

Learning Adaptive Diffusion Policies for Hybrid Dynamical Systems

Leroy D'Souza*, Akash Karthikeyan*, Yash Vardhan Pant, Sebastian Fischmeister Department of Electrical and Computer Engineering, University of Waterloo

Motivation

Motivating example: Autonomous racing in multi-terrain tracks.

- Different terrains have different dynamics models.
- Moving between different terrains induces **sudden switches** in the dynamics function yielding a **hybrid system**.

Hybrid system model:

$$s_{t+1} = \sum_{m=1}^{M_E} \delta^E(m,s_t) f^m(s_t,a_t)$$
Mode switching Mode-specific indicator dynamics

Can a policy that switches between mode-specific policies work?

- $\pi_{ ext{switch}}(a_t|s_t) = \sum_{m=1}^{M_E} \delta^E(m,s_t) \pi_m(a_t|s_t)$ Mode-specific policies
- Policies for each individual mode can yield very different behaviors.
- Switching between conflicting policies can yield stagnant trajectories.

In general, switching policies fail to account for the effects of switches between modes.

Problem Overview:

Can we learn policies that understand the importance of anticipating sudden switches in transition dynamics functions?

Method

We propose MoE-Diff which learns an energy-diffusion policy using a Mixture-of-Experts (MoE) actor with an interpretable router. We train MoE-Diff end-to-end via iterative energy minimization, composing and interpolating modes to adapt in a priori unknown environments.

MoE-Diff Policy

- A. Replay Buffer: Stores past observations and actions from environment interaction.
- B. Diffusion Actor (MHMoEWu et. al, 2017): Starts from a noisy action sample and iteratively denoises it into a final action, conditioned on the state and diffusion timestep; the final action is executed in the environment.
- C. Critic (Double Q^{Hasselt, 2010}): Estimates values and provides the action gradient to refine actions during policy improvement; refined actions are appended back to the buffer.

Results

Generalization to previously unseen environments

Friction value(s)	SAC	UP-True	$\mathrm{DiPo}\oplus\mathcal{C}$	MoE-Diff (Ours)
	Sin	gle friction tr	acks	
0.5	104.9 (80.3)	111.2 (69.0)	158.1 (83.8)	224.4 (69.1)
0.4	58.8 (54.4)	105.9 (66.9)	$116.3\ (76.4)$	$162.3\ (85.6)$
0.3	26.2(17.1)	$81.1\ (55.2)$	44.8 (36.3)	$75.0\ (52.5)$
	Hybrid (mod	de-switching)	friction tracks	3
$\{1.0, 0.5\}$	176.7 (100.9)	142.7 (82.5)	160.9 (89.0)	232.8 (58.4)
$\{0.3, 0.5\}$	49.6 (44.5)	100.2 (66.3)	120.1 (82.4)	233.6 (51.6)
$\{0.25, 0.4\}$	29.5 (37.3)	95.1 (60.6)	88.8 (71.4)	$144.2 \ (78.2)$

MoE-Diff generalizes to racetrack layouts and dynamics modes that were not observed during training.

Qualitative Analysis of Router Gating

t-SNE visualization of state embeddings with k-means cluster averages, showing distinct poses linked to different expert activations in the MoE architecture.

Future Work

- Automatic curricula for sampling hybrid training environments to **prevent instability** in policy learning and **improve sample efficiency**.
- Improving **behavior diversity** by training in reward-free settings with entropy maximization.