

 1

SPoRt – Safe Policy Ratio:
Certified Training and Deployment of Task Policies

in Model-Free RL
Jacques Cloete, Nikolaus Vertovec, Alessandro Abate

University of Oxford

Hello, my name is Jacques, I’m from the University of
Oxford Control and Verification group, and I’ll be
talking about our paper, “Safe Policy Ratio” (or
SPoRt).

 2

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 2

Motivation

● To apply RL to safety-critical applications, we ought to provide
safety guarantees during both policy training and deployment

Credit: Waymo Credit: Franka Robotics Credit: Amazon

To apply reinforcement learning to safety-critical
applications, we ought to provide safety guarantees
during both training and deployment.

Safety during training is particularly important if we’re
training in real-world environments, which is often the
case in robotics, for example.

 3

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 3

Motivation

● In many cases we would also like to adapt an existing safe policy
to maximize reward while maintaining these safety guarantees

Credit: Waymo Credit: Franka Robotics Credit: Amazon

We may also want to adapt an existing “safe” policy to
maximize some new reward while maintaining these
safety guarantees.

For example, we may want our delivery drone to be
faster or more energy efficient but still safely reach
its destination.

 4

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 4

Introducing Safe Policy Ratio (SPoRt)

● Model-free RL approach (for episodic tasks of bounded length)

● Adapts an existing ‘safe’ policy to maximize task-specific reward

● Maintains a bound on safety violation, enforced during training
and known prior to rollout

In response to this, we present Safe Policy Ratio (or
SPoRt);

a model-free RL approach that adapts an existing
‘safe’ policy to maximize task-specific reward while
maintaining a bound on safety violation, enforced
during training and known prior to rollout.

In other words, SPoRt enables users to trade off safety
guarantees for task-specific performance, while
maintaining a prior bound on safety.

I’ll take you through the approach now.

 5

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 5

Problem Setup

● MDP , safety constraints

• Continuous states and actions

• Initial state distribution

• State transition distribution

• Task-specific reward

• Episode length

● Policy π(a|s) : S → Δ(A)

⟨S , A , p ,μ , r task ⟩

s ∈ S a ∈ A

μ(s) ∈ Δ(S)

p(s '|a , s) : S×A → Δ(S)

r task (s ,a) : S×A → ℝ

Environment

Agent

at
str t

r t+1 st+1

T

φ

We begin with an overview of our model-free RL setup.

The agent interacts with an unknown environment
modelled as a Markov Decision Process, with
continuous states and actions, and a task-specific
reward function.

 6

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 6

Safety as a Temporally-Extended Property

● Define safety in terms of temporal property

● Use Linear Temporal Logic (LTL)

• Great for defining temporally-extended properties

• e.g. (reach-avoid property)

• Binary metric for safety violation

● Train policies for LTL satisfaction using e.g. LCRL (Hasanbeig et al)

φ

φ = (¬ 'hazard') U 'goal'

Now, let’s define safety as a temporal property, in
particular, a Linear Temporal Logic formula.

LTL is great for specifying constraints in safety-critical
systems because it allows for the formal expression
of temporally-extended properties in a way that is
precise and verifiable.

A good example is the reach-avoid property, or “avoid
the hazard until you’ve reached the goal”.

Note that we can train RL agents to satisfy LTL
properties, using methods like LCRL.

 7

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 7

Safety as a Temporally-Extended Property

● Distinct from (task-specific) reward!

• represents what we require the agent to do (reach goal/avoid hazard)

• represents a performance metric to improve (speed/energy)r task

φ

Note that the safety property is distinct from the task-
specific reward.

The property represents what we require the agent to
do (such that failing to do this counts as safety
violation), e.g., reach-avoid.

Meanwhile, the reward represents a performance
metric to improve, such as time taken or power
usage.

With this in mind, SPoRt is best suited to improving
performance of something the agent can already do,
rather than getting it to do something entirely new.

 8

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 8

Safety as a Temporally-Extended Property

● Evaluate on finite trajectory under policy

• means safety violation, means satisfaction

τπ =(s0 , ... , sT) π
τπ ⊭φ τπ ⊨φ

φ

To determine safety violation, we evaluate the property
on a finite trajectory of states, equal to the episode
length, generated using our policy.

 9

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 9

● Existing base policy that we think is safe

• How to actually certify safety in a model-free setup?

● Use PAC learning to compute a bound on violation probability

● E.g. scenario approach (Campi & Garatti)

Data-Driven Property Satisfaction

P(τπbase⊭φ)⩽ ϵbase

πbase

Bound on violation probability for base policy

(i . e . τπ ⊨φ)

Now, imagine we’re given an existing base policy that
we think is safe, perhaps trained in simulation using
LCRL.

How do we actually certify safety in a model-free
setup?

The solution is to use some kind of PAC learning to
bound the probability of safety violation with high
confidence.

There are different methods one could use, but for our
paper we used the scenario approach.

 10

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 10

Data-Driven Property Satisfaction

● Robustness metric

•

•

If for samples ,

then

with confidence , where

samples
<0

N {(τπbase)i}
1 :N

ρφ : ST → ℝ
τπ ⊭φ ⇔ ρφ(τπ)<0

{(τπbase)i}
1:NNρφ(τπbase)⩾0

τπ ⊨φ ⇔ ρφ(τπ)⩾0

P(ρφ(τπbase)<0) ⩽ ϵbase
1−β β= (1−ϵbase)

N

ρφ(τπ)
0 ⩾0

Unsafe Safe

How likely that a new sample is unsafe?τπbase

I’m happy to go into more details about how we used
scenario approach in the discussion.

(For any property there exists a real-valued robustness
metric that is negative on property violation and non-
negative on satisfaction.

Scenario approach tells us that, if we collect N
trajectory rollouts under the base policy with all non-
negative metric values, then we can bound the
probability that a new trajectory rollout has negative
metric value with high confidence.

This gives us a bound on violation probability.)

 11

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 11

● We now want to modify into a new

• should maximize while inheriting safety from

● How to maintain safety guarantees?

• Modifying sample distribution generally breaks PAC bounds...

Property Violation under Modified Policies

πbase πtask
r taskπtask πbase

Now suppose we want to modify our certified base
policy into a new task policy which maximizes task-
specific reward while inheriting safety from the base
policy.

But, how can we maintain our safety guarantees?

If the policy changes, the trajectory distribution
changes, which means that our PAC-based bounds
would traditionally no longer apply.

However, we found a solution, under certain
conditions.

 12

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 12

● For any modified policy , if the policy ratio is bounded:

then the probability of safety violation for is bounded:

Property Violation under Modified Policies

πtask (a|s)
πbase(a|s)

⩽α ∀ a∈A , s∈S

P(τπ task⊭φ)⩽ ϵbaseα
T

πtask

πtask

Bound on violation probability for task policy

In the paper we prove that if the policy ratio is bounded
by some value alpha for all state-action pairs, then
the probability of safety violation for the task policy is
bounded by that of the base policy, multiplied by
alpha exponentiated by the episode length.

 13

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 13

Property Violation under Modified Policies

No required knowledge of system dynamics, or constraints for !φ

π task (a|s)
πbase(a|s)

⩽α ∀ a∈A , s∈S

P(τπtask⊭φ)⩽ ϵbaseα
T→

P(τπbase⊭φ)⩽ ϵbase
and } Bound on violation probability for task policy

Bound on violation probability for base policy

Bound on policy ratio

In other words, we can obtain a prior bound on the
probability of safety violation for any task policy
based entirely on the base policy, with no required
knowledge of the system dynamics, or the
constraints of the property.

 14

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 14

Quick Note: Extension to Robust Control

● We have thus far assumed and are unchanged

● Our results can generalize to changes in both

• Can be applied to robust control settings for perturbed systems

● See the paper for details!

μ p

Our result can also generalize to robust control, which
I’m happy to talk more about in the discussion.

(We have thus far assumed that the initial state
distribution and state transition distribution are
unchanged

However, our results can actually generalize to
changes in both.

So, they can be applied to robust control settings for
perturbed systems, for example.

See the paper for details.)

 15

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 15

Property Violation under Modified Policies

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

a

p (a|s0)
t=0 We require:

πbase

Let’s visualize an episode rollout for a candidate
unconstrained task policy.

Here we’ve got the base policy at time 0.

 16

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 16

Property Violation under Modified Policies

a

p (a|s0)
t=0

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

απbase

Let’s multiply it up by alpha. For our safety guarantees
to hold, our task policy must remain below this new
line.

 17

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 17

Property Violation under Modified Policies

πbase

απbase

πtask

p(a|s0)

a

✓
t=0

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

And here’s the unconstrained task policy. All good so
far.

 18

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 18

Property Violation under Modified Policies

πbase

απbase

πtask

p(a|s1)

a

✓
t=1

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

Still good for time 1.

 19

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 19

Property Violation under Modified Policies

p(a|s2)

a

x
t=2

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

απbase

πtask

Ahh, at time 2 we see that the unconstrained task
policy violates the bound on the policy ratio.

This is a good time to point out that the safety of our
task policy relies on it being in the support of the
base policy;

if we try to deviate too much, our bound becomes
huge, since we’re going way out of distribution.

 20

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 20

Property Violation under Modified Policies

πbase

απbase

πtask

p(a|s2)

a

How can we ensure the policy ratio is bounded for all state-action pairs?

t=2

x π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

Now, in order for our safety guarantees to hold, we
need to ensure that the policy ratio is always
bounded by alpha, regardless of what state the agent
is in.

But how can we do this?

 21

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 21

Policy Projection

(α=1)

(Policy space)Π

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

At each time step...

Let’s visualize our base policy in “policy space” at a
given time step.

For a diagonal Gaussian policy, the dimensions of this
space would be the means and variances.

 22

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 22

Policy Projection

(α=1)

α=1.01
α=1.1

α=1.5

α=5At each time step...
π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

Policy ratio
level sets

For different values of alpha we can draw level sets of
policies where the policy ratio is less than or equal to
alpha for all actions.

 23

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 23

Policy Projection

(α=1)

α=1.01
α=1.1

α=1.5

α=5

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

α
increasing

At each time step...

Policy ratio
level sets

And notice that as alpha increases, the level sets
become larger.

This makes sense; we’re allowing our bound on safety
violation to go up, but we gain more flexibility for
what our task policy can be.

 24

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 24

Policy Projection

P(τπ task⊭φ)⩽ ϵbaseα
T ⩽ ϵmax

ϵbase=0.00017 , ϵmax=0.01 , T=10 ⇒ α=1.5

⇒α ⩽ T√ ϵmaxϵbase

Maximum acceptable
violation probability

Suppose

A good way to choose alpha is to first decide on a
maximum acceptable violation probability and then
rearrange our bound to recover maximum allowed
alpha.

 25

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 25

Policy Projection

(α=1)

α=1.01
α=1.1

α=1.5

α=5

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

Πα=1.5 ,πbase

α
increasing

At each time step...

Policy ratio
level sets

With our chosen alpha, we now have a feasible set of
allowed task policies.

 26

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 26

Policy Projection

(α=1)

α=1.01
α=1.1

α=1.5

α=5

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

πtask Πα=1.5 ,πbase

α
increasing

At each time step...

Policy ratio
level sets

Suppose our unconstrained task policy lies outside this
feasible set at a given time step.

 27

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 27

Policy Projection

πbase

π proj
πtask

(α=1)

α=1.01

Πα=1.5 ,πbase

α

Projection
(convex minimization

problem)

increasing

α=1.1

α=1.5

α=5

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:At each time step...

Policy ratio
level sets

The trick is to use projection.

For diagonal Gaussian policies, we can project an
unconstrained task policy onto this feasible set as a
convex minimization problem.

The projection minimizes KL divergence between the
task policy and our new projected policy.

We then sample our action from the projected policy.

In this way, the bound on the policy ratio will always
hold.

 28

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 28

Projected PPO

● Clipped PPO, but with policy projection at every time step

• Requires , , and a new task-specific reward function

• Train policy network for unconstrained (initialized as)

• Always sample from during both training and inference

πtask

π proj

πbase

πbase ϵbase α

So, how should we train the task policy, given a new
task-specific reward function?

The answer is to use Projected PPO, which is clipped
PPO but with policy projection at every time step.

We train the policy network for the unconstrained task
policy (initialized as the base policy) to maximize the
task-specific reward, but always sample from the
projected policy, during both training and inference.

 29

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 29

Results

● Applied to a reach-avoid safety property

• Task-specific reward function to minimize time to reach goal

(πbase)

(No consideration of hazard in task-specific reward)

We applied SPoRt to a reach-avoid safety property for
a point agent, with a task-specific reward function to
minimize time to reach the goal.

As you can see, as alpha increases, the agent turns
more tightly around the hazard, reaching the goal
faster but getting closer to safety violation.

 30

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 30

Results

Frequent
violations

(Almost) no
violations

(πbase)

(πbase)

Projected PPO also outperforms naïvely projecting an
unsafe pre-trained task policy at inference time to
enforce safety.

 31

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 31

Results

Trade-off between safety and performance

As alpha increases, time taken on success decreases
while violation risk increases.

Thus, we see a trade-off between safety and
performance.

 32

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 32

Results

Prior bound is very conservative!

Trade-off between safety and performance

However, SPoRt is not without limitations, the biggest
being that the prior bound can be very conservative
for large alpha and episode length.

Future work ought to improve upon this
conservativeness to make it more practically useful.

In the meantime, alpha could be treated more like a
hyperparameter for risk-aversion.

 33

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 33

Conservativeness of the Prior Bound

p (a|st)

a

απbase(s|a)=πtask (s|a)+ partificial(s|a)
Used for bound

Added for
tractability

Actual distribution

Partificial (s)

πbase

απbase

πtask

I’m happy to talk more about the nature of the
conservativeness in the discussion.

(The biggest contributor to the conservativeness is the
“artificial probability mass” that we add to the bound
to make it tractable.

The base policy distribution scaled by alpha, which we
use to construct the bound, is the sum of the task
policy distribution and the artificial probability
distribution.

The artificial probability mass makes the bound “think”
we’re more likely to take each action than we actually
are, including actions that generate unsafe
trajectories, hence raising the bound on safety
violation.)

 34

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL (Cloete et. al.) 34

Thank You for Listening!

This work was supported by the EPSRC Centre
for Doctoral Training in Autonomous Intelligent
Machines and Systems [EP/S024050/1]

 jacques@robots.ox.ac.uk
 jacquescloete.github.io
 jacques-cloete
 JacquesCloete

arxiv.org/abs/2504.06386

Contact:
Full paper here:

That’s all, thank you for listening!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

