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Question:

How Should a Robot Complete
Pick-And-Place Tasks?



Which of These Doesn’t Belong?




Which of These Doesn’t Belong?




How do we know this?

Does not rely on: Does rely on:

Exact Positions Spatial Relationships

Individual Objects Object “Types”




How do we know this?

Does notrely on: Does rely on:
Exact Positions Spatial Relationships
Individual Objects Object “Types”
Why it Matters?

User Preference/ Expectation
“Apples are to the left of cans”

Requirements
“Fruit should be secured against box walls”




PARCC: Positionally Augmented Region Connection Calculus

A specification language defining requirements on the
spatial relationships between classes of objects



PARCC: Positionally Augmented Region Connection Calculus

A specification language defining requirements on the
spatial relationships between classes of objects

—AND -

An inference algorithm to learn specifications
from demonstrations



Existing Spatial Specification languages

Signal Temporal Logic [1]

Quad-Tree Representations [2]
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Existing Spatial Specification languages

Signal Temporal Loqic [1] Quad-Tree Representations [2]

NE, NW, SE, SW
i [a0](K) = 0. [ag](K) =1
A [ao)(W) = 0.5 [aa](W) =0
—
=
on SO NE, NW, SE, SW
5 _
u a1](K) = 0.5
[a1](W) = 0.5
> 1 a
©1 U[t ¢ ]99‘) <>[t ty]
17 2 - 3,4 NE, NW, SE, SW
Source: From [3] Source: From Citation [3]

Represent specifications over specific regions or precise distance in space

Don’t easily represent relationships between objects

[1] Linard, Alexis, and Jana Tumova. "Active learning of signal temporal logic specifications." 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). IEEE, 2020. 11
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[2] Gu, Zhaoyuan, et al. "Walking-by-logic: Signal temporal logic-guided model predictive control for bipedal locomotion resilient to external perturbations." EEE International Conference on Robotics and Automation (ICRA). 2024.



RCC: Reasoning Over Relationships of Spatial Regions
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RCC: Reasoning Over Relationships of Spatial Regions
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PO(a,b) TPP(a,b) TPPi(a,b) NTPP(a,b) NTPPi(a,b) EQ(a,b)

We use the fragment that assumes objects that do not share

regions in space
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Defining PARCC: Object Relations

C,

DRy (co,c1) = DR(c2,¢1) A Yey = Yoy
\V/($C2,y02) = C2, (xclaycl) € Cy

PARCC “Object” Relationships
specify a direction (i.e. N,E,S,W)
between the objects it describes

A1 A1
B1
1 A1
B1 B1

ECN(A, B) — ECN(CL, b)
Vae A dbe B

PARCC ‘“Class” Relationships:
Specify a relationship all objects of
one class have with another class
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Defining PARCC: Logical Specifications

C A A
C, : . A, B, :
C1 A4 Az
C1 B3 B2 B1 A A4
B3 B1 ? B1

PARCC Specifications utilize boolean logic to define
requirements involving multiple class relations
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Inferring PARCC Specifications

DRg(0O,C) DRw (A, C)
ie{N,S,E,W}

1€{N,S,W}
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Inferring PARCC Specifications

Inference

>

Disjunctive “constraints”

C ={¢1,02...}
DRg(0O,C) DRw (A, C)
i€{N,S,E,W}

1€{N,S,W}
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Inferring PARCC Specifications

Disjunctive “constraints”

C — {¢17 ¢2}
DRg(0O,C) DRw (A, C)

> ie{N,S,E,W}

i€{N,S,W}

Inference

Final Specification: ® = Agec
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Inferring PARCC Specifications

Disjunctive “constraints”

C — {¢17 ¢2}
DRg(0O,C) DRy (A, C)

> te{N,S,E,W}

i€{N,S,W}

Inference

Final Specification: ® = Agec

- Infer human’s intended C
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Inferring PARCC Specifications

All Possible Disjunctive Formulas:
N=1: N=2- For each satisfying formula ¢ :
DR ( A, (j) DRy ( A, C) V DRg ( A, C’) o i> Probability that qb is incidentally satisfied:
ECE(0,A) ECw(A,C)V DRy (A, A) P(D = ¢IR) =
DRN(A,0)  ECw(0,0)V DRy(O,0) T e ( Y rer Loeog 10" = ¢>)
0e0S ’ > Rer Zoleog 1
- = P(D — ¢|R) < D¢ :
Satisfying Formulas: =
N=1: N=2- & Keep @
DR~ DRy (A, C)V DRg(A, C)
ECg(0, A) EGW'%%V‘M I P(D = ¢|R) > Pc *
—BRtAG3= ECy (0,0) VvV DRy(0,0) € Discard ¢
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Inferring PARCC Specifications

Does this really capture human’s
ground truth object placement preferences?
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Box Packing Domain

reset

reset
DONE
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Box Packing Domain
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Questions: requirements on object placement?

Can the PARCC inference algorithm capture intuitive

reset

DONE

Can the inference algorithm capture requirements better than

direct specification?
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Human Study Design
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Human Study Design
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Human Study Design
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Human Study Design
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Human Study Results: Inferred vs Direct Specifications

Likert Score

Survey Answers
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E VS. E
From Inferred From direct
specification specification

The [inferred example] matches
patterns in my demonstrations.

The [direct example] matches
patterns in my demonstrations.
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Limitations

e PARCC Representations:
o Constrained to a 2D space
o Only uses rectangular objects

e Inference Algorithm:
o More efficient sampling of
candidate disjunctions

29



Limitations

e PARCC Representations:
o Constrained to a 2D space
o Only uses rectangular objects

e Inference Algorithm:
o More efficient sampling of
candidate disjunctions

Questions?
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