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Interpretability in Deep Models

2

Background

If you want users’ trust,

• open the “black box”
• show users “how” the model make such

decisions in a user-friendly way

Bird species classification Review sentiment analysis Stock market analysis
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SOTA

Existing Methods Interpreted Language Models Locally
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Limitation 1

Can we exhaustively understand LLMs?
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Theorem 3.4. There exists a complexity gap.

1. The complexity of explanations is bounded by human cognitive limits;
2. The complexity of deep foundation models, including LLMs, are significantly large;

=> It is intrinsically infeasible to exhaustively explain LLMs.

arXiv

https://arxiv.org/pdf/2504.16948?
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Limitation 2

How to interpret language models globally?
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(a) Attention-based explanation is local (b) Concept-based explanation is global
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CBE-PLMs: The interpretability-utility Pareto front

Joint training can achieve similar task performance while providing concept prediction

6



Arizona State University

Data Mining and Machine Learning Lab Interpreting Pretrained Language Models via Concept Bottlenecks

ChatGPT-guided Concept augmentation with Concept-level Mixup (C3M)
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(a) ICL-based prompting

Concept Annotation and Augmentation

(b) CBE-PLMs (c) Concept-level Mixup
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Robust Inference-Time Intervention
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Human Involvement after Deployment

Concept-level explanation

The results of Test-time Intervention. 

"NI" denotes "no intervention", "RI 

(W/O CM)" denotes "random 

intervention on CBE-PLMs without the 

concept level MixUp", "RI" denotes 

"random intervention on CBE-PLMs", 

and "OI" denotes "oracle intervention".

Robust Adjustments: 

1. Correct intervention improves the performance.
2. More robust to incorrect interventions.
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Utility and Interpretability Trade-off
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Experiments
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Conclusion & Future Work

• We provide the first investigation of standard 

training strategies of CBMs for interpreting 
PLMs and benchmarking CBE-PLMs. 

• We propose C3M, which leverages LLMs and 
MixUp to help PLMs learn from human 

annotated and machine-generated concepts. 
C3M liberates CBMs from predefined concepts 
for the interpretability-utility tradeoff.

• We demonstrate the effectiveness and 

robustness of test-time concept intervention for 
the learned CBE-PLMs for common text 
classification tasks.

Contributions:
Related Research:

• Can we achieve local and global interpretability 

at the same time?

See Zhen Tan’s AAAI 24 paper: SparseCBM

• Can we further reduce the human involvement 
during inference time?

See Zhen Tan’s AAAI 25 paper: CLEAR

https://arxiv.org/abs/2312.15033
https://dl.acm.org/doi/10.1609/aaai.v39i24.34710
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Extension 1

Can we explain the explanations?

- Are the explanations reliable?

arXiv

https://arxiv.org/pdf/2504.08919
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Extension 2

What if machine and human do not agree on the same concepts?

- Aligning machine’s concepts to human’s

Ongoing research



Arizona State University

Data Mining and Machine Learning Lab Interpreting Pretrained Language Models via Concept Bottlenecks 14

What are the next steps?

How to achieve better human-machine collaboration

through explanations that are:

- User-aware

- Reliable

- Applicable

to enhance science discovery?

Zhen Tan’s homepage

https://zhen-tan-dmml.github.io/
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Thank You

• For more details, please check out the paper.

• Feel free to contact the first author Zhen Tan (ztan36@asu.edu) for

any questions.

• Implementation is released on GitHub.

https://arxiv.org/pdf/2311.05014
mailto:ztan36@asu.edu
https://github.com/Zhen-Tan-dmml/CBM_NLP
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