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Results
Generalization to previously unseen environments

MoE-Diff generalizes to racetrack layouts and dynamics 
modes that were not observed during training.
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Future Work
- Automatic curricula for sampling hybrid training environments to 

prevent instability in policy learning and improve sample efficiency.
- Improving behavior diversity by training in reward-free settings with 

entropy maximization.

Motivation

Hybrid system model:

Mode-specific 
dynamics

Mode switching 
indicator

• Different terrains have different 
dynamics models.

• Moving between different terrains 
induces sudden switches in the 
dynamics function yielding a 
hybrid system.

Motivating example: Autonomous racing in multi-terrain tracks. Can a policy that switches between mode-specific policies work?

• Policies for each individual 
mode can yield very different 
behaviors.

• Switching between 
conflicting policies can yield 
stagnant trajectories.

In general, switching policies fail to account for the effects of 
switches between modes.

Problem Overview: 
Can we learn policies that understand the importance of anticipating sudden switches in transition dynamics functions?

MoE-Diff Policy
A. Replay Buffer : Stores past observations 

and actions from environment interaction. 
B. Diffusion Actor (MHMoEWu et. al, 2017) : Starts 

from a noisy action sample and iteratively 
denoises it into a final action, conditioned 
on the state and diffusion timestep; the 
final action is executed in the 
environment.

C. Critic (Double QHasselt, 2010) : Estimates 
values and provides the action gradient to 
refine actions during policy improvement; 
refined actions are appended back to the 
buffer.
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Method
We propose MoE-Diff which learns an energy-diffusion policy using a Mixture-of-Experts (MoE) actor with an interpretable router. 

We train MoE-Diff end-to-end via iterative energy minimization, composing and interpolating modes to adapt in a priori unknown environments.
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Qualitative Analysis of Router Gating 

Diffusion Process

t-SNE visualization of state embeddings with k-means cluster averages, showing 
distinct poses linked to different expert activations in the MoE architecture.
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