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Motivated Example: Deal-Or-No-Deal [1] Alternating Bilateral Negotiation Games

There are several challenges in solving large general-sum imperfect information games:

• Large state space.

• The large imperfect information (i.e., private values of the opponents) in the games may prohibit
efficient planning.

• The equilibrium selection problem, i.e., how to train agents that can generalize well against unknown
opponents at test-time. Naive self-play methods may overfit to the partner at training time.
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Extending AlphaZero to Imperfect Information
AlphaZero-styled search iteratively:

• Train a policy-and-value-network (PVN) using trajectories generated by MCTS

• Use the PVN to guide the search procedure and produce more quality data

To couple with imperfect information, we:

• Use information-set MCTS (IS-MCTS) as the search procedure

• At the root of the search tree, add a deep generative model to represent belief state

• Train the generative model using the (infostate, state) in the RL trajectory

Policy Evaluation: deep RL
Policy Improvement: Information Set MCTS
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Combining with Population-Based Training

To couple with the non-transitivity and equilibrium selection problem, we combine the new
search method with policy-space response oracle (PSRO), which iteratively:

• Compute a distribution over exisiting strategies via empirical game-theoretic analysis

• Compute an approximate best response against this distribution using the search
method, and add the new strategy into the pool

Meta-strategy solver Best response oracle
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Search-Based Best Response Performances
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Against DQN-Self-play Opponent
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Nash Bargaining Meta-Strategy Solver

• In the PSRO loop, we can com-
pute the distribution µ as the Nash
Bargaining Solution which maximizes
players’ payoff product: NBS =
maxµ

∑
i log(ui(µ)−di) where ui(µ) is

the expected payoff under µ, and di is
the “no-deal" payoff.

• Results on Colored Trails show NBS
can reduce the pareto-optimality gap
in PSRO loop. 2 4 6 8 10 12 14
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Dist. to Pareto front in Colored Trails
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Human-Agent Studies
On DonD game, humans versus agents perfor-
mance with N = 129 human participants, 547
games total. Average performance is given with
95% C.I. in brackets (HvH: 6.93 [6.72, 7.14]).

Agent ūHumans ūAgent ūComb NBS

IDQN
5.86 6.50 6.18

38.12
[5.37, 6.40] [5.93,7.06] [5.82, 6.56]

Comp1
5.14 5.49 5.30

28.10
[4.56, 5.63] [4.87, 6.11] [4.93, 5.76]

Comp2
6.00 5.54 5.76

33.13
[5.49, 6.55] [4.96, 6.10] [5.33, 6.12]

Coop
6.71 6.17 6.44

41.35
[6.23, 7.20] [5.66, 6.64] [6.11, 6.75]

Fair
7.39 5.98 6.69

44.23
[6.89,7.87] [5.44, 6.49] [6.34,7.01]References
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