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Overview

How to train agents in multi-agent environments with unseen opponents? We tackle the problem of learning policies in dynamic, continuous state-

action games. We propose DiffFP, which:

3 Expressive, Multimodal Game-theoretic A.Learns from scratch via iterative generalized weakened fictitious play.
, _ Policy Representation + Algorithm B.Compute approximate best response via diffusion policy.
— C.Enables learning of sample-efficient and multimodal policies.

Method

DiffFP builds upon the Fictitious Play framework with two core components: (1) The outer loop of Fictitious Play, where agents maintain and
update empirical average strategies. (2) A generative best-response policy implemented as a conditional diffusion model, trained using policy
gradients to approximate optimal behavior against the average opponent.
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Simulation Studies

We evaluate DiffFP on various continuous action space environments for convergence, efficiency and robustness to unseen opponents.

Iteration 25 = A Iteration 50 B Iteration 100 Ego Ady Ego Wins Adv Wins  Draws
g ‘“\ Games where DiffFP is Ego
/ \ DifffP  SACFP 79 10 T
: DiftFP TD3FP 75 11 14
DifffP  QSMFP 75 12 13

Games where DiffFP is Adversary
SACFP  DiffFP 62 (17]) 16 (67) 22 (117)
TD3FP DiffFP 50 (25]) 18 (77) 32 (187)
QSMFP  DiffFP 63 (12)) 27 (157) 10 (3])

Head-to-Head MPE. Colored numbers indicate

relative gains (1) / losses (| ) when ego and
adversary roles are swapped

Training Progression in Racing. DiffFP learns to race and perform overtakes and wins
more frequently on head-to-head trials.

Exploitability: Measures how much a player can improve their payoff by unilaterally

deviating from their current strategy.
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Exploitability on the Racing Task. Normalized Episodic Rewards. ~ Robustness to Unseen Opponents. Evaluation of crash
rates (lower is better) and mean rewards (higher is
| 56 MPE - Adversary MPE - Tag better) when the agent is tested against up to five
— it previously unseen adversaries.
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Exploitability on Multi-Agent Particle Environment. adaptation in agile systems.



