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Motivation: Effective Human-AI Communication

Collaboration with AI requires clear, effective communication.

Promising approach: having the AI between the AI and the human.

• natural language (e.g., describing code)

• formal language (e.g., code, system specifications)

This approach is already being used in vibe coding.

• Generates code from a prompt

• Explains the generated code

This requires the AI to be semantically accurate doing this translation.
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Objective:  Assessment of LLM Truth Maintenance

Autoformalization: generating formal language from natural language.

Informalization: generating natural language from formal language.

Truth Maintenance: do these translations maintain semantic truth?
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Challenges With Current Approaches to LLM 
Assessment
1. Benchmark Contamination Problem: Risk of models training on evaluation data.

2. Difficult and expensive for expert annotators to construct new, high-quality datasets.

3. Incomplete set of ground truths (e.g., HumanEval) and imperfect existing autonomous 
evaluations metrics (e.g., BLEU) provide an inaccurate assessment of LLM capabilities.

References: BLEU [Papineni et al., ACL 2002], HumanEval [Chen et al., arXiv:2107.03374, 2021].

BLEU(“the weather is sunny and warm”, “the weather is not sunny and warm”) = 0.673

BLEU(“the weather in Montreal is sunny and warm”, “the weather in Montreal is not sunny and warm”) = 0.767
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AutoEval Process Example

Propositional Logic Context-Free Grammar

𝑆 → 𝑆 ∧ 𝑆 |(𝑆 ∨ 𝑆)
𝑆 → ¬𝑆
𝑆 → ¬𝑣|𝑣

Formal Language String + Vocab

𝜑0 = 𝑝1 ∧ 𝑝2 ∧ 𝑝1

𝑝1: it is raining
𝑝2: it was sunny yesterday
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AutoEval Process Example

Informalization Using LLM 𝑳

𝜓0 =

Formal Language String + Vocab

𝜑0 = 𝑝1 ∧ 𝑝2 ∧ 𝑝1

𝑝1: it is raining
𝑝2: it was sunny yesterday

The sun was bright the day before 
whilst it is raining heavily today.
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AutoEval Process Example

The sun was bright the day before 
whilst it is raining heavily today.

Autoformalization Using LLM 𝑳

𝜓0 =

Natural Language String + Vocab

𝑝1: it is raining
𝑝2: it was sunny yesterday

𝜑1 = 𝑝1 ∧ 𝑝2

7Autonomous Evaluation of LLMs for Truth Maintenance and Reasoning Tasks, ICLR 2025



Formal Verification
Original Formal Language String + 
Generated Formal Language String

𝜑0 = 𝑝1 ∧ 𝑝2 ∧ 𝑝1

𝜑1 = 𝑝1 ∧ 𝑝2
𝜑0 ≡ 𝜑1 (use semantic formal verifier (e.g., Prover9 for FOL))

AutoEval Process Example

References: Prover9 [McCune, 2010].
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• Done for propositional logic, first-order logic, and regular expressions.
• Can be extended to any formal language that has a semantic equivalence checker.
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Theoretical Results

We prove the upper bound on false positive assessment rate.

• 𝑝𝐼: probability that an LLM 𝐿 accurately informalizes formal language expression 𝜑.

• 𝑝𝐴: probability that 𝐿 accurately autoformalize natural language expression 𝜓.

• 𝑝ℎ  : probability that if L hallucinates during both informalization and autoformalization 
that it will produce formal language equivalent to the original.

𝜑0 ⟶
𝐼𝐿(𝜑0)

𝜓0 ⟶
𝐴𝐿(𝜓0)

𝜑1 ⟶ ⋯ ⟶
𝐼𝐿(𝜑𝑛−1)

𝜓𝑛−1 ⟶
𝐴𝐿(𝜓𝑛−1)

𝜑𝑛

𝜑0 ≡ 𝜑1 ≡ ⋯ ≡ 𝜑𝑛−1 ≡ 𝜑𝑛

𝑃(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡) = 1 − 𝑝𝐼
𝑛 1 − 𝑝𝐴

𝑛𝑝ℎ
𝑛

1. As LLMs improve, 𝑝𝐼 → 1, 𝑝𝐴 → 1, and 𝑝ℎ → 0.
• Meaning, 𝑃(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡) → 0.

2. Probability can be reduced by iteratively applying this process.
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Results: Truth Maintenance in Popular LLMs

Evaluated 16 state-of-the-art, open and closed sourced LLMs.
• 3 types of formal language: propositional logic, first order logic, and regular expressions.
• 5 autogenerated datasets with approximately 85,000 unique evaluation examples.

All LLMs are less than 50% accurate on maintaining truth while translating formal language 
with 20 or more operators
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Results: Truth Maintenance in Popular LRMs

State-of-the-art large reasoning models are at most 50% accurate on maintaining truth 
while translating logic with 25 or more operators.
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The predictive power of benchmark A for benchmark B: probability that an LLM that ranks better in A 
also ranks better in B [Pr(𝐿1 ≥𝐵 𝐿2|𝐿1 ≥𝐴 𝐿2)]. 

A LLM’s performance on AutoEval is predictive of its performance on reasoning tasks.
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Results: AutoEval Predicts Performance on Other Tasks
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New Results: GPT-5

Newer models are improving on this task, but there is still significant room for improvement
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Evaluated an LLM’s to correctly evaluate whether the original and AutoEval process produced formal 
language were equivalent.

• Measured the F1 score compared to the formal verifier.

All LLMs, regardless of size, perform similarly as equivalence verifiers.
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Additional Results: LLMs as Equivalence Verifiers
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