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Motivation
Motivating example: Autonomous racing in multi-terrain tracks. Can a policy that switches between mode-specific policies work?
 Different terrains have different 10.0 Mg
_ E
dynamics models. 75 Towicn (alse) = D, 6% (m s
* Moving between different terrains 5.0 Mode-sbecific bolicies
. . . = - ITI ICI
induces sudden switches in the | £ 25 P P
dynamics function vyielding a | & o0 - * Policies for each individual
. o e | . .
hybrid system. o =25 — mode can yield very different
Hybrid system model: =0 o ;Zv:tiitf;,hposmon behaviprs.
—7.5 % G " * Switching between
Dry Mg 100 oal position flictin lici vield
Asphalt St+1 = Z (st,a,t) —10 -5 0 5 10 conflicting PO 'C'e§ canyie
- — X position (m) stagnant trajectories.
~— Agent trained in single terrain environments . J
— Agentlrained in hybrid terrain environments Mode switching Mode-specific In general, switching policies fail to account for the effects of
Indicator dynamics switches between modes.

Problem Overview:
Can we learn policies that understand the importance of anticipating sudden switches in transition dynamics functions?

Method

We propose MoE-Diff which learns an energy-diffusion policy using a Mixture-of-Experts (MoE) actor with an interpretable router.
We train MoE-Diff end-to-end via iterative energy minimization, composing and interpolating modes to adapt in a priori unknown environments.
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Results
Generalization to previously unseen environments Qualitative Analysis of Router Gating
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Single friction tracks
0.5 104.9 (80.3)  111.2 (69.0)  158.1 (83.8)  224.4 (69.1)
8-;1 222 (?‘;-‘11) ;25i9 (;5563) 1414653 (376634) 1*;?)-3 (58255-6) t-SNE visualization of state embeddings with k-means cluster averages, showing
: 2 U7l) 1 (55.2) 8 (36.3) 0 (525) distinct poses linked to different expert activations in the MoE architecture.
Hybrid (mode-switching) friction tracks
{1.0,0.5} 176.7 (100.9)  142.7 (82.5)  160.9 (89.0) 232.8 (58.4) FUtU re WO rk
{0.3,0.5} 49.6 (44.5)  100.2 (66.3)  120.1 (82.4)  233.6 (51.6)
25, 0 i, i Bl i e N e B i - Automatic curricula for sampling hybrid training environments to

prevent instability in policy learning and improve sample efficiency.
- Improving behavior diversity by training in reward-free settings with
entropy maximization.

MoE-Diff generalizes to racetrack layouts and dynamics
modes that were not observed during training.
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