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The Challenge: Ensuring Fair Decisions Made by

Deep Neural Networks (DNNs)

* DNNSs increasingly drive high-stakes
decisions for which fairness is essential.

 Individual Fairness: Individuals with similar
unprotected attributes receive similar
outcomes, regardless of their protected
attributes
» Unprotected attributes: qualifications, experience
* Protected attributes: age, race

CASE 1 \' | [ CASE 2
Education: Education:
Bachelor’s Degree Bachelor’s Degree
Experience: Experience:

5 Years 5 Years
Occupation: $60,000 Occupation:
Engineer Engineer

We need effective methods for fairness verification and repair




Fairness of Neural Networks: Existing Approaches

* Verification
« Satisfiability modulo theories (SMT)-based methods [Benussi et al., 2022]
* Mixed integer linear programming (MILP) [Biswas and Rajan, 2023; Mohammadi et
al., 2023]

* Repair
» Pre-processing: Remove bias from training data [Barocas et al., 2023]

* In-processing: Modify model parameters during training [Dasu et al., 2024; Li et al.,
2024; Gao et al., 2022; Fu et al., 2024]

» Post-processing: Adjust model predictions after training [Nguyen et al., 2023; Li et al.,
2023; Fu et al., 2024]

Our goal: More scalable verification and more efficient repair



FaVeR: Fairness Verification and Repair

Pre-trained NN, Protected Attributes, Fairness Property
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Individual Fairness

¢ Instance X = (xl,xz, ...,xM)T, X, — (x]_’, le, ...,xM’)T
* Attributes: A = {4,, ..., Ay }; Protected attributes: P c A

Individual Fairness: No pair (x,x’) with

Va € A\P :|x, = x], ABEP:xp #x5  f(X) # f(X)

Relax unprotected attributes

e-Fairness: X, — x| < €,

Verification: Check if (x,Xx’) exists with provided constraints



SMC-Based Verification
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SMC-Based Verification

Check if x exists for 2x + 1 >5) A ((x < 4) V (x < 1)):
(bo A(by VD)) A(bg—> 2x+1>5))A(by = (x <4)) A (b - (x < 1))
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SMC-Based Verification
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SMC [Shoukry et al., 2018] is shown to outperform other methods for formulas with
a large number of Boolean variables and convex constraints.



Problem Encoding

e-Fairness Property
A () =25 =) A (-mf — 25 £ 2p)) A\ mf)
Ag€eP
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Feedforward Behavior
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Boolean variables m are introduced to encode conditional branching behavior.



Problem Decomposition

Introducing Boolean constraints enables decomposition of the verification problem.

Consider two protected attributes in the problem:

Problem

(0)

(0)

SMC-Based m” A =m®

y

Subproblem 1

m® A md

Subproblem 2

Subproblem 3

X0 ¥+ xo', X1 ¥+ x1'

Xo = x(’)I X1 + xl'

Xog # Xg, X1 = X1
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FaVeR: Fairness Verification and Repair

Pre-trained NN, Protected Attributes, Fairness Property
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High-Sensitivity Neuron Search

The activation of neuron n; .
Il Sensitive [ Random

» Sensitivity score for neuron: /v
Si = |0i(x) — 0;(X)| é’mg |
Select high-sensitivity neurons with §; > vy, g
= 50
S

1
v=s5 (max S; + min §;)
l l
4 5 6 7 8
BM models

Search for the neurons with high contributions to unfairness
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Backward Neuron Adaptation

Unfairness: U = ||f(x) — f(x")]]
Update weights and bias of high-sensitivity neurons from layers L to 1:
whD — wlY paw Y,
BV b+ AbY,
AW::EI:’I_I) =1 )\Sign(wi(,i'l_lj) s Wit Y,
Ab?) = —7 /\sign(bg”) Sf} b,E”,

The same weight perturbation produces a larger shift in logits when applied to
neurons closer to the output layer.

Each update reduces unfairness for small weights perturbations.
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FaVeR: Fairness Verification and Repair

Pre-trained NN, Protected Attributes, Fairness Property
4 ! Fair - Repair is rejected if accuracy drops

 SMC-Based Verification | ! Counterexample-Guided Repair | .
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Experiments: Fairness Verification

Benchmark: Compas (CP) [Kim et al., 2024]

PA Model #Layers  #Neurons Fairify Ver. Fairify Time(s) FaVeR Ver. FaVeR Time (s)
CP-1 2 24 SAT 27.11 SAT
CP-2 5 124 SAT 63.24 SAT
Race CP-3 3 600 UNK 1000+ UNSAT
CP-4 4 900 UNK 1000+ SAT

FaVeR is faster and solves cases unsolved by state-of-the-art comparable
approaches (Fairify, [Biswas and Rajan, 2023]).
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Experiments: Repair for Fairness

Comparison with REGLO [Fu et al., 2024]
Benchmarks: Bank Marketing (BM), Adult Census (AC), German Credit (GC)

—@— FaVeR REGLO
> 89 f-‘}'ﬁ’—.—. Model Initial Mean  Repair ~ Mean Mean  Repair ~ Mean
5 30 Accuracy Accuracy Rate Runtime  Accuracy Rate Runtime
m - —
5 BM 88.14% 27.87%  60% 35.81s
3 78| y
3 76 GC 71.60% 69.33% 100% 30.27s 69.33% 100%
7]
O
= 74 ) AC 82.33% 100% 62.97% 100% 15.39s

x | [
0 1 2 3 4 5
# of repair iterations Efficient repair with less reduction in accuracy.
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Conclusions

Fairness, Robustness, Formal Verification

Monotonicity +
Input-Output Property Problem Decomposition
Verification
Counterexample Repaired Model

Localized adjustment, Constraint-augmented fine-tuning, ...
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