Combining Deep RL and Search with Generative
Models for Game-Theoretic Opponent Modeling
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Motivated Example: Deal-Or-No-Deal [1] Alternating Bilateral Negotiation Games

There are several challenges in solving large general-sum imperfect information games:

e Large state space.

e The large imperfect information (i.e., private values of the opponents) in the games may prohibit

efficient planning.

e The equilibrium selection problem, i.e., how to train agents that can generalize well against unknown
opponents at test-time. Naive self-play methods may overfit to the partner at training time.

Extending AlphaZero to Imperfect Information
AlphaZero-styled search iteratively:

e Train a policy-and-value-network (PVN) using trajectories generated by MCTS

Policy Improvement: Information Set MCTS
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Policy Evaluation: deep RL

e Use the PVN to guide the search procedure and produce more quality data
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To couple with imperfect information, we: .%‘3’:?.@ 453
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e Use information-set MCTS (IS-MCTS) as the search procedure i — v — 1" logp + <ol
min Loss(g(s), h)

e At the root of the search tree, add a deep generative model to represent belief state

e Train the generative model using the (infostate, state) in the RL trajectory

Combining with Population-Based Training

Meta-strategy solver Best response oracle

To couple with the non-transitivity and equilibrium selection problem, we combine the new
search method with policy-space response oracle (PSRO), which iteratively:

Simulation

e Compute a distribution over exisiting strategies via empirical game-theoretic analysis

e Compute an approximate best response against this distribution using the search
method, and add the new strategy into the pool

Search-Based Best Response Performances

Against Random Opponent Against DQN-Random-BR Opponent Against DQN-Self-play Opponent
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Nash Bargaining Meta-Strategy Solver

e In the PSRO loop,

we can com-
pute the distribution © as the Nash
Bargaining Solution which maximizes
players’ payoff product: NBS =
max,, ) . log(u; (1) —d;) where u;(p) is
the expected payoff under u, and d; is
the “no-deal" payoft.

Results on Colored Trails show NBS
can reduce the pareto-optimality gap
in PSRO loop.

Human-Agent Studies

On DonD game, humans versus agents perfor-
mance with N = 129 human participants, 547
cames total. Average performance is given with

95% C.I. in brackets
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