

Combining Deep RL and Search with Generative Models for Game-Theoretic Opponent Modeling

Google DeepMind

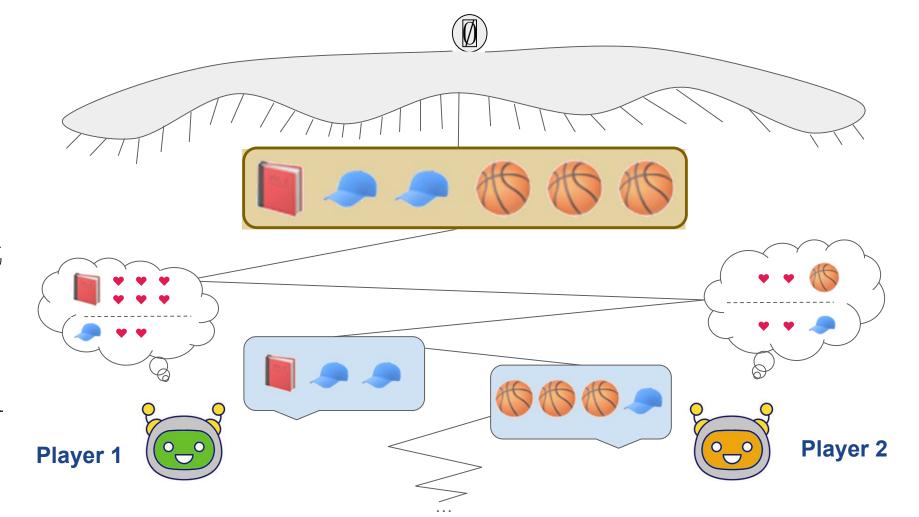
Zun Li^{1,2}, Marc Lanctot¹, Kevin McKee¹, Luke Marris¹, Ian Gemp¹, Daniel Hennes¹, Paul Muller¹, Kate Larson^{1,3}, Yoram Bachrach¹, Michael P. Wellman²

¹DeepMind, ²University of Michigan, Ann Arbor, ³University of Waterloo

Motivated Example: Deal-Or-No-Deal [1] Alternating Bilateral Negotiation Games

There are several challenges in solving large general-sum imperfect information games:

- Large state space.
- The large imperfect information (i.e., private values of the opponents) in the games may prohibit efficient planning.
- The equilibrium selection problem, i.e., how to train agents that can generalize well against unknown opponents at test-time. Naive self-play methods may overfit to the partner at training time.



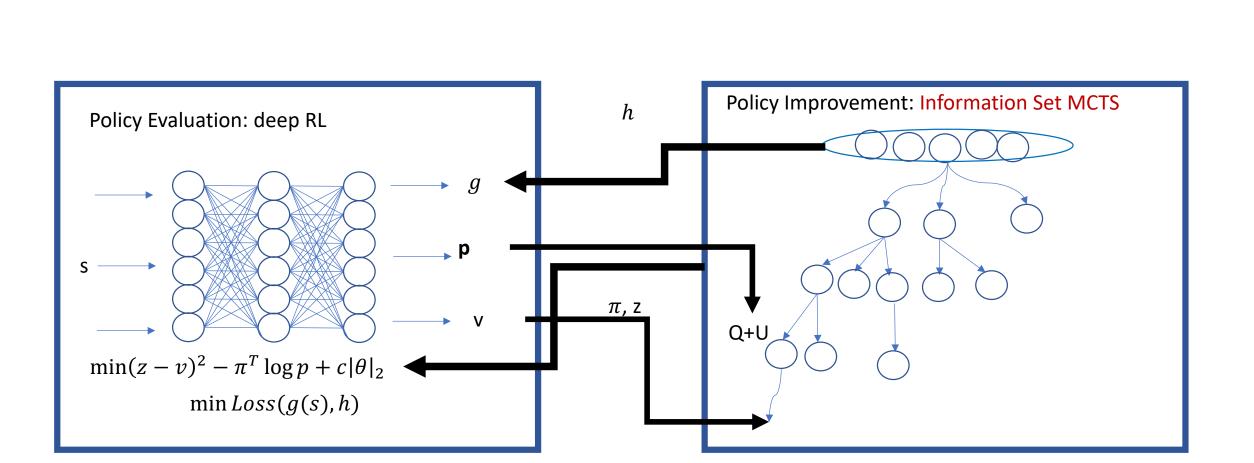
Extending AlphaZero to Imperfect Information

AlphaZero-styled search iteratively:

- Train a policy-and-value-network (PVN) using trajectories generated by MCTS
- Use the PVN to guide the search procedure and produce more quality data

To couple with imperfect information, we:

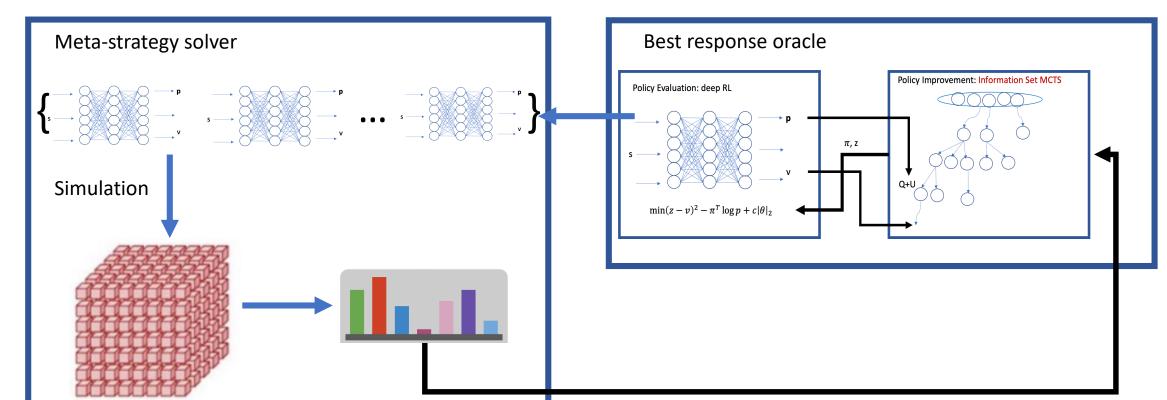
- Use information-set MCTS (IS-MCTS) as the search procedure
- At the root of the search tree, add a deep generative model to represent belief state
- Train the generative model using the (infostate, state) in the RL trajectory



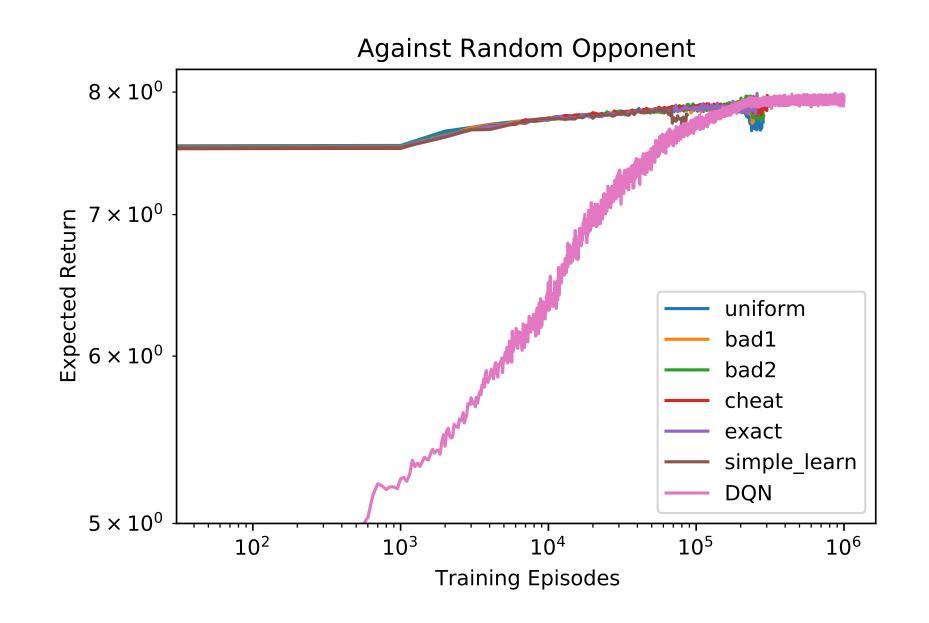
Combining with Population-Based Training

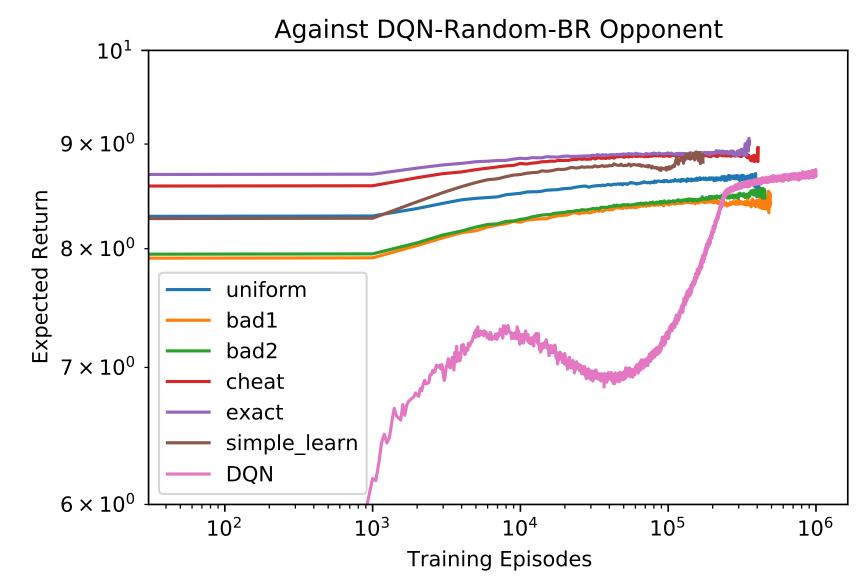
To couple with the non-transitivity and equilibrium selection problem, we combine the new search method with policy-space response oracle (PSRO), which iteratively:

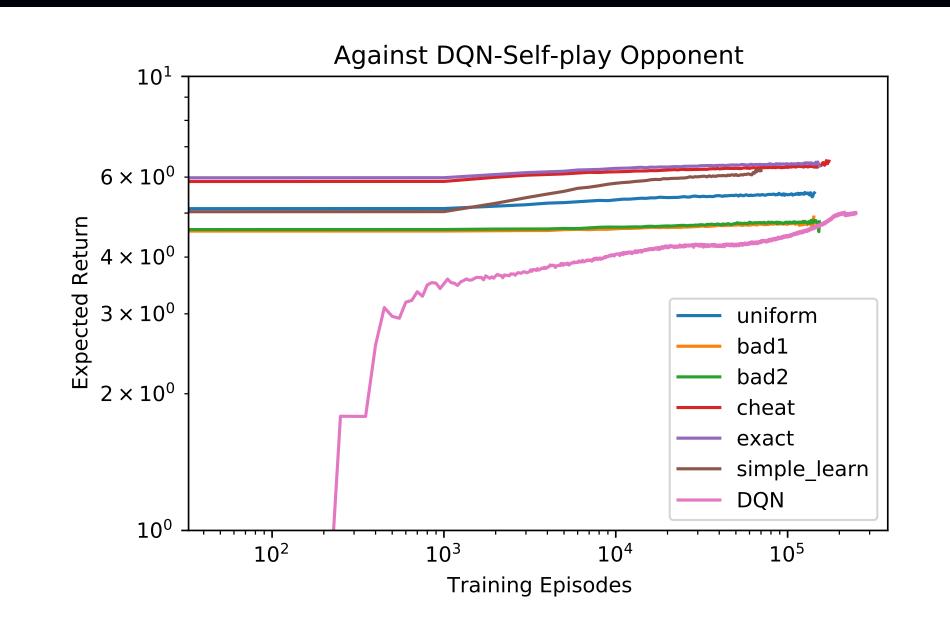
- Compute a distribution over exisiting strategies via empirical game-theoretic analysis
- Compute an approximate best response against this distribution using the search method, and add the new strategy into the pool



Search-Based Best Response Performances

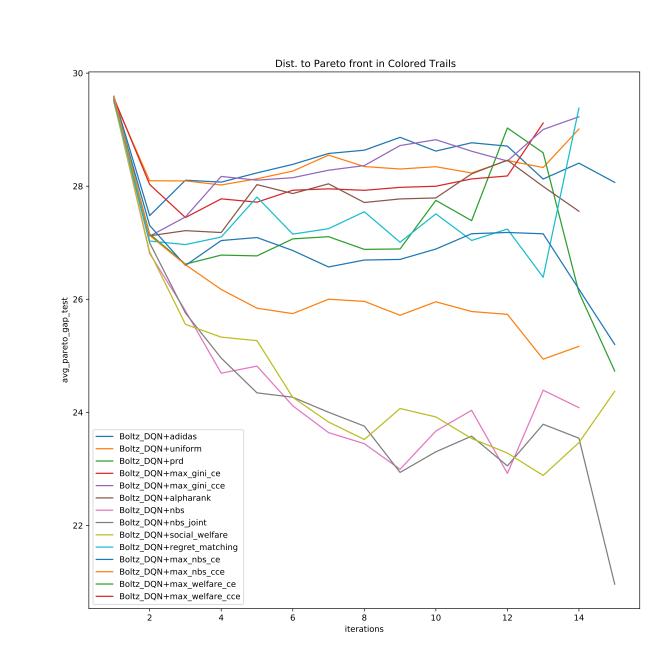


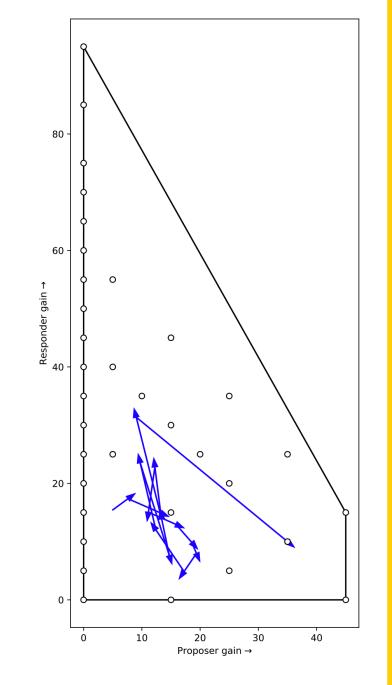




Nash Bargaining Meta-Strategy Solver

- In the PSRO loop, we can compute the distribution μ as the Nash Bargaining Solution which maximizes players' payoff product: $NBS = \max_{\mu} \sum_{i} \log(u_{i}(\mu) d_{i})$ where $u_{i}(\mu)$ is the expected payoff under μ , and d_{i} is the "no-deal" payoff.
- Results on Colored Trails show NBS can reduce the pareto-optimality gap in PSRO loop.





Human-Agent Studies

On DonD game, humans versus agents performance with N=129 human participants, 547 games total. Average performance is given with 95% C.I. in brackets (HvH: 6.93 [6.72, 7.14]).

Agent	$ar{u}_{ ext{Humans}}$	$ar{u}_{ ext{Agent}}$	\bar{u}_{Comb}
IDQN	5.86	6.50	6.18
	[5.37, 6.40]	$\left[5.93, 7.06 \right]$	[5.82, 6.50]
Comp1	5.14	5.49	5.30
	[4.56, 5.63]	[4.87, 6.11]	[4.93, 5.70]
Comp2	6.00	5.54	5.76
	[5.49, 6.55]	[4.96, 6.10]	[5.33, 6.12]
Coop	6.71	6.17	6.44
	[6.23, 7.20]	[5.66, 6.64]	[6.11, 6.7]
Fair	7.39	5.98	6.69
	[6.89 , 7.87]	[5.44, 6.49]	$oxed{[6.34, 7.0]}$

References

[1] Deal or no deal? End-to-end learning for negotiation dialogues, Lewis, L et. al., EMNLP 2017