An Approach to Quantify Plans Robustness in Real-world Applications The 34th International Joint Conference on Artificial Intelligence, IJCAI 2025

Francesco Percassi¹, **Sandra Castellanos-Paez**¹, Romain Rombourg², Mauro Vallati¹

¹School of Computing and Engineering, University of Huddersfield, United Kingdom ²G2ELab, Grenoble INP, CNRS, Université Grenoble Alpes, Grenoble, France

University of HUDDERSFIELD

Motivation and Context

Plans often fail due to uncertainty \rightarrow costly replanning

Automated planning is used in real-world domains like traffic control, robotics, UAV navigation, etc.

- Challenge: Uncertainty and noise (sensor errors, actuator failures, environmental unpredictability) can make plans ineffective.
- ♦ **Costly fallback**: Replanning and plan repair are computationally expensive.

Key shift

In many real scenarios, *exact goal achievement* is unnecessary — reaching an **acceptable outcome region** is sufficient.

Quantifying Plans Robustness

Core concepts

Executable vs. Valid

Quantifying Plans Robustness

Sandra Castellanos-Paez

♦ Executable vs. Valid Plans:

- **Executable plan**: Can be successfully executed from the initial state, satisfying all the necessary conditions at each step.
- Valid plan: Executable and reaches a state satisfying the goal.

Execution-Invariant Plans and Tasks:

- Execution-invariant plan: Always executable even when certain initial numeric variables vary.
- Execution-invariant task: All executable plans are invariant to some subset of numeric variables.

A statistical approach for quantifying plan robustness

Plan robustness - Exact goal

- \circ Probability that a given plan π achieves the goal G under the distribution over the possible initial states.
- Measured via Bayesian estimation (Beta distribution confidence intervals).

Plan robustness $R_{\mathcal{I}}(\pi)$

Let Π be a planning task, let $\mathcal I$ be a random variable representing the possible initial states and $f_{\mathcal I}$ its distribution. The robustness of a plan π for Π with respect to $\mathcal I$ is defined as:

$$R_{\mathcal{I}}(\pi) = \mathbb{E}_{\mathcal{I} \sim f_{\mathcal{I}}} \left[\llbracket \pi \in \text{Plans}(\Pi[\mathcal{I}]) \rrbracket \right]$$

where $[\![P]\!]$ is the Iverson bracket which returns 1 if proposition P is true and 0 otherwise.

Quantifying Plans Robustness

A statistical approach for quantifying plan robustness

B robustness and B_{min} – Acceptable region

- \circ Extends robustness to allow tolerance B around the goal.
- o B_{min} : Minimum tolerance needed to reach a target robustness level R^* .

B-Robustness

Given a tolerance factor B, the B-robustness of a plan π is defined as follows:

$$R_{\mathcal{I}}(\pi, B) = \mathbb{E}_{\mathcal{I} \sim f_{\mathcal{I}}}[\llbracket d_G(\gamma(\mathcal{I}, \pi)) \leq B \rrbracket]$$

B_{min}

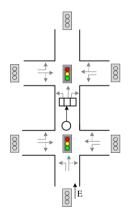
Let $R^* \in [0,1]$ denote a desired robustness level. B_{\min} is the minimum tolerance required for the plan to succeed with probability at least R^* :

$$B_{\min}(\pi, R^*) = \inf_{\mathbb{R}_+} \{ B \mid R_{\mathcal{I}}(\pi, B) \ge R^* \}$$

Quantifying Plans Robustness

Case Studies

Case Study 1 – Urban Traffic Control (real data)



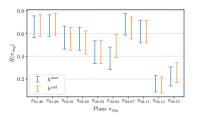
- Network as a directed graph:
 - Nodes = junctions
 - Edges = road links
- Each junction operates through predefined traffic signal configurations, which regulate vehicle flows between incoming and outgoing links.
- Traffic flows: continuous processes.
- Signal transitions: discrete events.

Quantifying Plans Robustness

Case Studies

Case Study 1 – UTC

- **Goal**: Optimize traffic signals to maximise throughput and minimise congestion.
- Variables: Initial traffic occupancy of each link (Link occupancies), Average flow of vehicles in junctions between ingoing and outgoing links, during given green times (turn rates).
- Data: 90 real instances from Yorkshire corridor.
- Findings:
 - Robustness varies between days.
 - Conservative robustness requires $\sim 20\%$ tolerance; most probable case $\sim 5\%$.



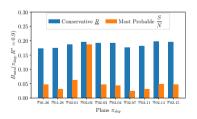


Figure: $[R, \overline{R}]$: Robustness CI per day plan.

Figure: B_{\min} per day plan.

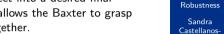
Quantifying Plans Robustness

Case Studies

Case Study 2 – Baxter Robot Manipulation (synthetic data)

A Baxter robot provided with two arms, tasked to manipulate an object into a desired final configuration. The manipulation involves a sequence of actions that allows the Baxter to grasp two links and modify the angle of the joint connecting these links together.

- **Initial state**: The initial object pose characterised by the orientation of each link l, which is described by two angles: θ_i^{xy} for the horizontal plane and θ_i^z for the z-axis
- Goal: Numeric conditions imposed on the orientation variables of some links.
- Variables: Initial object pose angles.
- **Results**: Plans are generally not robust; tolerance levels vary less than in UTC.



Paez

Quantifying

Plans

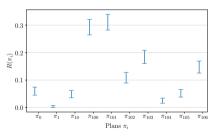


Figure: $[R, \overline{R}]$: Robustness CI per plan.

Results and Insights

Key Findings (execution-invariance, tolerance-robustness trade-offs)

- Robustness varies significantly between plans, even in same domain.
- ♦ Execution-invariance naturally occurs in some domains (e.g., UTC, Baxter).
- ♦ Tolerance—robustness trade-offs are **domain-specific**.
- Statistical framework works with both historical and synthetic data.

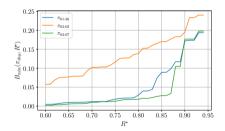


Figure: Tolerance vs desired robustness trade-off for UTC.

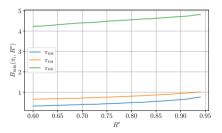


Figure: Tolerance vs desired robustness trade-off for Baxter.

Quantifying Plans Robustness

Looking Forward

Future Work (bounds, repairing plans, guiding plan generation)

Quantifying Plans Robustness

Sandra Castellanos-Paez

Proposed:

- Clear definition of execution-invariant problems.
- Statistical framework to quantify plan robustness.
- \diamond Applicable to ${\tt PDDL+}$ and other numeric planning formalisms.
- Future directions:
 - Automatic derivation of numeric variable bounds.
 - Plan repair for insufficient robustness.
 - Using robustness to guide plan generation.

Looking Forward

Final Takeaways (robustness > perfection, practical usability)

Quantifying Plans Robustness

- In noisy environments:
 - \circ Focus on executability + acceptable outcomes.
 - Quantify robustness to plan with confidence.
 - o Framework supports informed plan selection without over-reliance on replanning.

Thanks for your attention! Questions?

Scan to get in touch:)

Quantifying Plans Robustness