

Efficient Counterexample-Guided Fairness Verification and Repair of Neural Networks Using Satisfiability Modulo Convex Programming

Arya Fayyazi¹ Yifeng Xiao² Pierluigi Nuzzo² Massoud Pedram¹

¹University of Southern California ²University of California, Berkeley

The Challenge: Ensuring Fair Decisions Made by Deep Neural Networks (DNNs)

 DNNs increasingly drive high-stakes decisions for which fairness is essential.

- Individual Fairness: Individuals with similar unprotected attributes receive similar outcomes, regardless of their protected attributes
 - Unprotected attributes: qualifications, experience
 - Protected attributes: age, race

We need effective methods for fairness verification and repair

Fairness of Neural Networks: Existing Approaches

- Verification
 - Satisfiability modulo theories (SMT)-based methods [Benussi et al., 2022]
 - Mixed integer linear programming (MILP) [Biswas and Rajan, 2023; Mohammadi et al., 2023]
- Repair
 - Pre-processing: Remove bias from training data [Barocas et al., 2023]
 - In-processing: Modify model parameters during training [Dasu et al., 2024; Li et al., 2024; Gao et al., 2022; Fu et al., 2024]
 - Post-processing: Adjust model predictions after training [Nguyen et al., 2023; Li et al., 2023; Fu et al., 2024]

Our goal: More scalable verification and more efficient repair

FaVeR: Fairness Verification and Repair

Individual Fairness

- Instance: $\mathbf{x} = (x_1, x_2, ..., x_M)^T, \mathbf{x}' = (x_1', x_2', ..., x_M')^T$
- Attributes: $A = \{A_1, ..., A_M\}$; Protected attributes: $P \subset A$

Individual Fairness: No pair (x, x') with

$$\forall \alpha \in A \backslash P : x_{\alpha} = x'_{\alpha}, \quad \exists \beta \in P : x_{\beta} \neq x'_{\beta}, \quad f(\mathbf{x}) \neq f(\mathbf{x}')$$

Relax unprotected attributes

$$\epsilon$$
-Fairness: $|x_{\alpha} - x'_{\alpha}| \le \epsilon_{\alpha}$

Verification: Check if (x, x') exists with provided constraints

SMC-Based Verification

Check if x exists for $(2x + 1 > 5) \land ((x < 4) \lor (x < 1))$: $(b_0 \land (b_1 \lor b_2)) \land (b_0 \to (2x+1>5)) \land (b_1 \to (x<4)) \land (b_2 \to (x<1))$ **SAT Solver** $(b_0 \land (b_1 \lor b_2)) \land \neg (b_0 \land \neg b_1 \land b_2)$ UNSAT $b_0 = 1, b_1 = 0, b_2 = 1$ **UNSAT** Certificate $(2x + 1 > 5) \land (x < 1)$ Convex Solver Counterexample

SMC-Based Verification

Check if x exists for $(2x + 1 > 5) \land ((x < 4) \lor (x < 1))$: $(b_0 \land (b_1 \lor b_2)) \land (b_0 \to (2x+1>5)) \land (b_1 \to (x<4)) \land (b_2 \to (x<1))$ UNSAT $(b_0 \land (b_1 \lor b_2)) \land \neg (b_0 \land \neg b_1 \land b_2)$ SAT Solver **UNSAT** $b_0 = 1, b_1 = 1, b_2 = 0$ Certificate Convex Solver $(2x + 1 > 5) \land (x < 4)$ x = 3Counterexample

SMC-Based Verification

SMC [Shoukry et al., 2018] is shown to outperform other methods for formulas with a large number of Boolean variables and convex constraints.

Problem Encoding

ϵ-Fairness Property

$$\bigwedge_{A_{\beta} \in P} \left((m_{\beta}^{(0)} \to x_{\beta} = x_{\beta}') \land (\neg m_{\beta}^{(0)} \to x_{\beta} \neq x_{\beta}') \right) \land (\bigvee_{A_{\beta} \in P} m_{\beta}^{(0)})$$

$$\bigwedge_{A_{\alpha} \in A \backslash P} \left((x_{\alpha} - x_{\alpha}' \leq \epsilon_{\alpha}^{(l)}) \land (x_{\alpha} - x_{\alpha}' \geq -\epsilon_{\alpha}^{(l)}) \right)$$

$$\left(m^{(L)} \to f(\mathbf{x}) > f(\mathbf{x}') \right) \land \left(\neg m^{(L)} \to f(\mathbf{x}) < f(\mathbf{x}') \right)$$

Feedforward Behavior

$$\left(m_i^{(l)} \to \left((a_i^{(l)} \ge 0) \land (x_i^{(l)} = a_i^{(l)}) \right) \right) \land \left(\neg m_i^{(l)} \to \left((a_i^{(l)} < 0) \land (x_i^{(l)} = 0) \right) \right)$$

$$\bigwedge_{l=1}^{L-1} \left(\mathbf{x}^{(l)} = \phi(\mathbf{a}^{(l)}) \right) \land \left(\mathbf{x}^{(L)} = \mathbf{a}^{(L)} \right) \land \bigwedge_{l=1}^{L} \left(\mathbf{a}^{(l)} = \mathbf{W}^{(l,l-1)} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)} \right)$$

Boolean variables m are introduced to encode conditional branching behavior.

Problem Decomposition

Introducing Boolean constraints enables decomposition of the verification problem.

Consider two protected attributes in the problem:

FaVeR: Fairness Verification and Repair

High-Sensitivity Neuron Search

Sensitivity score for neuron:

$$S_i = |\sigma_i(\mathbf{x}) - \sigma_i(\mathbf{x}')|$$

Select high-sensitivity neurons with $S_i \geq \gamma$,

$$\gamma = \frac{1}{2} (\max_{i} S_i + \min_{i} S_i)$$

Search for the neurons with high contributions to unfairness

Backward Neuron Adaptation

Unfairness:
$$U = ||f(\mathbf{x}) - f(\mathbf{x}')||$$

Update weights and bias of high-sensitivity neurons from layers *L* to 1:

$$\begin{split} W_{i,:}^{(l,l-1)} \; \leftarrow \; W_{i,:}^{(l,l-1)} + \Delta W_{i,:}^{(l,l-1)}, \\ b_i^{(l)} \; \leftarrow \; b_i^{(l)} + \Delta b_i^{(l)}, \\ \Delta W_{i,:}^{(l,l-1)} &= - \, \eta \, \lambda \, \mathrm{sign} \big(W_{i,:}^{(l,l-1)} \big) \, S_i^{(l)} \, W_{i,:}^{(l,l-1)}, \\ \Delta b_i^{(l)} &= - \eta \, \lambda \, \mathrm{sign} \big(b_i^{(l)} \big) \, S_i^{(l)} \, b_i^{(l)}, \end{split}$$

The same weight perturbation produces a larger shift in logits when applied to neurons closer to the output layer.

Each update reduces unfairness for small weights perturbations.

FaVeR: Fairness Verification and Repair

Pre-trained NN, Protected Attributes, Fairness Property

- Repair is rejected if accuracy drops below a specified threshold.
- The algorithm terminates when
 - The NN is fair, or
 - when all neurons have been adapted at most once.

Experiments: Fairness Verification

Benchmark: Compas (CP) [Kim et al., 2024]

PA	Model	#Layers	#Neurons	Fairify Ver.	Fairify Time(s)	FaVeR Ver.	FaVeR Time (s)
Race	CP-1	2	24	SAT	27.11	SAT	0.37
	CP-2	5	124	SAT	63.24	SAT	1.02
	CP-3	3	600	UNK	1000+	UNSAT	1.42
	CP-4	4	900	UNK	1000+	SAT	1.23

FaVeR is faster and solves cases unsolved by state-of-the-art comparable approaches (Fairify, [Biswas and Rajan, 2023]).

Experiments: Repair for Fairness

Comparison with REGLO [Fu et al., 2024]

Benchmarks: Bank Marketing (BM), Adult Census (AC), German Credit (GC)

Model	Mean Initial Accuracy	FaVeR			REGLO		
		Mean Accuracy	Repair Rate	Mean Runtime	Mean Accuracy	Repair Rate	Mean Runtime
ВМ	88.14%	87.06%	100%	26.47 s	27.87%	60%	35.81 s
GC	71.60%	69.33%	100%	30.27 s	69.33%	100%	1.75 s
AC	82.33%	80.09%	100%	15.09 s	62.97%	100%	15.39 s

Efficient repair with less reduction in accuracy.

Conclusions

Localized adjustment, Constraint-augmented fine-tuning, ...