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Motivation and Context
Plans often fail due to uncertainty → costly replanning

Automated planning is used in real-world domains like traffic control, robotics,
UAV navigation, etc.

⋄ Challenge: Uncertainty and noise (sensor errors, actuator failures,
environmental unpredictability) can make plans ineffective.

⋄ Costly fallback: Replanning and plan repair are computationally expensive.

Key shift

In many real scenarios, exact goal achievement is unnecessary — reaching an
acceptable outcome region is sufficient.
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Core concepts
Executable vs. Valid

⋄ Executable vs. Valid Plans:
◦ Executable plan: Can be successfully executed from the initial state, satisfying

all the necessary conditions at each step.
◦ Valid plan: Executable and reaches a state satisfying the goal.

⋄ Execution-Invariant Plans and Tasks:
◦ Execution-invariant plan: Always executable even when certain initial numeric

variables vary.
◦ Execution-invariant task: All executable plans are invariant to some subset of

numeric variables.
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A statistical approach for quantifying plan robustness
Plan robustness – Exact goal

◦ Probability that a given plan π achieves the goal G under the distribution over
the possible initial states.

◦ Measured via Bayesian estimation (Beta distribution confidence intervals).

Plan robustness RI(π)

Let Π be a planning task, let I be a random variable representing the possible
initial states and fI its distribution. The robustness of a plan π for Π with respect
to I is defined as:

RI(π) = EI∼fI [Jπ ∈ Plans(Π[I])K]

where JP K is the Iverson bracket which returns 1 if proposition P is true and 0
otherwise.
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A statistical approach for quantifying plan robustness
B robustness and Bmin – Acceptable region

◦ Extends robustness to allow tolerance B around the goal.

◦ Bmin: Minimum tolerance needed to reach a target robustness level R⋆.

B-Robustness

Given a tolerance factor B, the B-robustness of a plan π is defined as follows:

RI(π,B) = EI∼fI [JdG(γ(I, π)) ≤ BK]

Bmin

Let R⋆ ∈ [0, 1] denote a desired robustness level. Bmin is the minimum tolerance required for the
plan to succeed with probability at least R⋆:

Bmin(π,R
⋆) = inf

R+

{B | RI(π,B) ≥ R⋆}
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Case Studies
Case Study 1 – Urban Traffic Control (real data)

⋄ Network as a directed graph:

◦ Nodes = junctions
◦ Edges = road links

⋄ Each junction operates through predefined traffic
signal configurations, which regulate vehicle flows
between incoming and outgoing links.

⋄ Traffic flows: continuous processes.

⋄ Signal transitions: discrete events.
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Case Studies
Case Study 1 – UTC

⋄ Goal: Optimize traffic signals to maximise throughput and minimise congestion.

⋄ Variables: Initial traffic occupancy of each link (Link occupancies), Average flow of vehicles
in junctions between ingoing and outgoing links, during given green times (turn rates).

⋄ Data: 90 real instances from Yorkshire corridor.

⋄ Findings:

◦ Robustness varies between days.
◦ Conservative robustness requires ∼20% tolerance; most probable case ∼5%.
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Figure: [R,R]: Robustness CI per day plan.
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Figure: Bmin per day plan.
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Case Studies
Case Study 2 – Baxter Robot Manipulation (synthetic data)

A Baxter robot provided with two arms, tasked to manipulate an object into a desired final
configuration. The manipulation involves a sequence of actions that allows the Baxter to grasp
two links and modify the angle of the joint connecting these links together.

⋄ Initial state: The initial object pose characterised by
the orientation of each link l, which is described by
two angles: θxyl for the horizontal plane and θzl for
the z-axis.

⋄ Goal: Numeric conditions imposed on the orientation
variables of some links.

⋄ Variables: Initial object pose angles.

⋄ Results: Plans are generally not robust; tolerance
levels vary less than in UTC.
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Figure: [R,R]: Robustness CI per plan.
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Results and Insights
Key Findings (execution-invariance, tolerance–robustness trade-offs)

⋄ Robustness varies significantly between plans, even in same domain.

⋄ Execution-invariance naturally occurs in some domains (e.g., UTC, Baxter).

⋄ Tolerance–robustness trade-offs are domain-specific.
⋄ Statistical framework works with both historical and synthetic data.
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Figure: Tolerance vs desired robustness
trade-off for UTC.
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Figure: Tolerance vs desired robustness
trade-off for Baxter.
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Looking Forward
Future Work (bounds, repairing plans, guiding plan generation)

⋄ Proposed:
◦ Clear definition of execution-invariant problems.
◦ Statistical framework to quantify plan robustness.

⋄ Applicable to pddl+ and other numeric planning formalisms.

⋄ Future directions:
◦ Automatic derivation of numeric variable bounds.
◦ Plan repair for insufficient robustness.
◦ Using robustness to guide plan generation.
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Looking Forward
Final Takeaways (robustness > perfection, practical usability)

⋄ In noisy environments:

◦ Focus on executability + acceptable outcomes.
◦ Quantify robustness to plan with confidence.
◦ Framework supports informed plan selection without over-reliance on replanning.
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Thanks for your attention! Questions?

Scan to get in touch :)
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