

Interpreting Pretrained Language Models via Concept Bottlenecks

Zhen Tan, Lu Cheng, Song Wang, Bo Yuan, Jundong Li, Huan Liu

Zhen Tan, et al., **Best Paper Award** for "Interpreting Pretrained Language Models via Concept Bottlenecks", PAKDD 2024, May 7-10, 2024

Interpretability in Deep Models

If you want users' trust,

- open the "black box"
- show users "how" the model make such decisions in a user-friendly way

Review sentiment analysis

Existing Methods Interpreted Language Models Locally

Function-

Attention

Feature

Attribution

Surrogate

model

-based

based

Visualiza

tion

Gradient

Perturba

tion

Natural

Language

Example-

based

Counterfac

tual

Adversarial

Example

(a) Attention Visualization

(b) Question Answering

Context: In 1899, John Jacob Astor IV invested \$100,000 for Tesla to further develop and produce a new lighting system. Instead, Tesla used the money to fund his **Colorado Springs experiments**.

 $\textbf{Question:} \ \textbf{What} \ \underline{\textbf{did}} \ \textbf{Tesla spend Astor's money on?}$

Confidence: 0.78 -> 0.91

(c) Sentiment Analysis

(d) Commonsense Reasoning

Question: While eating a hamburger with friends, what are people trying to do?.

Choices: have fun, tasty, or indigestion

Explanation: Usually a hamburger with friends indicates

a good time.

(e) Sentiment Analysis

Original text: It is great for kids (positive).

Negation examples: It is not great for kids (negative)

(f) Classification

Original text: The characters, cast in impossibly contrived situations, are totally estranged from reality (**Negative**).

Perturbed text: The characters, cast in impossibly engineered circumstances, are fully estranged from reality (**Positive**)

Decompos

ition

Limitation 1

Can we exhaustively understand LLMs?

Intrinsic Barriers to Explaining Deep Foundation Models

ZHEN TAN, Arizona State University, USA HUAN LIU, Arizona State University, USA

Theorem 3.4. There exists a complexity gap.

- 1. The complexity of explanations is bounded by human cognitive limits;
- 2. The complexity of deep foundation models, including LLMs, are significantly large;
- => It is intrinsically infeasible to exhaustively explain LLMs.

Limitation 2

How to interpret language models globally?

(a) Attention-based explanation is local

(b) Concept-based explanation is global

CBE-PLMs: The interpretability-utility Pareto front

Joint training can achieve similar task performance while providing concept prediction

Concept Annotation and Augmentation

ChatGPT-guided Concept augmentation with Concept-level Mixup (C3M)

a. According to the review " $\{text_1\}$ ", the " $\{concept_1\}$ " of the movie is "positive".
b. According to the review " $\{text_2\}$ ", the " $\{concept_2\}$ " of the movie is "negative".
c. According to the review " $\{text_3\}$ ", the " $\{concept_3\}$ " of the movie is "unknown".
d. According to the review " $\{text_i\}$ ", how is the " $\{concept_i\}$ " of the movie? Please answer with one option in "positive, negative, or unknown".

(a) ICL-based prompting

(b) CBE-PLMs

 $y^{(j)} \sim \begin{cases} \text{Concept-level} \\ \text{MixUP} \\ \lambda \sim \end{cases} \hat{c}_{sa}^{(i)} \cdots \hat{c}_{sa}^{(i)}$

ChatGPT-generated

Concepts

 $x^{(i)}, y^{(i)}, c_s^{(i)} \sim \mathcal{D}_s$

Human-specified

Concepts

PLM f_{θ}

Projector

 p_{ψ}

 $\mathbf{x}^{(j)}, \mathbf{y}^{(j)} \sim \mathcal{D}_{ij}$

PLM f_{θ}

Projector

 p_{ψ}

 $\tilde{c}_{sa}^{(j)}$

(c) Concept-level Mixup

Human Involvement after Deployment

Robust Inference-Time Intervention

Concept-level explanation

Robust Adjustments:

- 1. Correct intervention improves the performance.
- 2. More robust to incorrect interventions.

The results of Test-time Intervention.
"NI" denotes "no intervention", "RI
(W/O CM)" denotes "random
intervention on CBE-PLMs without the
concept level MixUp", "RI" denotes
"random intervention on CBE-PLMs",
and "OI" denotes "oracle intervention".

Experiments

Utility and Interpretability Trade-off

Dataset		CEBaB				IMDB			
Model		\mathcal{D}		$ ilde{\mathcal{D}}$		\mathcal{D}		$ ilde{\mathcal{D}}$	
		Task	Concept	Task	Concept	Task	Concept	Task	Concept
PLMs	LSTM	40.57/60.67	-	43.34/64.47	-	68.25/53.37	-	90.5/90.46	-
	GPT2	66.69/77.25	-	67.26/78.81	-	71.67/67.53	-	97.64/97.55	-
	BERT	68.75/78.71	-	71.81/82.58	-	80.5/78.4	-	98.89/98.68	-
	RoBERTa	71.36/80.17	-	73.12/82.64	-	84.1/82.5	-	99.13/99.12	-
CBE-PLMs	LSTM	56.47/67.82	86.46/85.24	54.54/65.84	83.46/84.74	68.5/55.4	72.5/77.5	93.02/91.53	76.92/75.41
	GPT2	64.04/77.75	92.14/92.05	63.57/74.71	90.17/90.13	70.05/69.53	80.6/82.5	96.85/96.81	86.14/88.06
	BERT	67.27/79.24	93.65/92.75	68.23/78.13	89.64/90.45	77.42/74.57	80.2/83.7	97.62/97.58	92.57/92.05
	RoBERTa	70.98/79.89	96.12/95.34	69.85/79.29	91.45/92.23	82.33/80.13	86.7/85.3	98.45/98.12	93.99/94.28
CBE-PLMs-CM	LSTM	_	-	59.67/70.53	88.75/86.67	_	-	94.35/92.32	83.83/84.52
	GPT2	_	-	65.54/77.87	93.58/92.32	-	-	97.89/97.88	89.64/88.25
	BERT	-	-	70.58/80.07	94.43/93.26	-	-	98.18/98.06	94.87/94.32
	RoBERTa	-	-	72.88/81.91	96.3/98.5	-	-	99.69/99.66	96.35/96.36

Conclusion & Future Work

Contributions:

- We provide the first investigation of standard training strategies of CBMs for interpreting PLMs and benchmarking CBE-PLMs.
- We propose C3M, which leverages LLMs and MixUp to help PLMs learn from human annotated and machine-generated concepts. C3M liberates CBMs from predefined concepts for the interpretability-utility tradeoff.
- We demonstrate the effectiveness and robustness of test-time concept intervention for the learned CBE-PLMs for common text classification tasks.

Related Research:

 Can we achieve local and global interpretability at the same time?

See Zhen Tan's AAAI 24 paper: SparseCBM

 Can we further reduce the human involvement during inference time?

See Zhen Tan's AAAI 25 paper: CLEAR

Extension 1

Can we explain the explanations?

- Are the explanations reliable?

Are We Merely Justifying Results ex Post Facto? Quantifying Explanatory Inversion in Post-Hoc Model Explanations

arXiv

Zhen Tan ¹ Song Wang ² Yifan Li ³ Yu Kong ³ Jundong Li ² Tianlong Chen ⁴ Huan Liu ¹

What if machine and human do not agree on the same concepts?

- Aligning machine's concepts to human's

Ongoing research

What are the next steps?

How to achieve better human-machine collaboration through explanations that are:

- User-aware
- Reliable
- Applicable

to enhance science discovery?

Zhen Tan's homepage

Thank You

- For more details, please check out the <u>paper</u>.
- Feel free to contact the first author Zhen Tan (<u>ztan36@asu.edu</u>) for any questions.
- Implementation is released on <u>GitHub</u>.