
Arya Fayyazi1  Yifeng Xiao2  Pierluigi Nuzzo2  Massoud Pedram1

1University of Southern California
2University of California, Berkeley

Efficient Counterexample-Guided Fairness Verification 
and Repair of Neural Networks Using 

Satisfiability Modulo Convex Programming



• DNNs increasingly drive high-stakes 
decisions for which fairness is essential.

• Individual Fairness: Individuals with similar 
unprotected attributes receive similar 
outcomes, regardless of their protected 
attributes 
• Unprotected attributes: qualifications, experience

• Protected attributes: age, race

The Challenge: Ensuring Fair Decisions Made by 
Deep Neural Networks (DNNs)
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We need effective methods for fairness verification and repair



• Verification

• Satisfiability modulo theories (SMT)-based methods [Benussi et al., 2022]

• Mixed integer linear programming (MILP) [Biswas and Rajan, 2023; Mohammadi et 
al., 2023]

• Repair

• Pre-processing: Remove bias from training data [Barocas et al., 2023]

• In-processing: Modify model parameters during training [Dasu et al., 2024; Li et al., 
2024; Gao et al., 2022; Fu et al., 2024]

• Post-processing: Adjust model predictions after training [Nguyen et al., 2023; Li et al., 
2023; Fu et al., 2024]

Fairness of Neural Networks: Existing Approaches 
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Our goal: More scalable verification and more efficient repair



FaVeR: Fairness Verification and Repair
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• Instance: 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑀
𝑇 , 𝐱′ = 𝑥1′, 𝑥2′, … , 𝑥𝑀′

𝑇

• Attributes: 𝐴 = {𝐴1, … , 𝐴𝑀};    Protected attributes: 𝑃 ⊂ 𝐴

Individual Fairness: No pair (𝐱, 𝐱′) with

∀𝛼 ∈ 𝐴\P ∶ 𝑥𝑎 = 𝑥𝑎
′ , ∃𝛽 ∈ 𝑃 ∶ 𝑥𝛽 ≠ 𝑥𝛽

′ , 𝑓 𝐱 ≠ 𝑓(𝐱′)

Individual Fairness
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|𝑥𝛼 − 𝑥𝛼
′ | ≤ 𝜖𝛼𝜖-Fairness:

Relax unprotected attributes

Verification: Check if (𝐱, 𝐱′) exists with provided constraints



SMC-Based Verification
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SAT Solver

Convex Solver

SAT

SAT

UNSAT

Counterexample

UNSAT
Certificate

Check if 𝑥 exists for 2𝑥 + 1 > 5 ∧ ( 𝑥 < 4 ∨ (𝑥 < 1)):

𝑏0 ∧ 𝑏1 ∨ 𝑏2 ∧ 𝑏0 → 2𝑥 + 1 > 5 ∧ 𝑏1 → 𝑥 < 4 ∧ (𝑏2 → 𝑥 < 1 )

𝑏0 = 1, 𝑏1 = 0, 𝑏2 = 1

2𝑥 + 1 > 5 ∧ (𝑥 < 1)

(𝑏0 ∧ 𝑏1 ∨ 𝑏2 )∧ ¬(𝒃𝟎 ∧ ¬𝒃𝟏 ∧ 𝒃𝟐)



SMC-Based Verification
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Check if 𝑥 exists for 2𝑥 + 1 > 5 ∧ ( 𝑥 < 4 ∨ (𝑥 < 1)):

𝑏0 ∧ 𝑏1 ∨ 𝑏2 ∧ 𝑏0 → 2𝑥 + 1 > 5 ∧ 𝑏1 → 𝑥 < 4 ∧ (𝑏2 → 𝑥 < 1 )

(𝑏0 ∧ 𝑏1 ∨ 𝑏2 )

𝑏0 = 1, 𝑏1 = 1, 𝑏2 = 0

2𝑥 + 1 > 5 ∧ (𝑥 < 4)

∧ ¬(𝑏0 ∧ ¬𝑏1 ∧ 𝑏2)

𝑥 = 3

SAT Solver

Convex Solver

SAT

SAT

UNSAT

Counterexample

UNSAT
Certificate



SMC-Based Verification
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SMC [Shoukry et al., 2018] is shown to outperform other methods for formulas with 

a large number of Boolean variables and convex constraints.



Problem Encoding
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𝜖-Fairness Property

Feedforward Behavior

Boolean variables 𝒎 are introduced to encode conditional branching behavior.



Problem Decomposition
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SMC-Based 

Problem

Subproblem 1

Introducing Boolean constraints enables decomposition of the verification problem.

Consider two protected attributes in the problem:

Subproblem 2

Subproblem 3

¬𝑚0
(0)

∧ ¬ 𝑚1
(0)

𝑚0
(0)

∧ ¬𝑚1
(0)

¬𝑚0
(0)

∧ 𝑚1
(0)

Add constraints in 

the SAT solver

𝑥0 ≠ 𝑥0′, 𝑥1 ≠ 𝑥1′

𝑥0 = 𝑥0
′ , 𝑥1 ≠ 𝑥1′

𝑥0 ≠ 𝑥0
′ , 𝑥1 = 𝑥1′



FaVeR: Fairness Verification and Repair
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High-Sensitivity Neuron Search
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• Sensitivity score for neuron: 

𝑆𝑖 = |𝜎𝑖 𝐱 − 𝜎𝑖(𝐱′)|

Select high-sensitivity neurons with 𝑆𝑖 ≥ 𝛾,

𝛾 =
1

2
(max

𝑖
𝑆𝑖 +min

𝑖
𝑆𝑖)

The activation of neuron 𝑛𝑖

Search for the neurons with high contributions to unfairness



Backward Neuron Adaptation
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Update weights and bias of high-sensitivity neurons from layers 𝐿 to 1:

The same weight perturbation produces a larger shift in logits when applied to 

neurons closer to the output layer.

Each update reduces unfairness for small weights perturbations.

Unfairness:  𝑈 = ||𝑓 𝐱 − 𝑓 𝐱′ ||



FaVeR: Fairness Verification and Repair
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• Repair is rejected if accuracy drops 

below a specified threshold.

• The algorithm terminates when

• The NN is fair, or

• when all neurons have been 

adapted at most once.



Benchmark: Compas (CP) [Kim et al., 2024]

Experiments: Fairness Verification
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PA Model #Layers #Neurons Fairify Ver. Fairify Time(s) FaVeR Ver. FaVeR Time (s)

Race

CP-1 2 24 SAT 27.11 SAT 0.37

CP-2 5 124 SAT 63.24 SAT 1.02

CP-3 3 600 UNK 1000+ UNSAT 1.42

CP-4 4 900 UNK 1000+ SAT 1.23

FaVeR is faster and solves cases unsolved by state-of-the-art comparable 
approaches (Fairify, [Biswas and Rajan, 2023]).



Comparison with REGLO [Fu et al., 2024]

Benchmarks: Bank Marketing (BM), Adult Census (AC), German Credit (GC)

Model
Mean 
Initial 

Accuracy

FaVeR REGLO

Mean 
Accuracy

Repair 
Rate

Mean 
Runtime

Mean 
Accuracy

Repair 
Rate

Mean 
Runtime

BM 88.14% 87.06% 100% 26.47 s 27.87% 60% 35.81 s

GC 71.60% 69.33% 100% 30.27 s 69.33% 100% 1.75 s

AC 82.33% 80.09% 100% 15.09 s 62.97% 100% 15.39 s

Experiments: Repair for Fairness
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Efficient repair with less reduction in accuracy.



Conclusions
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Input-Output Property 
Verification

Counterexample-Guided 
Property Repair

Counterexample Repaired Model

Fairness, Robustness, 
Monotonicity

Formal Verification
+

Problem Decomposition

Localized adjustment, Constraint-augmented fine-tuning, … 
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