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SPoRt – Safe Policy Ratio:
Certified Training and Deployment of Task Policies 

in Model-Free RL
Jacques Cloete, Nikolaus Vertovec, Alessandro Abate

University of Oxford

Hello, my name is Jacques, I’m from the University of 
Oxford Control and Verification group, and I’ll be 
talking about our paper, “Safe Policy Ratio” (or 
SPoRt).
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Motivation

● To apply RL to safety-critical applications, we ought to provide 
safety guarantees during both policy training and deployment

Credit: Waymo Credit: Franka Robotics Credit: Amazon

To apply reinforcement learning to safety-critical 
applications, we ought to provide safety guarantees 
during both training and deployment.

Safety during training is particularly important if we’re 
training in real-world environments, which is often the 
case in robotics, for example.
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Motivation

● In many cases we would also like to adapt an existing safe policy 
to maximize reward while maintaining these safety guarantees

Credit: Waymo Credit: Franka Robotics Credit: Amazon

We may also want to adapt an existing “safe” policy to 
maximize some new reward while maintaining these 
safety guarantees.

For example, we may want our delivery drone to be 
faster or more energy efficient but still safely reach 
its destination.
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Introducing Safe Policy Ratio (SPoRt)

● Model-free RL approach (for episodic tasks of bounded length)

● Adapts an existing ‘safe’ policy to maximize task-specific reward

● Maintains a bound on safety violation, enforced during training 
and known prior to rollout

In response to this, we present Safe Policy Ratio (or 
SPoRt);

a model-free RL approach that adapts an existing 
‘safe’ policy to maximize task-specific reward while 
maintaining a bound on safety violation, enforced 
during training and known prior to rollout.

In other words, SPoRt enables users to trade off safety 
guarantees for task-specific performance, while 
maintaining a prior bound on safety.

I’ll take you through the approach now. 
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Problem Setup

● MDP                           , safety constraints

• Continuous states            and actions

• Initial state distribution

• State transition distribution

• Task-specific reward

• Episode length 

● Policy π(a|s) : S → Δ(A)

⟨S , A , p ,μ , r task ⟩

s ∈ S a ∈ A

μ(s) ∈ Δ(S)

p(s '|a , s) : S×A → Δ(S)

r task (s ,a) : S×A → ℝ

Environment

Agent

at
str t

r t+1 st+1

T

φ

We begin with an overview of our model-free RL setup.

The agent interacts with an unknown environment 
modelled as a Markov Decision Process, with 
continuous states and actions, and a task-specific 
reward function.
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Safety as a Temporally-Extended Property

● Define safety in terms of temporal property

● Use Linear Temporal Logic (LTL) 

• Great for defining temporally-extended properties

• e.g.                                         (reach-avoid property)

• Binary metric for safety violation

● Train policies for LTL satisfaction using e.g. LCRL (Hasanbeig et al)

φ

φ = (¬ 'hazard') U 'goal'

Now, let’s define safety as a temporal property, in 
particular, a Linear Temporal Logic formula.

LTL is great for specifying constraints in safety-critical 
systems because it allows for the formal expression 
of temporally-extended properties in a way that is 
precise and verifiable.

A good example is the reach-avoid property, or “avoid 
the hazard until you’ve reached the goal”.

Note that we can train RL agents to satisfy LTL 
properties, using methods like LCRL.
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Safety as a Temporally-Extended Property

● Distinct from (task-specific) reward!

•   represents what we require the agent to do (reach goal/avoid hazard)

•      represents a performance metric to improve (speed/energy)r task

φ

Note that the safety property is distinct from the task-
specific reward.

The property represents what we require the agent to 
do (such that failing to do this counts as safety 
violation), e.g., reach-avoid.

Meanwhile, the reward represents a performance 
metric to improve, such as time taken or power 
usage.

With this in mind, SPoRt is best suited to improving 
performance of something the agent can already do, 
rather than getting it to do something entirely new.
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Safety as a Temporally-Extended Property

● Evaluate     on finite trajectory                             under policy

•           means safety violation,             means satisfaction

τπ =(s0 , ... , sT ) π
τπ ⊭φ τπ ⊨φ

φ

To determine safety violation, we evaluate the property 
on a finite trajectory of states, equal to the episode 
length, generated using our policy.
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● Existing base policy           that we think is safe

• How to actually certify safety in a model-free setup?

● Use PAC learning to compute a bound on violation probability

● E.g. scenario approach (Campi & Garatti)

Data-Driven Property Satisfaction

P(τπbase⊭φ)⩽ ϵbase

πbase

Bound on violation probability for base policy

(i . e . τπ ⊨φ)

Now, imagine we’re given an existing base policy that 
we think is safe, perhaps trained in simulation using 
LCRL.

How do we actually certify safety in a model-free 
setup?

The solution is to use some kind of PAC learning to 
bound the probability of safety violation with high 
confidence.

There are different methods one could use, but for our 
paper we used the scenario approach.
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Data-Driven Property Satisfaction

● Robustness metric

•

•  
    

If                        for      samples                    ,

then                                       

with confidence           , where                           

samples
<0

N {( τπbase)i}
1 :N

ρφ : ST → ℝ
τπ ⊭φ ⇔ ρφ(τπ)<0

{(τπbase)i}
1:NNρφ( τπbase)⩾0

τπ ⊨φ ⇔ ρφ(τπ)⩾0

P(ρφ( τπbase)<0) ⩽ ϵbase
1−β β= (1−ϵbase)

N

ρφ( τπ)
0 ⩾0

Unsafe Safe

How likely that a new sample        is unsafe?τπbase 

I’m happy to go into more details about how we used 
scenario approach in the discussion.

(For any property there exists a real-valued robustness 
metric that is negative on property violation and non-
negative on satisfaction.

Scenario approach tells us that, if we collect N 
trajectory rollouts under the base policy with all non-
negative metric values, then we can bound the 
probability that a new trajectory rollout has negative 
metric value with high confidence.

This gives us a bound on violation probability.)
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● We now want to modify          into a new

•       should maximize         while inheriting safety from 

● How to maintain safety guarantees?

• Modifying sample distribution generally breaks PAC bounds...

Property Violation under Modified Policies

πbase πtask
r taskπtask πbase

Now suppose we want to modify our certified base 
policy into a new task policy which maximizes task-
specific reward while inheriting safety from the base 
policy.

But, how can we maintain our safety guarantees?

If the policy changes, the trajectory distribution 
changes, which means that our PAC-based bounds 
would traditionally no longer apply.

However, we found a solution, under certain 
conditions.
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● For any modified policy        , if the policy ratio is bounded:

then the probability of safety violation for         is bounded:

Property Violation under Modified Policies

πtask (a|s)
πbase(a|s)

⩽α ∀ a∈A , s∈S

P(τπ task⊭φ)⩽ ϵbaseα
T

πtask

πtask

Bound on violation probability for task policy

In the paper we prove that if the policy ratio is bounded 
by some value alpha for all state-action pairs, then 
the probability of safety violation for the task policy is 
bounded by that of the base policy, multiplied by 
alpha exponentiated by the episode length.



 

 13

SPoRt - Safe Policy Ratio: Certified Training and Deployment of Task Policies in Model-Free RL  (Cloete et. al.) 13

Property Violation under Modified Policies

No required knowledge of system dynamics, or constraints for    !φ

π task (a|s)
πbase(a|s)

⩽α ∀ a∈A , s∈S

P(τπtask⊭φ)⩽ ϵbaseα
T→

P(τπbase⊭φ)⩽ ϵbase
and } Bound on violation probability for task policy

Bound on violation probability for base policy

Bound on policy ratio

In other words, we can obtain a prior bound on the 
probability of safety violation for any task policy 
based entirely on the base policy, with no required 
knowledge of the system dynamics, or the 
constraints of the property.
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Quick Note: Extension to Robust Control

● We have thus far assumed     and     are unchanged

● Our results can generalize to changes in both

• Can be applied to robust control settings for perturbed systems

● See the paper for details!

μ p

Our result can also generalize to robust control, which 
I’m happy to talk more about in the discussion.

(We have thus far assumed that the initial state 
distribution and state transition distribution are 
unchanged

However, our results can actually generalize to 
changes in both.

So, they can be applied to robust control settings for 
perturbed systems, for example.

See the paper for details.)
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Property Violation under Modified Policies

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

a

p (a|s0)
t=0 We require:

πbase

Let’s visualize an episode rollout for a candidate 
unconstrained task policy.

Here we’ve got the base policy at time 0.
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Property Violation under Modified Policies

a

p (a|s0)
t=0

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

απbase

Let’s multiply it up by alpha. For our safety guarantees 
to hold, our task policy must remain below this new 
line.
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Property Violation under Modified Policies

πbase

απbase

πtask

p(a|s0)

a

✓
t=0

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

And here’s the unconstrained task policy. All good so 
far.
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Property Violation under Modified Policies

πbase

απbase

πtask

p(a|s1)

a

✓
t=1

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

Still good for time 1.
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Property Violation under Modified Policies

p(a|s2)

a

x
t=2

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

απbase

πtask

Ahh, at time 2 we see that the unconstrained task 
policy violates the bound on the policy ratio.

This is a good time to point out that the safety of our 
task policy relies on it being in the support of the 
base policy;

if we try to deviate too much, our bound becomes 
huge, since we’re going way out of distribution.
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Property Violation under Modified Policies

πbase

απbase

πtask

p(a|s2)

a

How can we ensure the policy ratio is bounded for all state-action pairs?

t=2

x π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

Now, in order for our safety guarantees to hold, we 
need to ensure that the policy ratio is always 
bounded by alpha, regardless of what state the agent 
is in.

But how can we do this?
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Policy Projection

(α=1)

(Policy space      )Π

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

At each time step...

Let’s visualize our base policy in “policy space” at a 
given time step.

For a diagonal Gaussian policy, the dimensions of this 
space would be the means and variances.
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Policy Projection

(α=1)

α=1.01
α=1.1

α=1.5

α=5At each time step...
π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

Policy ratio
level sets

For different values of alpha we can draw level sets of 
policies where the policy ratio is less than or equal to 
alpha for all actions.
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Policy Projection

(α=1)

α=1.01
α=1.1

α=1.5

α=5

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

α
increasing

At each time step...

Policy ratio
level sets

And notice that as alpha increases, the level sets 
become larger.

This makes sense; we’re allowing our bound on safety 
violation to go up, but we gain more flexibility for 
what our task policy can be.
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Policy Projection

P(τπ task⊭φ)⩽ ϵbaseα
T ⩽ ϵmax

ϵbase=0.00017 , ϵmax=0.01 , T=10 ⇒ α=1.5

⇒α ⩽ T√ ϵmaxϵbase

Maximum acceptable 
violation probability

Suppose

A good way to choose alpha is to first decide on a 
maximum acceptable violation probability and then 
rearrange our bound to recover maximum allowed 
alpha.
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Policy Projection

(α=1)

α=1.01
α=1.1

α=1.5

α=5

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

Πα=1.5 ,πbase

α
increasing

At each time step...

Policy ratio
level sets

With our chosen alpha, we now have a feasible set of 
allowed task policies.
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Policy Projection

(α=1)

α=1.01
α=1.1

α=1.5

α=5

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:

πbase

πtask Πα=1.5 ,πbase

α
increasing

At each time step...

Policy ratio
level sets

Suppose our unconstrained task policy lies outside this 
feasible set at a given time step.
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Policy Projection

πbase

π proj
πtask

(α=1)

α=1.01

Πα=1.5 ,πbase

α

Projection
(convex minimization 

problem)

increasing

α=1.1

α=1.5

α=5

π task (a|s)
πbase (a|s)

⩽α

∀ a∈A , s∈S

We require:At each time step...

Policy ratio
level sets

The trick is to use projection.

For diagonal Gaussian policies, we can project an 
unconstrained task policy onto this feasible set as a 
convex minimization problem.

The projection minimizes KL divergence between the 
task policy and our new projected policy.

We then sample our action from the projected policy.

In this way, the bound on the policy ratio will always 
hold.
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Projected PPO

● Clipped PPO, but with policy projection at every time step

• Requires         ,       ,     and a new task-specific reward function

• Train policy network for unconstrained         (initialized as        )

• Always sample from        during both training and inference

πtask

π proj

πbase

πbase ϵbase α

So, how should we train the task policy, given a new 
task-specific reward function?

The answer is to use Projected PPO, which is clipped 
PPO but with policy projection at every time step.

We train the policy network for the unconstrained task 
policy (initialized as the base policy) to maximize the 
task-specific reward, but always sample from the 
projected policy, during both training and inference.
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Results

● Applied to a reach-avoid safety property

• Task-specific reward function to minimize time to reach goal

(πbase)

(No consideration of hazard in task-specific reward)

We applied SPoRt to a reach-avoid safety property for 
a point agent, with a task-specific reward function to 
minimize time to reach the goal.

As you can see, as alpha increases, the agent turns 
more tightly around the hazard, reaching the goal 
faster but getting closer to safety violation.
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Results

Frequent 
violations

(Almost) no 
violations

(πbase)

(πbase)

Projected PPO also outperforms naïvely projecting an 
unsafe pre-trained task policy at inference time to 
enforce safety.
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Results

Trade-off between safety and performance

As alpha increases, time taken on success decreases 
while violation risk increases.

Thus, we see a trade-off between safety and 
performance.
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Results

Prior bound is very conservative!

Trade-off between safety and performance

However, SPoRt is not without limitations, the biggest 
being that the prior bound can be very conservative 
for large alpha and episode length.

Future work ought to improve upon this 
conservativeness to make it more practically useful.

In the meantime, alpha could be treated more like a 
hyperparameter for risk-aversion.
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Conservativeness of the Prior Bound

p (a|st)

a

απbase(s|a)=πtask (s|a)+ partificial(s|a)
Used for bound

Added for 
tractability

Actual distribution

Partificial (s)

πbase

απbase

πtask

I’m happy to talk more about the nature of the 
conservativeness in the discussion.

(The biggest contributor to the conservativeness is the 
“artificial probability mass” that we add to the bound 
to make it tractable.

The base policy distribution scaled by alpha, which we 
use to construct the bound, is the sum of the task 
policy distribution and the artificial probability 
distribution.

The artificial probability mass makes the bound “think” 
we’re more likely to take each action than we actually 
are, including actions that generate unsafe 
trajectories, hence raising the bound on safety 
violation.)
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Thank You for Listening!

This work was supported by the EPSRC Centre 
for Doctoral Training in Autonomous Intelligent 
Machines and Systems [EP/S024050/1]

       jacques@robots.ox.ac.uk
       jacquescloete.github.io
       jacques-cloete
      JacquesCloete

arxiv.org/abs/2504.06386

Contact:
Full paper here:

That’s all, thank you for listening!
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