checked, as well as largely automated. Towards
that end, we employ an interactive theorem prover. Interac-
tive theorem provers involve a human in the process of me-
chanically proving a statement. The human provides high-
level proof steps and the theorem prover tries to fill in the
missing steps automatically. This ability to automate cumber-
some proof steps and to check the correctness of the whole
proof made interactive provers an obvious choice for many
applications, where proofs are cumbersome and error-prone,
and especially when the underlying proof obligation is un-
decidable. A notable example is program verification, where
interactive theorem provers are the most successful method to
verify large scale pieces of software, e.g. an operating system
kernel [Klein et al., 2009], a verified compiler for C [Leroy,
2009], and an LTL model checker [Esparza et al., 2013].

Here we present our work-in-progress on a framework
to mechanize proofs of performance guarantees for gener-
alized planning heuristics. In particular, we focus on gen-
eralized potential heuristics [Francès et al., 2019a], which
are weighted sums of state features. In contrast to potential
heuristics in classical planning [Pommerening et al., 2014],
features are defined with a description logic and can be eval-
uated in all tasks of a domain. Francès et al. prove that sev-
eral learned generalized potential heuristics (for different do-
mains) lead to a backtrack-free search in any possible task of
the domain where the heuristic value decreases by at least 1
in every step. Together with upper and lower bounds on the
heuristic value, this ensures a polynomial search effort. How-
ever, all these proofs were done manually by the authors. This
is clearly not an ideal scenario, as the ultimate goal of gener-
alized planning is to come up with such heuristics and their
performance guarantees without input or help from a user.

The framework we work on uses the interactive theorem
prover Isabelle/HOL [Nipkow et al., 2002] to formally verify
these manual proofs. We develop a framework for interactive



reasoning about annotated PDDL domains. Such annotations
include (i) domain assumptions, i.e. properties that should
hold for all instances of the domain, (ii) domain invariants,
which are properties that follow from the action descriptions
and domain assumptions for every reachable state in every in-
stance of the domain, and (iii) generalized heuristics, which
we prove to be descending. Given such an annotated domain,
this framework is capable of parsing the domain, automati-
cally proving many properties about it, and leaving only the
core proof tasks for the user to be proven interactively. Not all
parts of the framework that could be automated are automated
yet and it is currently limited to generalized potential heuris-
tics that form tiered measures of progress [Parmar, 2002]. As
a proof of concept, we interactively completed the relevant
proofs for the domain Miconic and were able to prove that
the generalized heuristic computed for it using the method of
Francès et al. indeed has the reported performance guarantee.

Together with a way to create hypothesis heuristics such as
the one by Francès et al., our framework could be developed
into a tool to find solutions to a generalized planning task that
come with a formally verified performance guarantee.

2 Running Example: Miconic
Throughout the paper, we use the Miconic domain [Koehler
and Schuster, 2000] as an example. In this domain, passen-
gers start at different floors of a building and each passenger
has one specific destination floor. The goal is to find a plan
where an elevator brings each passenger to its destination.

Miconic can be seen as a logistics problem where a vehicle
(the elevator) needs to transport items (passengers) to their
desired destination. Francès et al. [2019a] showed that it is
possible to synthesize a compact planner for this domain.

3 Generalized Planning
We consider STRIPS planning tasks with negation repre-
sented in PDDL [McDermott et al., 1998; Haslum et al.,
2019]. A PDDL planning task is encoded using a first-order
vocabulary and can compactly represent a state space.

The first-order vocabulary of a task defines a domain. A
domain is a tuple Σ = 〈P, C,A,X〉, where P is a set of
predicate symbols, C is a set of constants (i.e., nullary func-
tions), A is a set of PDDL action schemas, and X is a set of
first-order logic formulas, called domain assumptions, which
we will discuss later. A lifted atom is a first-order atom
P (x1, . . . , xn) where P ∈ P and all xi are either variables
or objects from C. A lifted literal is either a lifted atom or its
negation. A PDDL action schema a ∈ A is represented with a
precondition pre(a) and a set of add effects add(a), and a set
of delete effects del(a), where pre(a) is a set of lifted literals
and both add(a) and del(a) are sets of lifted atoms.

A planning task Π in a domain Σ is a tuple 〈O, I,G〉,
where O is a set of objects, I is the initial state, and G is
the goal condition. A predicate symbol P ∈ P applied to
constants in C ∪ O is a (ground) atom and a subset of atoms
is a state with the interpretation that all atoms in the state are
true, while all others are false. The initial state I is a state,
while G is a set of atoms with the interpretation that our aim is
to make all atoms in G true. Any state s where G ⊆ s is a goal

state. The set of domain assumptions X contains first-order
formulas over I and G that restrict which instances we con-
sider part of the domain. Without such restrictions planning
tasks could have initial states that do not model a real-world
situation (e.g., floor 1 having boarded the elevator) or goals
that should not be part of the domain (e.g., in Miconic, the
goal always is to bring all passengers to their destination).

Action schemas a ∈ A can be grounded by consistently re-
placing the variables in pre(a), add(a), and del(a) with con-
stants from C ∪ O. If every atom in the precondition of a
ground action is true in a state, we say the action is appli-
cable. If an action a is applicable in a state s then applying
it leads to the successor state s[a] = (s \ del(a)) ∪ add(a).
The set of successor states of a state s is succ(s) = {s[a] |
a is applicable in s}.
Example 1. In the Miconic domain, the set P has the fol-
lowing predicates: origin(p, f), indicating that passenger p
starts at floor f ; destin(p, f), indicating that passenger p’s
destination is floor f ; boarded(p), indicating that passenger
p has boarded into the elevator; served(p), indicating that
passenger p has reached their destination; lift-at(f) indicat-
ing that the elevator is in floor f ; floor(f) and passenger(p)
indicating the types of f and p; and above(f1, f2), indicating
the order of floors. The set C is empty for this domain and all
constants are defined by the set of objectsO of each instance.

There are four action schemas in the domain: move the
elevator up or down; letting a passenger board at their origin
or letting them depart at their destination.

The domain assumptions X restrict the instances we con-
sider as part of the domain. For example, one assumption
states that the goal consists of serving passengers:

∀a ∈ G.∃p.(a = served(p) ∧ passenger(p) ∈ I).

Other examples would be the assumptions that initially the lift
is at exactly one floor, and that every person has exactly one
origin and one destination floor. Note that these assumptions
are consistent with the original Miconic instances [Koehler
and Schuster, 2000].

Generalized planning is the problem of finding solutions
that work for any given task of a fixed domain [Jiménez et
al., 2019]. In other words, given a fixed domain Σ, we want
to solve any possible task Π of Σ.

4 Generalized Potential Heuristics
A heuristic is a function h mapping states to R0. A gen-
eralized heuristic is a function defined over all states of all
possible tasks of a given domain. We use some terminology
by Seipp et al. [2016] to characterize heuristics: a state is
alive if it is not a goal state, reachable from the initial state,
and a goal state is reachable from it. A heuristic h is de-
scending on a state s if s has at least one successor s′ where
h(s′) ≤ h(s) − 1, and it is dead-end avoiding on a state s
if for every unsolvable state in s′ ∈ succ(s) h(s) < h(s′).
A heuristic is descending and dead-end avoiding (DDA) if
it is descending and dead-end avoiding on every alive state.
Heuristics with this property guide standard greedy algo-
rithms directly to a goal and are desirable in satisficing plan-
ning [Helmert et al., 2022].



Francès et al. [2019a] introduce the concept of generalized
potential heuristics, which are weighted sums over features
mapping states to integers. We limit both weight functions
and features to natural numbers. Natural numbers are suffi-
cient for tiered measures of progress but if we want to cover
more arguments with our system in the future, we would have
to extend this to integers.

Definition 1 (Generalized Potential Heuristics). Let S be a
set of states, F be a set of features f : S → N, and w : F →
N be a weight function. The value of the generalized potential
heuristic with features F and weights w on a state s ∈ S is

h(s) =
∑
f∈F

w(f) · f(s).

In our work, we are interested exclusively in cardinality
features over description logic (DL) concepts and roles. We
do not yet cover distance features that were used by Francès
et al. [2019a] but support for them could be added in the
future. We use the SOI language with equality role-value-
maps [Baader et al., 2003]. This language can be defined with
the following production rules:

C :=> | ⊥ | AC | {a1, . . . , an} |
(¬C) | (C t C) | (C u C) |
(∃R.C) | (∀R.C) | (R = R),

where AC is a set of named concepts, forming the basis of the
inductive definition, and a1, . . . , an are nominals. Similarly,
roles are defined as follows

R := AR | (R−1) | (R ◦R) | (R+),

where AR is a set of named roles. Due to space limitation,
we point the reader to Francès et al. [2019a] and Baader
et al. [2003] for detailed explanations on the semantics of
each constructor above. Intuitively, in a state s a named
concept AC like boarded evaluates to the set of objects o,
where boarded(o) ∈ s. The concepts > and ⊥, {a1, . . . , an}
evaluate to the set of all, no, or the explicitly listed objects.
The concepts ¬C, C1 t C2 and C1 u C2 have their intuitive
interpretation using set complement, union and intersection.
Roles evaluate to relations over objects, for example named
roles AR like origin evaluate to the set of tuples (p, f) where
origin(p, f) ∈ s. The roles R−1, R1 ◦ R2 and R+ evaluate
to the inverse relation, relational composition and transitive
closure of the recursive evaluations. The more complex con-
cept ∃R.C evaluates to the set of all objects x such that there
is an object y such that (x, y) is in the evaluation of R and y
is in the evaluation of fC. The concept ∀R.C is analogously
defined and the concept R1 = R2 evaluates to all objects x
such that for all y, the tuple (x, y) is either contained in both
roles or in none of them.

The value of a feature f = |c| is the cardinality of the
concept c evaluated in the respective state.

Example 2. The Miconic domain uses named concepts
AC = {served, boarded, lift-at} and named roles AR =

{origin, destin}. We also consider the following concepts:

not-boarded-needs-lift :=passenger u ¬served u ¬boarded
u (∀origin.¬lift-at)

not-boarded-has-lift :=passenger u ¬served u ¬boarded
u (∃origin.lift-at)

boarded-wrong-place :=passenger u ¬served u boarded
u (∀destin.¬lift-at)

boarded-right-place :=passenger u ¬served u boarded
u (∃destin.lift-at)

passenger-served :=passenger u served.

We can encode the following generalized potential heuristic
h using the concepts above:

h =5 · |not-boarded-needs-lift|
+ 4 · |not-boarded-has-lift|
+ 3 · |boarded-wrong-place|
+ 2 · |boarded-right-place|
+ 1 · |passenger-served|.

The generalized potential heuristic above encodes a tiered
measure of progress [Parmar, 2002]. In words, the different
concepts used in the heuristic describe different tiers, and an
object of the task can only be part of one concept per state
(i.e., the intersection of two concepts is empty). The idea is
that these concepts are ordered – from best to worst – with
respect to the goal condition. Moving one object from one
concept to a better one decreases the heuristic value.

A heuristic encodes a tiered measure of progress if it is al-
ways possible to apply an action in a non-goal state to move
an object from one concept to a better one. That is the case
for the heuristic h in Example 2. This implies that h is de-
scending for Miconic. Since every action moves at least one
object to a better concept and the number of concepts is con-
stant, a greedy search guided by h will only take polynomial
time in the number of objects [Francès et al., 2019a].

Currently, all proofs to show that a heuristic h is a tiered
measure of progress (and thus descending) are done manually
[Parmar, 2002; Yoon et al., 2006; Francès et al., 2019b]. We
work towards a system to automate this process.

5 Approach
Tiered measures of progress guide a hill-climbing search di-
rectly to the goal, so they have guaranteed linear time (in
the value of the heuristic) performance. So far, all meth-
ods that use measures of progress create them either manually
[Parmar, 2002] or based on sample tasks [Yoon et al., 2006;
Francès et al., 2019a]. In both cases, it remains to show that
the progress measure is a strong measure of progress for all
tasks in the domain, i.e., it generalizes beyond the samples.

Our approach is also related to the work by Bonet et al.
[2019]. In their work, Bonet et al. focus on abstractions of
generalized planning tasks. In our context, an abstraction can
be seen as a rewriting of the domain in terms of more expres-
sive features (e.g., DL concepts and roles). Finding a general



solution for the abstraction is equivalent to finding a solution
for the entire domain. Bonet et al. show how to come up
with 1. sufficient conditions to prove that a given abstraction
is sound and 2. necessary conditions which have to be sat-
isfied by a planning task for it to be solved by the abstract
solution. In our terms, both kinds of conditions encode infor-
mation equivalent to our domain assumptions: we can only
guarantee that our generalized potential heuristic works for a
given task if this task meets all domains assumptions. While
Bonet et al. [2019] show how to automatically synthesize
these conditions but do not prove them automatically for a
given task Π, our work goes the other way around.

Our long-term goal is to have a system that can automati-
cally generate a solver with a formally verified performance
guarantees for a given domain. Such a guarantee on the per-
formance is particularly important for systems that have to
know in advance how much computational resources are re-
quired to solve a task, e.g. in space applications where battery
power is severely limited. We show the first steps toward this
goal. This system would work in two phases:

1. Find a hypothesis, in our case a generalized potential
heuristic that is descending on some sample tasks.

2. Prove (semi-)automatically that the hypothesis gener-
alizes to all tasks in the domain, in our case, that the
heuristic is descending on all tasks in the domain. If this
is not the case, generate more samples and start from
phase 1 again.

Phase 1 is already handled by Francès et al. [2019a] whose
method is guaranteed to find a heuristic that is descending
on all sample tasks if such a heuristic exists. We work on
Phase 2 here. In particular, we use automated and interactive
theorem provers to show that a given generalized potential
heuristic is indeed descending on all tasks of a domain. To
do so, we make a case distinction and show in each case that
there is a witness action – an action that is applicable in this
case and only moves objects to better concepts. This in turn
shows that the heuristic is a tiered measure of progress and
thus descending in all tasks.

A fully automated process for this step is not possible, as
some of the involved problems are undecidable in general.
Interactive theorem proving involves the user in steps where
no complete methods exist, or where a fully automated solu-
tion would require an impractical amount of time. Our hope
is to automate as many steps as possible so the user can focus
on the core problems. Since interactive proofs are checked
by Isabelle/HOL [Nipkow et al., 2002], the final result is a
complete formally verified proof about the performance of
the involved heuristic.

As we are reporting on work in progress, not all steps in the
process are finished yet. In its current form, our implementa-
tion sets up a formal proof environment in the interactive the-
orem prover Isabelle/HOL. This implementation proves the
statements we discuss in the rest of the paper and it is avail-
able online [Abdulaziz et al., 2022]. (Figure 1 in the appendix
gives an overview of the process.)

As input, we take a PDDL description of the domain to-
gether with a description of domain assumptions and a list of
invariants for the domain. PDDL files only describe the set

of predicates P , constants C, and action schemas A. Further-
more, we supplement it with the domain assumptions X and
invariants. Similar to the domain assumptions, invariants are
also first-order logic formulas. The idea is that if an invariant
formula I holds in a given state s then it also holds in the suc-
cessors of s. In contrast to domain assumptions, invariants
need to be proved as consequences of the domain description
and the domain assumptions. If an invariant holds for an ini-
tial state according to our assumptions X , then it will hold on
any reachable state (by induction).

Example 3. In Miconic, we use invariants to express that
predicates like passenger are static, i.e., that if p is a passen-
ger in the initial state, p will be a passenger in all reachable
states. Another invariant expresses that served(p) ∈ s im-
plies boarded(p) /∈ s for all reachable states s. In total, we
use ten such invariants in Miconic.

For each invariant, we have an accompanying domain ax-
iom claiming that the invariant holds in the initial state. The
complete system would have to prove that each claimed in-
variant is actually invariant across the application of any ac-
tion. Our prototype currently does not perform this step.

In addition to the domain assumptions and the invariants
we also read in a file containing a list of concepts and a de-
scription of the heuristic (the weights of involved concepts).
We currently are limited to cardinality features but kept the
system open to possibly extend this in the future. In the
full system, the domain and domain axioms would have to
be provided by the user, and the heuristic would be discov-
ered in Phase 1, for example with the method by Francès et
al. [2019a]. Invariants could be discovered automatically but
since there is an infinite number of invariants in each domain
finding a sufficiently large set of invariants likely has to in-
volve the user. We hope that in the future, we can set up the
proof environment in such a way that failed interactive proof
attempts fail with an error that helps the user identify missing
invariants.

In the theory that we set up automatically, the user then has
to prove the following properties interactively:

1. Given two concepts, show that they are mutually exclu-
sive, i.e., there is no state where an object is in two of
the concepts.

2. Prove that all invariants specified in the input files are
indeed invariant, i.e., if they hold before an action appli-
cation, they hold after the action application.

3. Possibly split cases further. We automatically set up a
case distinction for alive states based on the concepts
used in the heuristic. This automatic case distinction or-
ders the concepts of the heuristic and has one case per
concept where this concept is non-empty and every ear-
lier concept is empty. The idea is that the concepts rep-
resent a tiered measure of progress and we distinguish
cases based on the first non-empty tier in this progress
measure. If another case split is required, this has to be
done interactively.

4. In each case, specify a witness action that will lead to
a decreasing heuristic value in alive states of this case



or show a contradiction in the case. Specifying a wit-
ness action amounts to choosing an action schema and
defining parameters of that action. The parameters have
to be objects whose existence we can derive from the
case. For example, if we handle a case where the con-
cept passenger u ¬served is non-empty, we can derive
the existence of an object p such that passenger(p) ∈ s
and served(p) /∈ s. This object can then be used as a
parameter in the witness action. Showing a contradic-
tion in a case usually involves showing that all states in
this case are goal states. For example, if the concept
passenger u ¬served is empty, we can use the domain
axiom that the goal consists only of served facts for pas-
sengers to show that all goals are satisfied. Since we
make a case distinction over alive states, showing that
all states in a case are goal states (and thus not alive)
yields a contradiction.

Currently, we have interactive proofs for our Miconic use
case for all of these steps except for proving the invariants.
As the invariants we use are simple, we do not expect large
problems proving them interactively, however, if we accept
arbitrary first-order formulas as invariants, proving them is a
semi-decidable problem, so an automated method will fail in
some cases where the domain does not hold.

Our framework is limited to generalized potential heuris-
tics that encode tiered measures of progress where the con-
cepts are mutex. We view this as an interesting use case
because an intuitive way of specifying a progress measure
is to describe the different stages certain objects can be in
(e.g., passengers first wait for a lift, then are about to en-
ter a lift, wait inside the lift, are about to exit the lift, and
finally arrive at their destination). The description of these
stages expressed with a description logic naturally forms mu-
tex concepts and a tiered measure of progress. Not all synthe-
sized heuristics have this form however. Some could be mod-
ified by multiplying out concepts (i.e., considering C1 u C2,
¬C1 u C2, C1 u ¬C2, and ¬C1 u ¬C2 instead of two non-
mutex concepts C1 and C2) but for others, our framework
would have to be extended.

We discuss the individual steps of our framework in more
detail in the following sections.

6 Foundations for Formal Reasoning about
Domains and Heuristics

One of our main contributions is constructing a formal math-
ematical background theory to aid in the formal reasoning
about PDDL domains and formulas in the DL fragment we
use. Such a background theory has to contain a formalization
of the syntax and semantics of PDDL and the DL fragment in
Isabelle/HOL’s logic. The syntax of PDDL and the descrip-
tion logic is formalized in the form of an abstract syntax tree,
and the semantics are formalized by defining functions and
predicates (e.g. defining what is a valid plan, or what is the
result of action execution) operating on the abstract syntax
trees. Beyond the syntax and the semantics, this background
theory contains general theorems which are reusable in any
application that requires formal reasoning about PDDL and
description logic.

6.1 PDDL
For PDDL, we build on the work of Abdulaziz and Lam-
mich [2018], who formalized its syntax and semantics in Is-
abelle/HOL. Their theory uses a more general definition of
PDDL, though, and is not restricted to STRIPS tasks with
negation. For example, in PDDL action preconditions are
first-order formulas, objects are typed, and effects can have
additional conditions. In contrast, we focus on STRIPS,
where preconditions are sets of literals, objects are untyped,
and effects are given as two sets of atoms. Reasoning in the
more general PDDL setting is not problematic in theory but
can introduce some complications when proving theorems
about a STRIPS domain. For example, reasoning about ac-
tions whose preconditions are sets of literals is more natural,
as it more closely follows the pen-and-paper proofs, and there
is better support for automatically reasoning about sets in Is-
abelle/HOL. Likewise, reasoning about types is inconvenient
when we work in untyped STRIPS domains.

To be able to reason at the proper level when formally
reasoning about STRIPS problems we built a framework of
formal theorems and automated proof methods. This frame-
work transforms proof obligations about PDDL domains,
which contain formulas as preconditions, into proof obliga-
tions about sets. It also can automatically discharge any proof
obligations about object types when reasoning about STRIPS
problem. In our experience, using this framework signifi-
cantly simplifies the process of formally proving statements
about the Miconic domain.

In addition to changing perspective from general PDDL to
STRIPS, our background theory defines the terms we intro-
duced in the background section. In particular, we define
what an alive state is and prove properties for alive states,
for example that alive states are reachable and that invariants
that hold in the initial state also hold in all alive states. In
addition to our use case, this theory might find application in
certifying unsolvability of planning tasks.

6.2 Formalizing Concept Languages
Another contribution of our work is that we formalized the
abstract syntax and the semantics of concept languages. For
instance, Listing 1 shows the formalization of the abstract
syntax of the fragment of description logic we consider.

The semantics, i.e. functions that assign meaning to the
syntax are also formalized in Isabelle/HOL. The semantics of
concepts are formalized in the form of a function that maps a
state and a concept to a set of objects. For roles an analogous
function maps to sets of pairs of objects. Listing 2 shows a
sample of these functions.

A main focus of our formalization of description logic was
to develop a library which enables better (semi)automated
reasoning. Since automation methods in Isabelle/HOL are
chiefly based on Gentzen-style deduction,1 we prove lemmas
about concept languages which can act as Gentzen-style de-

1In these systems, propositions are proved using tree-like proofs.
A proof step is a branching in the tree using an axiom. The book
by Troelstra and Schwichtenberg [2000, Chapter 3] provides a good
introduction.



Listing 1: Abstract syntax of a concept language.
datatype role =

2 PredRole predicate
| GoalPredRole predicate

4 | Inverse role ("_ -1
C " 29)

| TransitiveClosure role ("_+
C" 29)

6 | Composition role role (infix "◦C" 25)

8 datatype concept =
Universe (">C")

10 | Empty ("⊥C")
| PredConcept predicate

12 | GoalPredConcept predicate
| Negation concept ("¬C _" [40] 40)

14 | Union concept concept (infix "tC" 30)
| Intersection concept concept (infix "uC" 35)

16 | RestrictEx role concept ("∃C_._" 10)
| RestrictFa role concept ("∀C_._" 10)

18 | RoleValueMap role role (infix "=C" 50)

duction rules. For instance, the lemma in Listing 3 is the ana-
logue of conjunction introduction, but for concept languages.

In addition to these general lemmas aimed to make automa-
tion easier, we also formalized the definitions related to gen-
eralized potential heuristics. This includes the definition of
the value of a feature and the heuristic in a given state, what
it means to be decreasing transition or a descending heuristic.
The overarching goal for this background theory is to aid in
proving that a given heuristic is decreasing in a given domain.
Our main theorem in this section sets out sufficient conditions
to show that a transition is decreasing, w.r.t. a given heuristic.
To discuss it, we first have to define some additional notation.

We say an object moves from concept C to C ′ along a tran-
sition from state s to a state s′ if the object is in concept C in
state s and in concept C ′ in s′. For the interpretation of a gen-
eralized potential heuristic as a tiered measure of progress, we
define Ch as the concepts used in the features of a heuristic
h. We consider a partial order on Ch based on the weight
of the respective cardinality features in the heuristic. We say
concept C is better than concept C ′ if it is ordered before C ′,
i.e. if it occurs with a lower weight in the heuristic.
Theorem 1. A transition from a state s to a state s′ leads to
a decrease in the value of a generalized potential heuristic h
using concepts Ch if
A1 the number of features in h is finite,
A2 no feature occurs twice in the heuristic,
A3 the concepts in Ch are mutually exclusive, i.e. no object

can be in two different concepts of Ch in any given state,
A4 there are no objects that are in some concept C ′ ∈ Ch

in state s′ but in no concept C ∈ Ch in state s (i.e., no
objects “spontaneously appear” in some concept during
the state transition),

A5 no objects move to worse concepts, and at least one
moves to a strictly better concept.

The proof of this theorem is moderately involved and takes
around 500 lines in Isabelle. The core argument involves per-

forming a structural induction on the heuristic itself, i.e. an
induction on the set of weight/feature pairs that constitute the
heuristic, generalizing over the heuristic function as well as
its values in the states s and s′.

The main goal of proving this theorem is to prove that a
heuristic is descending for a given domain. The final theorem
in our background theory states that if A1–A3 are satisfied
and for every alive state in the domain there is a successor
satisfying A4–A5, the heuristic is descending. This leaves
A1–A5 as the main proof obligations for the user to show
that a given heuristic is descending for a given domain.

7 Domain- and Heuristic-Specific Reasoning
The theorems we described so far (Theorem 1 and all other
theorems about PDDL, DL, and concept languages) are in-
dependent of a specific domain or heuristic. We now de-
scribe another important part of our contribution that sup-
ports formal reasoning about a given heuristic and domain.
Our tools can automatically generate definitions for a PDDL
domain and a heuristic as an Isabelle/HOL theory. These def-
initions are the representation about which the user reasons
and proves theorems. Our tooling also automatically proves
many properties about the domain and the heuristic. These
properties are then used in the interactive proofs by the user.

7.1 PDDL
We built tooling that parses a PDDL domain file into Is-
abelle/HOL definitions. In addition, we also parse domain
invariants and domain assumptions. Each invariant is parsed
into a domain assumption that the statement holds for the
initial state and a theorem stating that this is indeed an in-
variant. In the current state of our systems, these statements
about the invariants are not proved. However, the invariants
we use for the Miconic example are very simple statements
and we do not expect major difficulties proving them inter-
actively. In general, proving invariants is semi-decidable, as
any first-order logic formula can be written as an invariant.
To express the domain assumptions, we make use of a feature



Listing 2: Semantics of a concept language.
fun role_value::"role ⇒ state ⇒ (object × object) set" where

2 "role_value (PredRole p) M =
{(x,y) : untyped_object_tuples. (Atom (predAtm p [x,y])) ∈ M}" |

4 "role_value (GoalPredRole p) M =
{(x,y) : untyped_object_tuples. (predAtm p [x,y]) ∈ (atoms (goal P))}" |

6 "role_value (Inverse r) M =
{(x,y) : untyped_object_tuples. (y,x) ∈ (role_value r M)}" |

8 "role_value (TransitiveClosure r) M =
{(x,y) : untyped_object_tuples. (x,y) ∈ (role_value r M)\<ˆsup>+}" |

10 "role_value (Composition r1 r2) M =
{(x,z) : untyped_object_tuples.

12 ∃y. (x,y) ∈ (role_value r1 M) ∧ (y,z) ∈ (role_value r2 M)}"

14 fun concept_value::"concept ⇒ state ⇒ object set" where
"concept_value Universe M = untyped_objects" |

16 "concept_value Empty M = {}" |
"concept_value (PredConcept p) M = {x : untyped_objects. (Atom (predAtm p [x])) ∈ M}" |

18 "concept_value (GoalPredConcept p) M =
{x : untyped_objects. (predAtm p [x]) ∈ (pos_atoms (goal P))}" |

20 "concept_value (Negation c) M = untyped_objects - (concept_value c M)" |
"concept_value (Union c1 c2) M = (concept_value c1 M) ∪ (concept_value c2 M)" |

22 "concept_value (Intersection c1 c2) M = (concept_value c1 M) ∩ (concept_value c2 M)" |
"concept_value (RestrictEx r c) M =

24 {x : untyped_objects. ∃y. (x,y) ∈ (role_value r M) ∧ y ∈ (concept_value c M)}" |
"concept_value (RestrictFa r c) M =

26 {x : untyped_objects. ∀y. (x,y) ∈ (role_value r M) −→ y ∈ (concept_value c M)}" |
"concept_value (RoleValueMap r1 r2) M =

28 {x : untyped_objects. ∀y. (x,y) ∈ (role_value r1 M) ←→ (x,y) ∈ (role_value r2 M)}"

Listing 3: Conjunction introduction for our concept language.
lemma concept_valueI:

2 "Jx ∈ concept_value c1 M; x ∈ concept_value c2 MK =⇒ x ∈ concept_value (c1 uC c2) M"

in Isabelle/HOL called a locale [Ballarin, 2014]. Locales are
a way to structure theories in Isabelle/HOL. In our context
here, the most interesting aspect of locales is that assump-
tions specified in a locale are implicit assumptions for any
theorem within the locale. We prove all our theorems within
the domain’s locale, so all domain assumptions are implicit
assumptions to all theorems in the locale, i.e. to all the theo-
rems about the given domain.

In addition to representing the domain, the invariants, and
the domain assumptions, we also automatically prove tech-
nical lemmas that are needed to ease the automation of the
proofs. For instance, we generate lemmas stating that all
predicates in the domain have different names.

7.2 Generalized Potential Heuristics
Similar to what we do with the PDDL domain, our system
also parses the given description of the concepts and the
heuristic and translates them into Isabelle/HOL definitions.
We also prove many technical lemmas about the concepts in
the given domain. In particular, we prove that concepts and
features have different names. We also describe the differ-
ent concepts in features of the heuristic, and the partial order
between them based on the weights.

To prove that the given heuristic is descending, we show
that the assumptions of Theorem 1 apply to the domain and
the heuristic. Assumptions A1 and A2 are easy to show au-
tomatically for the given heuristic. Automating the proof
of assumption A3 is more problematic. Showing that two
concepts C1 and C2 cannot overlap is equivalent to show-
ing that concept C1 u C2 is not satisfiable. This is undecid-
able for most fragments of description logic that include role-
value maps (i.e., concepts like (R1 = R2)) [Schmidt-Schauß,
1989]. Without them, our description logic is contained
in ALCIOreg where satisfiability checks are EXPTIME-
complete [De Giacomo, 1995] and thus decidable.

For domains where a descending generalized potential
heuristic can be expressed without role-value maps (e.g. this
is the case in Miconic), a complete decision procedure could
be implemented in Isabelle/HOL to automatically prove that
concepts are mutually exclusive. Currently, we do not use
such a complete decision procedure but rely on an incom-
plete method of Isabelle/HOL. This incomplete method suc-
cessfully discharges the proof of A3 for Miconic. However,
we are not sure whether this would work for other domains.
An additional complication could be that proving A3 needs
the domain assumptions – as we stated, every theorem we



prove has the domain assumptions as implicit assumptions
due to our locale. This would be problematic as domain as-
sumptions are arbitrary first-order formulas, so proving A3
will then be a first-order theorem proving task.

8 The Interactive Part: Showing the
Existence of an Improving Transition

The remaining part of the proof is to show that assumptions
A4 and A5 of Theorem 1 hold for every alive state. Together
with the proofs of A1–A3 described in the previous section,
we can then conclude that in every alive state there is an ac-
tion whose application decreases the heuristic value.

We prove assumptions A4 and A5 by case analysis. In
particular, we use an ordering C1, C2, . . . , Cn over the con-
cepts occurring in the heuristic description. We then have n
cases, where each case 1 ≤ i ≤ n assumes that concepts
C1, C2, . . . , Ci−1 are empty, and concept Ci is not empty in
a fixed alive state s. We prove automatically that at least an
object exists in Ci in state s. For this object, we automatically
prove properties based on the concept that it is in.
Example 4. For concept “not-boarded-has-lift”, we show
that an object p exists that satisfies

passenger(p) ∈ s, served(p) /∈ s, boarded(p) /∈ s, and
∃f.(origin(p, f) ∈ s ∧ lift-at(f) ∈ s).

Currently, we define these properties of the witness object
manually, but they closely follow the structure of the concept
and could be derived by straightforward syntactic analysis.

The user then chooses an action and interactively proves
that it is a witness action, i.e., that the successor reached by
it satisfies A4 and A5. Choosing an action consists of select-
ing an action schema and picking its parameters. The witness
action in general cannot be derived automatically. While it
would be possible to test all action schemas, selecting the pa-
rameters is not as straight-forward. For example, a parameter
could simply be the object from the non-empty concept, but
in general its existence could also be derived from nested ex-
istentially quantified concepts or domain assumptions.

Next, the user has to show that the precondition of the wit-
ness action is always satisfied in any alive state of the current
case. In this proof, the user can use the domain assumptions,
the assumptions about the current case (i.e., which concepts
are empty/non-empty), and the properties of the object in the
non-empty concept.

Finally, the user has to show three facts about the transi-
tion induced by applying the witness action in an alive state
satisfying the current case:

1. for each concept in the heuristic, if an object was in this
concept before applying the action, afterwards it is not
in a worse concept.

2. at least one object moves to a better concept.
3. no object is added to any concept that was not in a con-

cept before. To show that, we show that for each heuris-
tic concept that, if an object is in the concept after the
application, then it was in a heuristic concept before the
action application.

Again the proofs can use the domain and case assumptions,
properties of the object in the non-empty concept, but they
also can use the fact that the precondition of the witness ac-
tion is satisfied to derive further information about the state.

We automated the proof of each of the three proof obli-
gations we described above. We implemented proof meth-
ods within Isabelle using the Eisbach framework [Matichuk
et al., 2016] to automate these proofs. We have no theoretical
guarantees on the completeness of these methods, but a single
proof method works for all cases of Miconic.

Together, the three properties show assumptions A4 and
A5 which allow the user to apply Theorem 1 to conclude that
the heuristic decreases while applying the witness action.

The last step in the proof, which the user has to perform in-
teractively, is to combine all the previous results to prove that
the heuristic has a decreasing successor in every alive state. If
the default case split was used, this part of the proof would al-
ways look the same so it can be generated automatically. This
then shows that the heuristic is a tiered measure of progress.
This can in turn be used with the theorem we discussed earlier
to show that the heuristic is indeed descending.

9 Conclusion
We showed first results of our tool to automate proofs of
performance guarantees using generalized heuristics in Is-
abelle/HOL. In particular, we show an interactive theorem
proving method for planning domains and generalized poten-
tial heuristics. So far, our scope is limited to those heuris-
tics representing tiered measures of progress expressed with
mutually exclusive concepts. We showed the viability of the
system by proving that a heuristic for the domain Miconic is
indeed descending.

The next steps of our work are to automate some of the
remaining parts of the proofs where possible. For example,
proving that all concepts are mutually exclusive could be au-
tomated if we restrict the description logic to no longer allow
role-value maps. Finding parameters for a witness action is
an interesting problem as well. While it is potentially semi-
decidable, incomplete methods that systematically try objects
based on the non-empty concept and the domain assumptions
could already cover many interesting cases.

In the long run, our framework could be used more gen-
erally for other proofs about PDDL domains and generalized
heuristics. For example, it could be extended to prove that the
conditions for sound abstractions synthesized by Bonet et al.
[2019] are respected by a given task.
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Cedric Geissmann, and Florian Pommerening. General-
ized potential heuristics for classical planning: Additional
material. Technical Report CS-2019-003, University of
Basel, Department of Mathematics and Computer Science,
2019.

[Haslum et al., 2019] Patrik Haslum, Nir Lipovetzky,
Daniele Magazzeni, and Christian Muise. An Introduction
to the Planning Domain Definition Language, volume 13
of Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool, 2019.

[Helmert et al., 2022] Malte Helmert, Silvan Sievers,
Alexander Rovner, and Augusto B. Corrêa. On the
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Appendix: Overview of Our Framework
Figure 1 shows the flow-chart of our framework. It distin-
guishes between steps that are interactive, fully automated,
or not yet implemented.

Task Σ Hypothesis h Domain
assumptions X

Prove background theory

Prove domain theory

Find and prove invariants

Prove number of
features is finite (A1)

Prove no features
occurs twice in h (A2)

Prove concepts are
mutually exclusive (A3)

Case distinction over
which concepts are empty

Find a witness action

Prove no new object
appears during transition (A4)

Prove no object moves
to a worse concept (A5)

Prove (at least) one object
moves to a better concept (A5)

Prove steps above
imply h is descending

for each case

Figure 1: Steps of our proof. Red boxes represent the input given to
Isabelle; blue boxes represent theories that need to be proved only
once; green boxes represent parts that are fully automated; orange
boxes represent proofs that are interactive. The part of the proof
corresponding to the gray dashed box (“Find and Prove Invariants”)
is not currenctly implemented and it is assumed to be provided by
the user.
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