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09:00 AM
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Meet and Greet over Coffee

Session 1

* Introduction and Motivation

* Assessment through Model Learning

* Assessment of Black-Box Al Systems in Stationary Settings

Coffee Break

Session 2

* Discovering Capabilities for Black-Box Al Assessment
* Al Assessment in Adaptive Settings

* Future Directions and Conclusion

Lunch



Discovering Capabilities for Black-Box Al
Assessment



Capability v/s Functionality

* Functionality: Set of possible low-level actions of the agent.

* Capability: What agent’s planning and learning algorithms can do.

Agent Actions Learned
(Keystrokes) Capabilities

W (defeat ganon)

A (go to door)
(go to key)

> (go to ganon)

D (pick key)

E (open door)

Knowledge of primitive actions might be
insufficient to understand the agent’s capabilities



Discovering User-Interpretable Capabilities of
Black-Box

Planning Agents

Pulkit Verma, Shashank Rao Marpally, and Siddharth Srivastava
KR 2022



Vocabulary Acquisition

* Users share same vocabulary in same workspaces.

* E.g., factory workers, coworkers, etc.
* Training the users on some predefined vocabulary.

* Using vocabulary acquisition techniques like TCAVT, etc.

tKim et al. Interpretability beyond feature attribution: Testing with Concept Activation Vectors. In Proc. ICML 2018.



User Vocabulary can be Less Expressive

Agent’s State State Representation
Representation in User’s Vocabulary
pixel 1 1(#42A8B3) (at ganon 5,3)
pixel 1 2(#42A8B3) (at link 6,3)
_ (at key 9,4)
: (at door 9,2)

pixel_n_m(#203A3D)




Discovering Capabilities

Input Assumptions

* Predicates (User vocabulary)

* With their evaluation functions . )
[ | I.

* Samplers: high-level state to low-level state.
* Low-level state transitions.

Black-Box Al provides a list of

capetsitities—™ transitions.

Stationary agent model.
Output

* List of capabilities. * Deterministic environment.
* PDDL-like description of each capability.

[Verma, Marpally, Srivastava; KR 22] FUIIY observable SeﬂmQ'



Discovering Capabilities using Input Predicates as Abstractions

The player and the monster The player killed the The player has
are in neighboring cells. monster, and is still moved to a
in the same location. new location.

at(po,cell_6_3)
at(mo,cell_5_3)

at(po,cell_6_3) at(po,cell_5_3)
Expressed ;;ii;é;i{%ei?)m clearEcell_O_O)... clear’(cell_e_O)...
inUser  mEEp e morstary wall(cell 6_1). wall(cell 0_1)..

door_at(cell_9_2) door_at(cell_9_2)

alive(mo) key_at(9_4) key_at(9_4)

door_at(cell_9_2)
key_at(9_4)

Vocabulary




Parameterizing a Capability

at(p0,cell 6 3)
at(m0,cell 5 3)
clear (cell 0 _0)..
wall(cell 0 1)..

at(p0,cell 6 3)
clear (cell 0_0)..
wall(cell 0 1)..
door_at(cell_ 9 2)

alive (mO) key at (9 4)
door_at(cell 9 2) - -

key at(9_4)

next to (monster)

[Sample pre and post states of a capability]

(:capability c4
:parameters (2?playerl 2celll] How to learn
?monsterl ?cell2) these?
:precondition
(and (alive ?monsterl)
(at ?playerl ?celll)
(at ?monsterl 7?cell2)
(next_to ?monsterl))
:effect
(and (clear 7?cell2)
(not(alive ?monsterl))
(not(at ?monsterl ?cell2))
(not(next_to ?monsterl))))

[Learned capability description]

For each capability:

* Extract what predicates were different in the pre
and post-states of the capability.

* Extract the parameters from those predicates to
create a candidate parameter set.

* Complete the parameter set along with capability
description as precondition and effect of a
capability by active querying.

10



So,<C1, Coy ey CTL)

What will happen if
you execute the plan

(cq, C3, ..., Cy Starting
in a state s¢7?

Plan Outcome Query

Query Refinement

> Sg,Cq1,51,C2,S7, ..., Cy, Sy,

(:capability cl1 (:capability c2
:parameters (..) :parameters (..)
:precondition (..) :precondition (..) tee
ceffect (..)) ceffect (..))

(S0, S1) {51, S2)s s (Sn—1, Sn)
LT

<§O' §1>1 <§1' §2 )i ) <§n—1i §n>

“ \

Can you reach

state S;from state S,from state S, from
state 5,2 state §;¢ state §,,_1°¢

Can you reach Can you reach

State Reachability Queries

11



Response Interpretation

High-level

Query
Generator

lterative Capability Model Learning
[iCaML]

Can you reach
state S; from
state Sp2

Can you reach
state S, from
state S12

Can you reach
state S;, from
state S;,_12

YES

12



Response Interpretation

High-level

Query
Generator

lterative Capability Model Learning
[iCaML]

Can you reach
state S; from
state Sp2

Can you reach
state S, from
state S12

No

13



Example of a Learned Capability Description

(:capability c4
:parameters (?playerl ?celll Position of Link has not changed
?monsterl ?cell2)
:precondition
(and (alive ?monsterl) Ganon is not at its previous location
(at ?playerl ?celll)

(at ?monsterl ?cell2)
(next_to ?monsterl))

Ganon is not alive anymore
teffect
(and (clear ?cell2)
(not(alive ?monsterl)) Link is not next to Ganon

(not(at ?monsterl ?cell2))
(not(next_to ?monsterl))))

This capability is: “Defeat Ganon”

14



Preconditions

Effects

User Study Setup to Verify Interpretability

4. Capability C4:
The player can execute this capability when:

* The monster is not defeated.

¢ The player is in celll.

e The monster is in cell2.

¢ The player is in a cell adjacent to the monster.

After the player executes this capability:

e Cell2 is empty.

¢ The monster is defeated.

e The monster is not in cell2.

¢ The player is not in a cell adjacent to the monster.

Question 4 of 12:

Select the phrase that best summarizes the capability C4? We
will use your response while referring to this capability €4 later in
the survey.

Go next to Door
Go next to Ganon

GO next to Key Possible Options

Go next to Wall

coesonr | to choose from

Pick Key
Open Door

[Capability Description Example]

Keystroke Description

W: Pressing this key does the following:

e If Link is facing up and there is no wall, door, or key in the cell

above, then Link moves to the cell above.

e If there is a wall, door, or key in the cell above Link, then Link

stays in the same cell.

e If Link is facing Left, Right, or Down before pressing W, then Link

faces up but stays in the same cell.

Question 1 of 11:
Select the phrase that best summmarizes pressing W? We will use

your response while referring to this key W later in the survey.

Up

E’C;:"” Possible options
=

Right to choose from
Interact

[Functionality Description Example]

15



Utility of Discovered Capability Descriptions

If Link starts in the state
shown below:

Which sequence of actions can
Link take to reach the state
shown below:

500

w H
o o
o o

Time to answer (s)
S
o

Time: I Primitive Actions Il Capabilities Correct Responses: A Primitive Actions A Capabilities

TA
.
"

A

é%

o
=

o

B

A
(<]
o
8

l o
T

Question 1

Question 2

Question 3

Question 4

Question 5

100

80

60

40

20

Correct Responses (%)
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Results: Capability Summarization Study

1. Action Al
Link can execute this action when:

Link's cell is not empty.

adjacent to Ganon.

/

Link is not in the destination cell. ,*

/
/

After Link executes this action: ,’
/7
/7

e Link is in the destination &ell.

/
* Link is no longer in ityprevious cell.
* Link's previous cellfs empty.

. A :
¢ [ink and Gongm are in adjacent cells.
/

/
/

/
Question Yof 12:

Link's cell is connected via a path to a destination cell

The destination cell is empty. 4

S8

Go next to Door

Go next to Ganon

GO next to Key

Go next to WOHX

Defeat Ganon

Break Key X
Pick Key

Open Door

SO OO

- -

- -

Select/thé phrase that best summmarizes GC’[E)L]'ATFTWE will use
your response while referring to thlsmﬂSn A1 later in the survey.

/7 -
’ -

17



Learned Capability Descriptions are Maximally Consistent

* Theorem (consistency):
The learned descriptions are consistent with the observations and the queries.

* Theorem (maximal consistency):
This approach is maximally consistent, i.e., we cannot add any more literals to the
preconditions or effects without ruling out some truly possible models.

* Theorem (probabilistic completeness):
In the limit of infinite execution traces, the probability of discovering all capabilities
expressible in the user vocabulary is 1.

18



Learning Neuro-Symbolic Skills for
Bilevel Planning

Tom Silver, Ashay Athalye, Josh Tenenbaum, Tomds Lozano-Pérez, and
Leslie Pack Kaelbling
CoRL 2022



Learn High-Level Skills for Robots

Concepts/Symbols

cupfilled (?c) \ Learned Skills
potOnPlate (?p ?pl)

aboveCup(?r ?c)

Holding (?r ?p) PICk Up POt

Place on Plate

>
> : Turn Plate On
(50,0151
(51, Az, 52)
(Sn—ll An, Sn) Learning such skills can lead to efficient long horizon

Low-Level Transitions planning in continuous state and action spaces.

20



Key Properties of a Skill

Abstractions are lossy, hence:

1. A skill should be able to reach many different environment states (“subgoals”) that
correspond to the same abstract state.

2. An agent should be able to consider multiple skill sequences that reach the same goal
from the same initial abstract state.

21



Components of a Skill

Each Skill has 3 components:

A Symbolic Operator (like action in PDDL)
Neural subgoal-conditioned policy (like an option in RL)

Neural subgoal sampler

22



Architecture

GOGI g — AI qunner .................................................................................................................................................................................................................................................................... D> e
Skills @ — Abstract state s —> Operator w Abstract state 54 > ...
Predicates ¥ —>m Samplera —> Subgoal x’ Learned

|
v

Initial state X Policy 1 —>  Action qq én% State x; —> Policym —> -+ —> Subgoal x" > e Ground Skill

23



LD

Learning Neuro-Symbolic Skills

Preprocess demonstrations into skill datasets
Learn operators: symbolic techniques
Learn policies: supervised learning

Learn samplers: distribution learning

24



Train Tasks

Evaluation Tasks

E l

Empirical Evaluation

Stick Button

Coffee

>
-

-
»

25



% Eval Tasks Solved

=
(=]
o

80+

60

40

20+

o

Efficient and Better Generalization across all domains

Stick Button

Coffee

Cover Doors
y | 100 +
T
80+
| ? " /
%‘ 40
1
201
0 T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000

# Demonstrations

# Demonstrations

1001

80

60

401

20

0.

100
80
60
40
20

0

0

200 400 600 800
# Demonstrations

1000

0

200 400 600 800
# Demonstrations

1000

——BPNS (Ours) —¢—BPNS No Subgoal ——GNN Meta ——GNN Meta No Subgoal —#—Abstract Plans—=1 —— Samples=1
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Al Assessment in Adaptive Settings

27



Adaptive Taskable Al Systems

7

Dan Luu
@danluu - Follow

"Unfortunately, a recent software update was not

successful. Your vehicle cannot be driven. Please call
customer support:"

Update Not Successfu

Unfortunately, a recent software update was not successhl. Your vehicle cannot be
driven

Please call customer support:

Ford Customer Relationship Center

shis situation s Quick]
We sincerely apologize and wil work $0 nesolve this stustion &5 guoky

For the tow truck

\1146 PM - Dec 25, 2023

X

N\

@ usaToDAY

Tesla self-driving software update begins
rollout though company says to use with

caution

=} Charisse Jones, USA TODAY
July 12,2021 - 2 min read

Lucid Owners Facing Software Glitches That
Brick EVs Or Drive the Wrong Direction

1 Owen Bellwood
November 10, 2022 - 2 min read

AEG combi microwave thinks it is a steam

oven and no longer works after an incorrect
update

By Julian Huijoregts 04-03-2022 « 10-438

NEWS

Nest thermostat software bug chills users
once again

A faulty software update for the smart thermostat made batteries drain and home temperatures drop.

By Jared Newman
TechHive | JAN 14, 2016 8:38 AM PST
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Maintaining Evolving Domain Models

Dan Bryce, J. Benton, and Michael W. Boldt
IJCAI 2016



Model Maintenance Problem

* Real-world domains evolve (e.g., changes in effectors or conditions).
* Model drift : Ground-truth and the model diverge

* Model Maintenance: A user’s understanding (mental model) of a domain evolves, drifting
away from the formal computational model of the domain

30



Model Maintenance Problem

* Real-world domains evolve (e.g., changes in effectors or conditions).

* Model drift : Ground-truth and the model diverge

A

Domain Expert

Model Maintenance Tool
that must keep M updated

H u
knows model M according to M

MY can evolve over time

Automated Planner
using model M

31



Model Representation

* User query is U;, and observation received is z; (:action open-door
:parameters (?11)
:precondition (and

xt (T/L) (has_key)

x> (T/L) (door_open)

x> (T/L) (door_adjacent ?11)

x* (T/L) (player_at 211))

Model )_C> < :effect (and

* Formulate the prior distribution P(X,) over
models by assuming starting model where
every feature is |

x> (T/L) (has_key)
x6 (T/1L) (door_open)
o : : : x” (T/L) (door_adjacent 211)
Each possible model is a particle that can be L ¥ (T/1) (player_at 711))

sampled from a proposal distribution that
considers both model drift and observations

g7 7, 2)

32



Marshal’s Learning Process

1. Query the User: Query the user with u; and receive z;.

2. Generate N Samples based from proposal distribution:

%~ q(E0 122, 2,)

3. Weight the Particles with their likelihoods
HOMNSIOIN0)
p(ze|2; " )p (%, |%,21)

(% e )

Wi

4. Resample Particles from the set of normalized-weighted particles to create

belief state {D_C)gi)}.

the next

33



Updating the Particles

* Verbatim (V)

* Uniform Drift (U)

* Uniform Drift Generalization (UG)

* Well-Formed Drift (W)

* Well-Formed Generalization (WG)

@0 _ P(Zt"?gi))”(ft(i)‘

> (1)
Xt-1

)

Wy

(%75 )

34



Updating the Particles

* Verbatim (V): Update particles to be complicit with user domain update and query
response observations. Ignore plan observations.

r1,if )_c)gi) respects fgl_)l

i P<Zt|f£l))P(f§l)‘3_C)gl_)1) aside from updates

Wy Q<7_C>§i)‘ft(i—)1izt>

< specified by z;

\ 0, otherwise

35



Updating the Particles

* Uniform Drift (U): Similar to verbatim, but for plan observations, uniformly sample a single

domain model feature to add (remove).

Wy

@ _ P(Zt‘fgi))P(ft(i)|

> (1)
Xt-1

:

=

= (1)

)

<

( |71|, if fgi) differs from fgl_)l

by exactly one
assignment

\ 0, otherwise

36



Updating the Particles

o =) . >(1)
NG RO ( EL if X, differs from xX;”;
(i) P(Zt‘xt >P<xt ‘xt—l) by exactly one group
w = . . .
t N (1 _ of assignments
q<x§l) ‘Xt(—)y zt> = J

\ 0, otherwise

* Uniform Drift Generalization (UG): In addition to uniform drift, also add (remove) related
domain model features.

37



Updating the Particles

* « is a normalization constant
* o comes from a heuristic (see paper)

L) L (D) =(0) aa, if )_C)gi) differs from J_C)gl_)l
0 P(Zt|xt )P(Xt ‘Xt_1> by exactly one group
W,y ™ = of assignments

q<fz@ ‘fzgi—)p Zt) N

0, otherwise

* Well-Formed Drift (W): Similar to uniform drift, but treat plans differently.

38



P (Zt

%V

)

Weighting Particles

@) _ P(Zt"?gi))”@t(i)‘fta—)l)

W, Q(-’_C)gi)‘ft(i—)yzt)

J_fgl_)l) set such that observations agreeing with a

1 5(0)
o Pl x
~ S| ( ‘

domain model have high probability (0.99) and those
disagreeing have low probability (0.01)

39



Empirical Evaluation

Q1. Must Marshal assume an evolving model, or can static change be assumed?
Q2. Do answers to queries help with the learning process, or are plan observations enough?

Q3. Does a uniform transition function operate as effectively as a more well-formed
transition function that captures common traits of domains?

40



Empirical Evaluation

* The user updates their mental model six times. Each change is over a precondition, add or
delete effect in an action schema.

* After each change, the user provides a series of 108 plans that they believe are valid.

* After each plan, the user answers a series of Marshal’s questions in the order that Marshal
determines.

* After each series of plans, and just prior to the next drift in the user’s model, we ask
Marshal to calculate the probability (given its distribution over models) that each plan within
a testing set of 28 plans is valid.

* Marshal uses 128, 256, 512, or 1024 particles in its particle filter



Observations beyond just plans are useful to learn drifted models

0.8
0.7 1 [ 0 [
0.6 ° R [ * Each stacked column lists results for
§ 05 4 _ n i i i " a method, from left to right (V, U,
w 5 ! " UG, W, WG).
& 0.4 | | i h Jﬂ i
é’ 0.3 M- mj- L HL[ z 1 i H * Within each column the results from
{IH THH THF 1| " i the bottom to the top of the stack
0.2 "M. “W- L"H- - - n are for each number of i
’ H queries per
o1 B 1% ﬂ iﬂ 1 " plan (0, 1, 2, 3).
O E; Al m_, SEEE NNL_*, ‘ - R R T T -‘J ; NN m
> © L D > (%) L D > (%) L Y >
ALR 250 SV AQLY  ALR 990 gV QLY ALC 19° sV A0 AL
\e \e \e ‘\\e"\' (\k\‘\% % \k\ % (\%'\' (\(\e a(\(\e‘ a(\(\e( Ay (L

(2
209 00 00 oo™ o g ga N e ot et e aes?
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Differential Assessment of
Black-Box Al Agents

Rashmeet Kaur Nayyar*, Pulkit Verma®, and Siddharth Srivastava
AAAI 2022



Differential Assessment

Input

* |nitial model of the Al system.
* Predicates (User vocabulary)
* With their evaluation functions
* List of capabilities.
* Observations of Al system working in the
environment.

Ovutput

* Updated PDDL-like description of each
capability.

Can we learn an updated model without
doing a complete assessment?

Assumptions

* User’s vocabulary matches
simulator’s vocabulary.

* Black-Box Al provides a list of
capabilities.

Adaptivc
—Stoiforary agent model.

* Deterministic environment.

* Fully observable setting.
44



Will it be able to safely
navigate from the lab to the

warehouse?

It is not how | knew it
was supposed to
navigate from the lab
to warehouse. What has

changed?

é sy Airport

| — |

Sy

~r

\

Warehouse

Factory

45



Agent updates

E.g., software update,

>
new deployment,
adapted for user needs, etc. simulator
Challenge 1
How to identify what has
changed from sparse
Sparse Observations observa’rions.of agent’s
(collected once) behavior?
se observations and M, ;;
Initial Model Chqllenge 2
known to the user =>

M

init

How to identify how the model

has changed given what has
changed?

Personalized
Al-Assessment Module

46



simulator

Updated model M ., of

> ¢
Black-Box Al System’s
capabilities

Personalized
Al-Assessment Module

47



What can change?

Two broad categories

(:action pick-samples

* Any of these could change their form: B

* From + to —, e.g., (handempty) to (not(handempty))

* From —to +, e.g., (not(handempty)) to (handempty) =————
e, 0 _
* Can get dropped from precondition or effect.

)

* Another predicate can get added as a
precondition or effect.

:parameters (?s)
:precondition (and
(handempty)
(onshelf ?s))
:effect (and
(not (handempty))
(not (onshelf ?7s))
(holding 7?s))

48



Increased Functionality

Observed that the agent executed
move (lab,warehouse)

49



How to identify increased functionality ?

How is it executing
move (lab,warehouse)?

Observation Traces

* “State -> Action -> State” tuples.

Executes

~ move(lab,warehouse)

H'“;(. =N

Many approaches learn models based on such observations but...

50



Reduced Functionality

Observed that the agent executed
(move (lab, factory),
move (factory,warehouse))

51



How to identify reduced functionality?

* Not a trivial problem to solve. | wonder why it didn’t execute
move (lab,warehouse)?

* Observations not directly available.

}0 & I Executes j; o Executes }. ¢
’o ° :Qmove(lab,factory§ o "% -.A,move(factory warehouse>) o °
dall & &Y ’ dall

* Can we use similar intuitions of optimality?

52



Agent updates

E.g., software update,

new deployment,

adapted for user needs, etc.
Agent placed in an
optimal planning mode

Sparse Observations
(collected once)

(S0, A1,51) (S1,A2,S2) - (Sp—1, An, Sn)

\ l Solves Challenge 1
< plcrl;rlling (So,Sk)  (length of plan = k) How tfo identify how the model
problem

Initial Model

known to the user

M

has changed given what has
changed?

— optimal plan If length of plan <k, then subset of

>

actions in the plan has changed!

53



Marking the changes

* Combine knowledge of increased and reduced functionality to identify parts of model
that may have changed.

(:action pick-samples (taction pick-samples
:parameters (2s) :parameters (?s)
:precondition (and :precondition (and

(handempty) (+/-/9) (handempty)
(+/-/0) (onshelf ?s)) (+/-/0) (onshelf ?s))
ceffect (and reffect (and
(+/-/0) (handempty) (+/-/0) (handempty)
(not(onshelf ?s)))) (+/-/0) (onshelf ?7s)))
Only some parts of action changed Complete action changed

* How do we identify their correct form?

54



Experimental Setup

Randomly generate initially known agents using IPC benchmark suite.

Generate observations for unknown drifted IPC agent using IPC problems.
Using previous model and available observations, predict what may have changed.

Learn the updated model by querying for changed portions of the model.

Evaluate performance of the assessment module and compare it with the vanilla active
querying approach of assessing model from scratch.



Fewer Queries Needed Compared to Learning from Scratch

Gripper 15.0
Miconic 36 32.0
Satellite 50 34.0
Blocksworld 52 40.0
Termes 134 115.0
Rovers 402 316.0

The average number of queries to achieve
same level of accuracy for 50% drifted models

7.7
9.0
11.4
27.0
61.0

* Results with FD planner with LM-Cut.

* AIA takes up to 5 times more number of
queries than our approach, DAAISY.
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Fewer Queries Needed Compared to Learning from Scratch

Accuracy gained by AAM — Number of queries by AAM
X Number of queries when learning from scratch

134 o!ueries needed if Accuracy Used 10 observations
v . starting from scratch per domain
rme
_ r'd

ﬁ Random deterministic —= Accuracy of initial model —- Accuracy of model computed by AAM

s planning agent from IPC

P— gt W) QN So— 1.0
0.7 20 Y YeNy 07

n S >
Q
1: 0.4 04 = X s 1.0 %
, 00 02 04 06 08 1.81 %.{;N 02 04 06 08 1.'001 -] 100 5
% Satellite Blocksworld O 0 . 7 (O]
. . g
@ 40K = 10 Yoo 10 8 O
& Vedons 07 0 TN T g5 3 5
e : 735 (@] <
e Caw 5 50 0.4 5
é P I SN 01l @ v
3 00 02 04 06 08 1.0 00 02 04 06 08 1.0 = o) ©
X Termes 10 x— Rovers 1.0 g O /—/f‘ ' el 0-1 §
1000 A o T g
Z 0.0 0l2 04 06 0.8 1.0
A~ S, % drift
0.0 02 04 06 0.8 1.0 00 02 04 06 08 1.0
% drift

Number of queries
are much lower than 134



Learned Updated Capability Descriptions are Consistent

* Theorem (consistency): The learned descriptions are consistent with the
observations and the query responses.
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Future Directions and Conclusion
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Interpretability Analysis of
Symbolic Representations for
Sequential Decision-Making Systems

Pulkit Verma and Julie A. Shah
HRI 2025 Workshop on Explainability for Human-Robot Collaboration



Interpretable Representations

Representations beyond PDDL.

*  Temporal Logic (LTL/STL)
* Bayesian Networks
* RDDL

How interpretable each representation is?

Which representation fits the requirements of end user well?

6l



Interpretable Representations

Representation Interpretability Formalism  Temporal Abstraction Explanation Domain  Speci- Human
Level Type Expressiveness Level Type ficity Interaction
Markov Decision Processes (MDPs) Medium Symbolic Discrete Time Low-Level Global General Indirect
Finite State Machines (FSMs) Medium Symbolic Discrete Time Low-Level Global General Direct
Decision Trees High Symbolic N/A Low-Level Global General Direct
Rule-Based Systems High Symbolic N/A Low-Level Global General Direct
Temporal Logic (LTL, STL, etc.) Medium Symbolic Continuous Time Low-Level Global Domain Indirect
Program Synthesis Low Symbolic N/A High-Level Global Domain Indirect
Planning Domain Definition Language Medium Symbolic Discrete Time High-Level Global Domain Indirect
(PDDL)
Hierarchical Task Networks (HTNSs) Medium Symbolic Hierarchical Time  High-Level Global Domain Indirect
Relational Dynamic Influence Diagram Medium Symbolic Discrete Time High-Level Global Domain Indirect
Language (RDDL)
Causal Models Medium Hybrid N/A Multi-Level Global General Indirect
Neuro-Symbolic Integration Low Hybrid N/A Multi-Level Global General Indirect

Classification of Interpretable Representations for Sequential Decision-Making Systems along different dimensions
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Emerging Direction: Evaluation of LLM Based Agents

Can LLMs maintain factual accuracy when translating formal language?
Autoformalization: converting natural language into formal language

E.g., Code synthesis, synthesis of formal safety specifications in linear temporal logic
Informalization: converting formal language into natural language

E.g., code summarization, summarization of legal documents, interpretation of bug reports

Objectives:
1. Generating out-of-distribution datasets without human annotators
2. Accurately measure a LLM’s truth maintenance capabilities

3. Use our metric as a predicter of performance on other metrics
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Dataset Generation Using CFG Parse Trees

S—=SAS S—= (SAS)|(SVS) S — F|(Vf.S)|(3f.S) S— (S)K|XK
S— (PVPVP) S — (—5) F— (FAF)|(FVF) S — SYK
P — ﬁfylfy S — ﬁ?)|’b‘ F — (—iF)|—|p|p K — *|E

(a) 3-CNF (b) Propositional Logic (¢) First-order Logic (d) Regular Expression

CFGs used for synthesizing the datasets in YUTOdVAL

S

TN

A B

A — aAle . 1? b
B —=b e

(a) CFG G for the language a*b (b) Parse tree when using G to obtain the string ab (d = 2)



AutoEval Process

Formal Syntax Vocabulary 8_ Clear L's Context
Generator Database ] LLM L L J
Input Grammar: G Automatic FS ¢q NL Query
\ » Vocabulary —> + —{ Z(po) = + — A{e) [>FS o — S
FS (py———— Generation Y0 =P
Ground-truth Data and Context Generation Informalization: Z Autoformalization: A Verification
Example 1 (Vocabulary is abstract) .
A conjunction of the £
— A = 7
w0 = p1 A\ p2 A D1 Z (o) > 1p, = Propositions p1, p2, p1; P (17_:%) » 01 =p1 Ap2 L2=P1 e
LLM L also expressed p1 and Proverd
p2 by idempotence =
e Ve e ; .................................................................................................................................
0o = p1 A D2 A P The sun was bright the 5 B
Z(po) >p, = day before whilst it is E A(to) > 01 =p1 Apy 2= P17 1ue
LLM L raining heavily foday L Prover9
o
Example 3 (Vocabulary is real-world) An regular expression é
Z(po) for email with a set of o Ao) B Po =12
po = [a-Z]+@[a-z]+.com—— 7 %o = characters separated = 7 i SWADMAETA S5 e o [Re e
by @, endingin.com 2 (numbers are not allowed in )



Example: Prompt for Informalization

Your task is to convert a (Propositional Logic, First-order Logic) formula, appearing after
[FORMULA], to a natural description that represents the formula. Only natural language
terms are allowed to be used and do not copy the formula in your description. Your
description should allow one to reconstruct the formula without having access to it, so make
sure to use the correct names in your description. Explicitly describe the predicates. You may
use terms verbatim as specified in the vocabulary below.

[VOCABULARY]
Operators:  List of operators followed by their NL interpretations

Objects: The objects in the universe (if any)
Propositions:  The propositions in the universe and their NL interpretations (if any)
Predicates: The predicates in the universe and their NL interpretations (if any)
Examples: Few-shot examples of the task (if any)

Example Prompt

Your task . .. o o .
Operators: A represents conjunction, V represents disjunction, . . .

Propositions:  p; : It is raining, ps : It was sunny yesterday
Formula: p; Aps Apy

Example Response: The sun was bright the day before whilst it is
raining today.
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LLMs as Verifiers VutodVAL

Syntactic
Compliance

Score

F Score

Evaluating LLMs Using AutoEval

ChatGPT — GPT-40 —— GPT-40-mini - - Phi3 — — Mistral LLama3

Other LLMs (n = 10)
Regular Expression(2)

Propositional Logic(12) FOL(8, 12)—S FOL(8, 12)—E

10 20 30 40 0 10 20 30 40 0 10 20 30 40 0

10 20 30

# of Operators: A, V,— (— is counted as an operator iff not succeeded by a terminal)

CFG Parse Tree Depth
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Evaluating Large Reasoning Models: o1

PL(12) FOL(8, 12)—E

S0 L - 1
a2 75 7
c .©

>3 5 L5
C\l§ 251 .2
I 0 1o

0 10 20 30 400 10 20 30 40
# of Operators: A, V, —

ot

Ot
§A3: VutodVAL

Score
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Let Lyand L, be two language models evaluated on two benchmarks A and B with ranks

Predictive Power of AutoEval

>, and =g . The predictive power of >4 over >3 is defined as:
P, ,(=p) = Pr(Ly =g Ly|L; =4 L;)

P|VutoE|V/\L(X)

B
ot

-3
(&)

ot

0.89

: Accuracy

1 FOLIO(NL)

0.85

: Accuracy

{ FOLIO(FOL)

0.81

: Accuracy

LogiEval(PL)

0.73

0.86

: Accuracy

LogiEval(FOL)

FOLIO(A) : Accuracy

0.74 075 O0.77

o

JlE:

o =2Rn
n_:.' o =
SYEESHIERS
e o e
= - =
e ®) e
L L LL

0.68

0.78

0.86

: BERT

FOLIO(Z)

: Accuracy

1 HumanEval(A)

. Accuracy

{ BBH(R)

Benchmark X (Annotated bars

o
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What Remains to Be Done



Revisiting Al Assessment

User’s Intent > e .
Specification

A

v }

User’s

[

l

Agent's Goal /Control
Obijective /Cost/Constraints

User-Driven . Agent’s Behavior Synthesis |
Al Assessment -« Constraints (unknown to user) |
! * Adaptive code (unknown to designer) -

'+ Mostly suboptimal !

Only for stationary
systems: known at
design-stage

Executable
Program/Controller

72



Needed for Al Systems

Revisiting Al Assessment

1) Intent vs Specification

User’s
Specification

Reward Hacking
2) Specification vs Al Objective 1

Agent’s Goal/Control Objective
& Cost function

Wireheading
. o . 3) Al Objective vs Al Behavior
Reward Misspecification
. Agent’s Behavior Synthesis l
. | * Constraints (unknown to user) |
Side Effects . * Adaptive code (unknown to designer) |
I'+ Mostly suboptimal
Off-Switch Only for stationary
systems: known at

design-stage

Agent doesn’t let the user turn it off

A 4

Executable

Agent Behavior
Program/Controller

= Possible Executions

A

4) Computed Behavior vs Real Outcome
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Revisiting Al Assessment

Reward Hacking
Wireheading

Reward Misspecification
Side Effects

Off-Switch

Several gaps in ongoing research

Needed for Al Systems

1) Intent vs Specification ,
User’s

Specification

User’s Intent

2) Specification vs Al Objective l

Agent’s Goal/Control Objective
& Cost function

3) Al Objective vs Al Behavior l

Agent’s Behavior Synthesis
* Constraints (unknown to user)

I '« Mostly suboptimal

Only for stationary
systems: known at
design-stage

A 4

Agent Behavior Executable

<«

= Possible Executions Program/Controller

4) Computed Behavior vs Real Outcome

* Adaptive code (unknown to designer) |
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