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AI for Math isn’t that new …
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4

Released on 
Nov 30, 2022



The Science & Engineering of Autoformalizing Mathematics

Why is it so different this time?

5

Released on 
Nov 30, 2022



The Science & Engineering of Autoformalizing Mathematics

Autoformalization: Challenges & Promises
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Natural Language (NL)
Descriptions
(Human Comprehensible)

Formal Language (FL)
Representations
(Machine Checkable)

grounding

Informal math theorems & proofs Formalized theorems & proofs

1 2

3

Law in natural languages Law in theorem prover??

Fermat’s Last Theorem

Fermat’s Last Theorem, also known as Fermat’s conjecture, states that no three
positive integers a, b, and c can satisfy the equation an+bn = cn for any integer
value of n greater than 2.

Formal Statement 1 (Using Implication)

→n ↑ Z, n > 2 =↓ ¬↔a, b, c ↑ Z+ such that an + bn = cn.

Where:

• → denotes ”for all”

• ↑ denotes ”is an element of”

• Z denotes the set of integers

• Z+ denotes the set of positive integers

• > denotes ”greater than”

• =↓ denotes ”implies”

• ¬ denotes ”not” or ”it is not the case that”

• ↔ denotes ”there exists”

• a, b, c represent positive integers

• n represents an integer

Formal Statement 2 (Stating Non-Existence Directly)

There are no a, b, c ↑ Z+ such that an + bn = cn for any integer n > 2.

More concisely:

{(a, b, c, n) ↑ (Z+)3 ↗ Z | n > 2 ↘ an + bn = cn} = ≃.

Where:

• (Z+)3 denotes the set of ordered triples of positive integers.

• ↗ denotes the Cartesian product.

• | denotes ”such that” or ”where”.

• ↘ denotes ”and”.

• ≃ denotes the empty set.
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Fermat’s
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Vladimir Voevodsky, a Fields Medalist in 2002, 
found one of his major work flawed 20 years later … 

Source: https://writings.stephenwolfram.com/2016/10/computational-law-symbolic-discourse-and-the-ai-constitution/
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Autoformalization

Autoformalization: the automatic translation of informal natural language
mathematics to the language of a proof assistant.

Many important applications, e.g., in AI-assisted mathematics and
software verification [1].

Szegedy, Christian. ”A Promising Path Towards Autoformalization and General Artificial Intelligence.” Conference on
Intelligent Computer Mathematics (2020)

Murphy, Yang et al. (UofT, Caltech) Autoformalizing Euclidean Geometry ECLaPS 2024 5 / 17
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Conclusion

We show that Euclidean geometry is a controllable domain for autoformalizing both
theorem statements and proofs.

By leveraging domain knowledge and symbolic reasoning, we can automatically
semantically evaluate formalized theorem statements and simplify the formalization of
proofs.

We expect that similar techniques can be applied to other domains as well.

Our autoformalization environment, data & experiment reproduction are available on
GitHub: https://github.com/loganrjmurphy/LeanEuclid.

Murphy, Yang et al. (UofT, Caltech) Autoformalizing Euclidean Geometry ECLaPS 2024 17 / 17

The Elements (Book I)
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The Science & Engineering behind

• Axiomatic Systems
• Pasch (1882), Peano (1889), Hilbert (1899)
• Tarski (1959)
• Avigad et al., System E (2009)

• Formal Theorem Language
• Embed System E  in Lean 4
• Design equivalence checkers

• Formal Proof Language
• Design domain-specific tactics for geometry proofs
• Design wrappers of SMT solvers to achieve better automation

15

Formalization

Murphy, Yang et al. (UofT, Caltech) Autoformalizing Euclidean Geometry ECLaPS 2024 2 / 17
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Our Contribution

[4] Chen, Jiaqi, et al. ”UniGeo: Unifying Geometry Logical Reasoning via Reformulating Mathematical Expression.” Proc.
of the Conference on Empirical Methods in Natural Language Processing (2022)

Murphy, Yang et al. (UofT, Caltech) Autoformalizing Euclidean Geometry ECLaPS 2024 10 / 17
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Autoformalizing Euclidean Geometry

Informal Euclidean geometry problem

Equivalent?

Autoformalized proof

Autoformalized theorem

Ground truth theorem

a b : Point
AB : Line
BCD ACE : Circle
isCenter a BCD
onCircle b BCD
isCenter b ACE
onCircle a ACE
⊢ intersects BCD ACE

Diagrammatic reasoning gaps

…
⊢ …

…

SMT-based symbolic 
reasoning engine

…

Figure 1. Left: Proposition 1 in Euclid’s Elements (Book I). The orange text involves diagrammatic reasoning: Euclid did not explicitly
prove the two circles actually intersect, but the reader can use the diagram to implicitly fill in the logical gap. Top right: The model
autoformalizes the problem into a formal theorem (proposition 1’), which is evaluated by checking its logical equivalence with the
ground truth (proposition 1), leveraging domain knowledge and a symbolic automated reasoning engine based on SMT (satisfiability
modulo theories) solvers. Bottom right: A proof autoformalized by the model. Like Euclid’s proofs, it does not need to handle
diagrammatic reasoning explicitly. Lean can check the proof to identify a list of diagrammatic reasoning gaps, e.g., “intersects BCD
ACE”. Then, it attempts to fill in all gaps automatically using the symbolic reasoning engine based on SMT solvers.

bolic reasoning engine based on SMT solvers. As Fig. 1
(Top right) shows, given a ground-truth formal theorem Tgt

and the autoformalized theorem Tpred produced by a lan-
guage model, we use the symbolic engine to try to prove
their equivalence (Tgt → Tpred). If successful, their logi-
cal gap is small enough to conclude that Tpred is correct.
Even if the symbolic engine cannot prove Tgt → Tpred, it
can provide partial results useful for a more fine-grained
analysis. We validate this evaluation protocol by showing it
correlates well with human evaluation.

LeanEuclid: Formalizing Proofs and Diagrams. We
construct LeanEuclid, a benchmark for testing machine
learning on autoformalizing Euclidean geometry. As in Fig 1
(Left), each example in LeanEuclid has an informal theorem,
proof, and diagram in LATEX, as well as a formal theorem
and proof in Lean. Data examples in LeanEuclid are manu-
ally formalized into Lean from Euclid’s Elements (Heiberg,
2007) and the UniGeo dataset (Chen et al., 2022).

LeanEuclid serves as a benchmark for autoformalizing not
only theorems but also proofs. Geometric proofs are chal-
lenging to formalize faithfully. Humans (ancient or modern,
including Euclid himself) use diagrams to license proof
steps without making every detail explicit. Fig. 1 shows an
example of diagrammatic reasoning from Euclid’s Elements.

Euclid uses the intersection of two circles (C) without prov-
ing its existence. Most readers would not find the proof
problematic, as the two circles intersect in the diagram.
Such implicit diagrammatic reasoning is ubiquitous in in-
formal geometric proofs but needs to be handled explicitly
in formal proofs (Beeson et al., 2019). Therefore, a naive
attempt to autoformalize the proofs would be difficult, as it
requires the model to fill in many diagrammatic reasoning
gaps, with nothing to reference in the informal texts.

To mitigate diagrammatic gaps, LeanEuclid adopts a for-
mal system named E (Avigad et al., 2009), introduced by
philosophers for modeling diagrammatic reasoning in Eu-
clid’s Elements. It teases out a set of diagrammatic rules
so that diagrammatic reasoning can be modeled as logical
deductions. We implement E in Lean and provide proof
automation to fill in diagrammatic reasoning gaps, using the
same symbolic reasoning engine developed for equivalence
checking. Our system enables formalizing all 48 theorems
and proofs from Elements (Book I), following Euclid’s orig-
inal proofs as closely as possible, with diagrammatic reason-
ing carried out implicitly and automatically (see Fig. 1). The
data is included in LeanEuclid, making autoformalizing Eu-
clid’s proofs feasible. The language model now only needs
to autoformalize the explicit textual proof steps, leaving the
“obvious” implicit reasoning to the symbolic engine.

2
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Logan Murphy*, Kaiyu Yang*, et al.,  Autoformalizing Euclidean Geometry, ICML 2024
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Evaluation of State-of-the-art LLMs
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Our Contribution

[4] Chen, Jiaqi, et al. ”UniGeo: Unifying Geometry Logical Reasoning via Reformulating Mathematical Expression.” Proc.
of the Conference on Empirical Methods in Natural Language Processing (2022)
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Chen et al., UniGeo: Unifying Geometry Logical Reasoning via Reformulating Mathematical Expression, EMNLP 2022

Autoformalizing Euclidean Geometry

example, if we are formalizing the proof of Proposition 10
in Elements, then the set of available helper theorems will
include all versions of Propositions 1–9. Once the autofor-
malized proof is generated, we check its correctness using
Lean and attempt to fill in diagrammatic reasoning gaps
using the symbolic reasoning engine. The complete prompt
template is given in Appendix D.

5. Experiments
5.1. Autoformalizing Theorem Statements

Experimental Setup. We evaluated the efficacy of LLMs
on autoformalizing theorem statements using GPT-4 and
GPT-4V. The input modality for GPT-4 was restricted to
textual questions, while GPT-4V extended this by including
diagrams as well. To implement few-shot learning, we
randomly selected five propositions from Euclid’s Elements

and five problems from each category in the UniGeo dataset,
serving as in-context learning examples. We then use E3
to automatically evaluate the results of each round. To see
how well E3 correlates with human evaluation, we manually
evaluate a sample of formalized theorems from Elements to
identify any false negatives/positives.

GPT-4 GPT-4V
Dataset 0-shot 1-shot 5-shot 0-shot 1-shot 5-shot

Elements 2.3% 4.7% 16.3% 2.3% 4.7% 20.9%
UniGeo 3.0% 9.0% 20.0% 5.0% 10.0% 21.0%

Overall 2.8% 7.7% 18.9% 4.2% 8.4% 21.0%

Table 1. Percentage of proved semantic equivalences
from autoformalized theorem statements from Ele-

ments and UniGeo. Experiments were conducted in
January 2024 using gpt-4-1106-preview and
gpt-4-1106-vision-preview.

Results. Table 1 shows the accuracies of autoformaliz-
ing theorem statements, where correctness is measured by
using E3 to check logical equivalence. Results on the El-

ements and UniGeo parts of LeanEuclid are also shown
separately. Across both parts, few-shot learning with 5 shots
produces correct formalizations at a rate of 21%. We also
see a small improvement when visual inputs are included.
We emphasize that Table 1 was generated automatically by
E3. While some autoformalized theorem statements are
syntactic matches of their ground truth and, therefore, easily
identified as correct, others are not. Manual evaluation of
these instances is expensive and tedious, whereas E3 is able
to identify these cases easily.

For cases where equivalence fails, E3 reports whether either
of Tgt =→ Tpred or Tpred =→ Tgt can be proved,
allowing us to partition the failed cases into different classes.
For instance, two rounds of autoformalization with GPT-4

(1-shot) yielded 67 rejected predictions, for 31 of these we
could prove only Tgt =→ Tpred, for 15 we could prove
only Tpred =→ Tgt, and for 21 we could prove neither.

Given that only a minority of predictions are provably cor-
rect, we can send the remainder to E3’s approximate equiv-
alence checker to glean “close” formalizations. For brevity,
we only showcase this evaluation on the results of GPT-4 (5-
shot) on Euclid’s Elements. Of the 36 rejected predictions,
10 possess the correct quantity and type of bound variables,
and so are amenable to approximate analysis. The results
of this analysis are shown in Fig. 3. For each proposition,
we show the total number of clauses (preconditions and
postconditions of both formulas) and the number of clauses
that could be proved. We can see that, in addition to the 7
propositions that were provably equivalent, this round pro-
duced 5 propositions for which more than 90% of all proof
obligations can be resolved. Some interesting examples
produced during our experiments are in Appendix E.

Figure 3. Approximate equivalence checking results for theorems
from Elements formalized by GPT-4 (5-shots).

Comparison with Manual Evaluation. To compare the
accuracy of E3 to manual evaluation, we took a sample of
86 formalizations and investigated them for false negatives.
The examples were taken from the results of GPT-4 and
GPT-4V (both 5-shot). Among the 86 autoformalized the-
orem statements, 16 were proved equivalent to the ground
truth, and all 16 were judged to be correct by humans. The
remaining 70 could not be proved equivalent, but human
inspection revealed that 3 should be equivalent to the ground
truth. This gives us an estimated false negative rate of 15.8%.
These instances are shown in Appendix E.

With respect to false positives, we did not find indications
of soundness bugs in E3. However, a false positive can
occur when an autoformalized theorem happens to be prov-
ably equivalent to the ground truth, but is unlikely to be
identified by a human as a “faithful” formalization of the
given proposition. We identified only one such case from
our experiments, which is also shown in Appendix E.

7

Experiments conducted in Jan, 2024
gpt-4-1106-preview

gpt-4-1106-vision-preview
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Re-evaluation in June, 2025
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the non-trivial case missed by Euclid
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One interesting finding: the case missed by Euclid
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Better Proof automation with PyEuclid

• LeanEuclid and AlphaGeometry 
• only handle theorem proving problems (w/o calculations)
• Require human / LLMs guidance to do proofs

• PyEuclid
• Handle theorem proving problems in general
• Fully automated
• If available, LLM guidance could improve the efficiency

20

Li et al., PyEuclid: A Versatile Formal Plane Geometry System in Python, CAV 2025
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PyEuclid Performance

• JGEX-AG-231 (AlphaGeometry benchmark)
• DD (152), Wu’s method (173), DDAR (198), PyEuclid (203)
• AlphaGeometry (228)

• Geometry3K (more general benchmark)
• PyEuclid solves 529 problems first (out of 599 theorem proving problems)
• Identifies 38 buggy problems

• 21 with incorrect or contradictory values
• 17 with missing or incorrect relations

• Solved 567 (529 + 38) in total

21
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Open Challenges

• How to assure the correctness/alignment of auto-formalization?
• How to automatically design the formal languages?
• How to automatically design/learn high-level proof tactics?
• How to auto-informalize a giant proof?
• How to conjecture new interesting theorems?
• How to scale to textbook-level auto-formalization?
• How to scale to research article level auto-formalization?
• From peer review to machine review?

22
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Takeaways

• Auto-formalization is full of interesting challenges

• Innovations & impacts can be made in many areas of research
• Math foundations, Formal Methods, Machine Learning, NLP
• Programming languages, Software Engineering, HCI
• AI safety, Interpretability, Alignment

23


