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Schedule

Session 1
• Introduction and Motivation
• Assessment through Model Learning
• Assessment of Black-Box AI Systems in Stationary Settings

09:00 AM

Coffee Break10:30 AM

Meet and Greet over Coffee08:30 AM

Lunch12:30 PM

Session 2
• Discovering Capabilities for Black-Box AI Assessment
• AI Assessment in Adaptive Settings
• Future Directions and Conclusion

11:00 AM
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Discovering Capabilities for Black-Box AI 
Assessment
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Agent Actions

(Keystrokes)

W

A

S

D

E

Knowledge of primitive actions might be

insufficient to understand the agent’s capabilities

(defeat ganon)
(go to door)
(go to key)

(go to ganon)
(pick key)

(open door)

Learned

Capabilities

4

Link

Ganon
Key

Door

• Functionality: Set of possible low-level actions of the agent.

• Capability: What agent’s planning and learning algorithms can do.

Capability v/s Functionality
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Discovering User-Interpretable Capabilities of 
Black-Box 

Planning Agents

Pulkit Verma, Shashank Rao Marpally, and Siddharth Srivastava

KR 2022



• Users share same vocabulary in same workspaces.

• E.g., factory workers, coworkers, etc.

• Training the users on some predefined vocabulary.

• Using vocabulary acquisition techniques like TCAV†, etc.

Vocabulary Acquisition

6†Kim et al. Interpretability beyond feature attribution: Testing with Concept Activation Vectors.  In Proc. ICML 2018.



Link

Ganon

Key

Door

User Vocabulary can be Less Expressive
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Agent’s State

Representation

pixel_1_1(#42A8B3)
pixel_1_2(#42A8B3)

.

.

.
pixel_n_m(#203A3D)

State Representation 

in User’s Vocabulary

(at ganon 5,3)

(at link 6,3)

(at key 9,4)

(at door 9,2)



Discovering Capabilities 
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• User’s vocabulary matches 
simulator’s vocabulary.

• Black-Box AI provides a list of 
capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

transitions.
S A E A

Input

• Predicates (User vocabulary)

• With their evaluation functions

• Samplers: high-level state to low-level state.

• Low-level state transitions.

Output

• List of capabilities.

• PDDL-like description of each capability.

[Verma, Marpally, Srivastava; KR ‘22] 



at(p0,cell_6_3)
clear(cell_0_0)…
wall(cell_0_1)…
door_at(cell_9_2)
key_at(9_4)

at(p0,cell_6_3)
at(m0,cell_5_3)
clear(cell_0_0)…
wall(cell_0_1)…
next_to(monster)
alive(m0)
door_at(cell_9_2)
key_at(9_4)

c1 c2

S A E A

at(p0,cell_5_3)
clear(cell_0_0)…
wall(cell_0_1)…
door_at(cell_9_2)
key_at(9_4)

The player and the monster 

are in neighboring cells.

The player killed the

monster, and is still

in the same location.

The player has 

moved to a

new location.

Expressed

in User

Vocabulary

Discovering Capabilities using  Input Predicates as Abstractions
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For each capability:

• Extract what predicates were different in the pre 
and post-states of the capability.

• Extract the parameters from those predicates to 
create a candidate parameter set.

• Complete the parameter set along with capability 
description as precondition and effect of a 
capability by active querying.

at(p0,cell_6_3)

clear(cell_0_0)…

wall(cell_0_1)…

door_at(cell_9_2)

key_at(9_4)

at(p0,cell_6_3)

at(m0,cell_5_3)

clear(cell_0_0)…

wall(cell_0_1)…

next_to(monster)

alive(m0)

door_at(cell_9_2)

key_at(9_4)

[Sample pre and post states of a capability]

[Learned capability description]

How to learn 

these?

Parameterizing a Capability
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(:capability c1

  :parameters (…)

  :precondition (…)

  :effect (…))

. . .

𝑠0,⟨𝑐1, 𝑐2, … , 𝑐𝑛⟩ s0, 𝑐1, 𝑠1, 𝑐2, 𝑠2, … , 𝑐𝑛, 𝑠𝑛

⟨s0, 𝑠1⟩, 𝑠1, 𝑠2 , … , ⟨𝑠𝑛−1, 𝑠𝑛⟩

What will happen if 
you execute the plan
⟨𝑐1, 𝑐2, … , 𝑐𝑛⟩ starting 

in a state 𝑠0?

Can you reach 

state ҧ𝑠1from 

state ҧ𝑠0?

Can you reach 

state ҧ𝑠2from 

state ҧ𝑠1?

Can you reach 

state  ҧ𝑠𝑛 from 

state ҧ𝑠𝑛−1?
. . .

Plan Outcome Query

State Reachability Queries

⟨ ҧ𝑠0, ҧ𝑠1⟩, ⟨ ҧ𝑠1, ҧ𝑠2⟩, … , ⟨ ҧ𝑠𝑛−1, ҧ𝑠𝑛⟩

State Refinement

11

Query Refinement

(:capability c2

  :parameters (…)

  :precondition (…)

  :effect (…))



Can you reach 

state ҧ𝑠1 from 

state ҧ𝑠0?⟨ ҧ𝑠0, ҧ𝑠1⟩ 

YES

⟨ ҧ𝑠1, ҧ𝑠2⟩ Can you reach 

state ҧ𝑠2 from 

state ҧ𝑠1?

⟨ ҧ𝑠𝑛−1, ҧ𝑠𝑛⟩ Can you reach 

state ҧ𝑠𝑛 from 

state ҧ𝑠𝑛−1?

High-level
Query

Generator

⟨𝑛, 𝑠𝑛⟩ 

. . .

Iterative Capability Model Learning

[iCaML]

Response Interpretation
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Response Interpretation
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Can you reach 

state ҧ𝑠1 from 

state ҧ𝑠0?

No

Can you reach 

state ҧ𝑠2 from 

state ҧ𝑠1?

⟨ ҧ𝑠0, ҧ𝑠1⟩ 

⟨ ҧ𝑠1, ҧ𝑠2⟩ 

⟨ ҧ𝑠𝑛−1, ҧ𝑠𝑛⟩ 

High-level
Query

Generator

⟨1, 𝑠1⟩ 

. . .

Iterative Capability Model Learning

[iCaML]



Position of Link has not changed

Ganon is not at its previous location

Ganon is not alive anymore

Link is not next to Ganon

This capability is: “Defeat Ganon”

14

Example of a Learned Capability Description



[Capability Description Example] [Functionality Description Example]
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Pr
ec

on
di

tio
ns

Ef
fe

ct
s

Possible options 
to choose from

Possible options 
to choose from

Ke
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User Study Setup to Verify Interpretability
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If Link starts in the state 

shown below:

Which sequence of actions can 

Link take to reach the state 

shown below:

Utility of Discovered Capability Descriptions



Results: Capability Summarization Study
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• Theorem (consistency): 
The learned descriptions are consistent with the observations and the queries.

• Theorem (maximal consistency): 
This approach is maximally consistent, i.e., we cannot add any more literals to the 
preconditions or effects without ruling out some truly possible models.

• Theorem (probabilistic completeness): 
In the limit of infinite execution traces, the probability of discovering all capabilities 
expressible in the user vocabulary is 1.

Learned Capability Descriptions are Maximally Consistent 



Learning Neuro-Symbolic Skills for 

Bilevel Planning

Tom Silver, Ashay Athalye, Josh Tenenbaum, Tomás Lozano-Pérez, and

Leslie Pack Kaelbling

CoRL 2022



Learn High-Level Skills for Robots

cupfilled (?c)
potOnPlate (?p ?p1)
aboveCup(?r ?c)
Holding (?r ?p)
…

⟨𝑠0, 𝑎1, 𝑠1⟩

⟨𝑠1, 𝑎2, 𝑠2⟩

⟨𝑠𝑛−1, 𝑎𝑛 , 𝑠𝑛⟩

.

..

Learned Skills

Learning

Concepts/Symbols

Low-Level Transitions

Pick up Pot
Place on Plate
Turn Plate On

…

Learning such skills can lead to efficient long horizon 

planning in continuous state and action spaces.

20



Key Properties of a Skill

Abstractions are lossy, hence:

1. A skill should be able to reach many different environment states (“subgoals”) that 
correspond to the same abstract state.

2. An agent should be able to consider multiple skill sequences that reach the same goal 
from the same initial abstract state.

21



Components of a Skill

• Each Skill has 3 components:

• A Symbolic Operator (like action in PDDL)

• Neural subgoal-conditioned policy (like an option in RL)

• Neural subgoal sampler

22



Architecture

Skills Φ

Goal g

Predicates Ψ

Initial state 𝑥0

Abstract state 𝑠0 Operator 𝜔

Sampler 𝜎

Policy 𝜋

Subgoal 𝑥′

Action 𝑎1 𝑓 State 𝑥1 Policy 𝜋 Subgoal 𝑥′

Abstract state 𝑠1

Ground Skill

Learned

𝐹    

AI Planner

abstract abstract

… 

… 

… 

… 

23



Learning Neuro-Symbolic Skills

1. Preprocess demonstrations into skill datasets

2. Learn operators: symbolic techniques

3. Learn policies: supervised learning

4. Learn samplers: distribution learning

24



Empirical Evaluation

25



Efficient and Better Generalization across all domains

26



AI Assessment in Adaptive Settings

27
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Adaptive Taskable AI Systems



Maintaining Evolving Domain Models

Dan Bryce, J. Benton, and Michael W. Boldt

IJCAI 2016



Model Maintenance Problem

• Real-world domains evolve (e.g., changes in effectors or conditions).

• Model drift : Ground-truth and the model diverge

• Model Maintenance: A user’s understanding (mental model) of a domain evolves, drifting 
away from the formal computational model of the domain

30



Model Maintenance Problem

• Real-world domains evolve (e.g., changes in effectors or conditions).

• Model drift : Ground-truth and the model diverge

Automated Planner

using model 𝑀

Domain Expert

knows model 𝑀𝑢

Marshal

Model Maintenance Tool 

that must keep 𝑀 updated 

according to 𝑀𝑢

𝑀𝑢 can evolve over time

31



Model Representation

(:action open-door
  :parameters (?l1)
  :precondition (and 
    (⊤/⊥) (has_key)
    (⊤/⊥) (door_open)        
    (⊤/⊥) (door_adjacent ?l1)
    (⊤/⊥) (player_at ?l1))
  :effect (and 
    (⊤/⊥) (has_key)
    (⊤/⊥) (door_open)        
    (⊤/⊥) (door_adjacent ?l1)
    (⊤/⊥) (player_at ?l1))

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

Ԧ𝑥Model

• User query is 𝑢𝑡 , and observation received is 𝑧𝑡

• Formulate the prior distribution 𝑃(𝑋0) over 
models by assuming starting model where 
every feature is ⊥ 

• Each possible model is a particle that can be 
sampled from a proposal distribution that 
considers both model drift and observations

𝑞( Ԧ𝑥𝑡
𝑖 | Ԧ𝑥𝑡−1

𝑖 , 𝑧𝑡)

32



Marshal’s Learning Process

1. Query the User: Query the user with 𝑢𝑡 and receive 𝑧𝑡 .

2. Generate N Samples based from proposal distribution: 

   Ԧ𝑥𝑡
𝑖

 ~ 𝑞( Ԧ𝑥𝑡
𝑖

| Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡)

3. Weight the Particles with their likelihoods

   𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡

4.  Resample Particles from the set of normalized-weighted particles to create    the next 

belief state { Ԧ𝑥𝑡
𝑖

}.

33



Updating the Particles

• Verbatim (V)

• Uniform Drift (U)

• Uniform Drift Generalization (UG)

• Well-Formed Drift (W)

• Well-Formed Generalization (WG)

𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡

34



Updating the Particles

• Verbatim (V): Update particles to be complicit with user domain update and query 
response observations. Ignore plan observations.

• Uniform Drift (U)

• Uniform Drift Generalization (UG)

• Well-Formed Drift (W)

• Well-Formed Generalization (WG)

𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡
=

1, if Ԧ𝑥𝑡
𝑖

 respects Ԧ𝑥𝑡−1
𝑖

    aside from updates 

    specified by 𝑧𝑡

 

0, otherwise 

35



Updating the Particles

• Verbatim (V)

• Uniform Drift (U): Similar to verbatim, but for plan observations, uniformly sample a single 
domain model feature to add (remove).

• Uniform Drift Generalization (UG)

• Well-Formed Drift (W)

• Well-Formed Generalization (WG)

𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡
=

1

|𝒳|
, if Ԧ𝑥𝑡

𝑖
 differs from Ԧ𝑥𝑡−1

𝑖

      by exactly one 

      assignment

 

0, otherwise 
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Updating the Particles

• Verbatim (V)

• Uniform Drift (U)

• Uniform Drift Generalization (UG): In addition to uniform drift, also add (remove) related 
domain model features.

• Well-Formed Drift (W)

• Well-Formed Generalization (WG)

𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡
=

1

|𝒳𝐺|
, if Ԧ𝑥𝑡

𝑖
 differs from Ԧ𝑥𝑡−1

𝑖

       by exactly one group 

       of assignments

 

0, otherwise 
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Updating the Particles

• Verbatim (V)

• Uniform Drift (U)

• Uniform Drift Generalization (UG)

• Well-Formed Drift (W): Similar to uniform drift, but treat plans differently. 

• Well-Formed Generalization (WG)

𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡
=

𝛼𝑎,  if Ԧ𝑥𝑡
𝑖

 differs from Ԧ𝑥𝑡−1
𝑖

       by exactly one group

       of assignments

 

0, otherwise 

• 𝛼 is a normalization constant

• a comes from a heuristic (see paper)

38



Weighting Particles

𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡

𝑃 𝑧𝑡 Ԧ𝑥𝑡
𝑖 =

1

2 𝒳
𝑃 Ԧ𝑥𝑡

𝑖 Ԧ𝑥𝑡−1
𝑖

 set such that observations agreeing with a 

domain model have high probability (0.99) and those 

disagreeing have low probability (0.01)

39



Empirical Evaluation

Q1. Must Marshal assume an evolving model, or can static change be assumed?

Q2. Do answers to queries help with the learning process, or are plan observations enough?

Q3. Does a uniform transition function operate as effectively as a more well-formed 
transition function that captures common traits of domains?

40



Empirical Evaluation

• The user updates their mental model six times. Each change is over a precondition, add or 
delete effect in an action schema.

• After each change, the user provides a series of 108 plans that they believe are valid.

• After each plan, the user answers a series of Marshal’s questions in the order that Marshal 
determines.

• After each series of plans, and just prior to the next drift in the user’s model, we ask 
Marshal to calculate the probability (given its distribution over models) that each plan within 
a testing set of 28 plans is valid.

• Marshal uses 128, 256, 512, or 1024 particles in its particle filter

41



Observations beyond just plans are useful to learn drifted models

• Each stacked column lists results for 

a method, from left to right (V, U, 

UG, W, WG). 

• Within each column the results from 

the bottom to the top of the stack 

are for each number of queries per 

plan (0, 1, 2, 3).

42



Differential Assessment of

Black-Box AI Agents

Rashmeet Kaur Nayyar*, Pulkit Verma*, and Siddharth Srivastava

AAAI 2022
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• User’s vocabulary matches 
simulator’s vocabulary.

• Black-Box AI provides a list of 
capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

AdaptiveOutput

• Updated PDDL-like description of each 

capability.

Input

• Initial model of the AI system.

• Predicates (User vocabulary)

• With their evaluation functions

• List of capabilities.

• Observations of AI system working in the 

environment.

Can we learn an updated model without 

doing a complete assessment?

Differential Assessment



Will it be able to safely 

navigate from the lab to the 

warehouse?

Lab

Warehouse

Airport

Factory

45



Initial Model

known to the user

𝑀𝑖𝑛𝑖𝑡

Agent updates

Sparse Observations

(collected once)

E.g., software update,

new deployment,

adapted for user needs, etc.

Use observations and 𝑀𝑖𝑛𝑖𝑡 
to 

predict what might’ve changed

simulator

Personalized 

AI-Assessment Module

46

How to identify how the model 
has changed given what has 

changed?

Challenge 2

How to identify what has 
changed from sparse 

observations of agent’s 
behavior?

Challenge 1



simulator

Personalized 

AI-Assessment Module

ResponseQuery

Updated model 𝑀drift of 

Black-Box AI System’s 

capabilities

47



• Any of these could change their form:

• From + to –, e.g., (handempty) to (not(handempty))

• From – to +, e.g., (not(handempty)) to (handempty)

• Can get dropped from precondition or effect.

• Another predicate can get added as a 
precondition or effect.

 

What can change?

(:action pick-samples
  :parameters (?s)
  :precondition (and 
    (handempty)
    (onshelf ?s))        
  :effect (and 
    (not (handempty))
    (not (onshelf ?s))
    (holding ?s))
)

Two broad categories

48



Observed that the agent executed

move(lab,warehouse)

Increased Functionality 

49



Observation Traces

• “State -> Action -> State” tuples.

 

Executes 

move(lab,warehouse)

How is it executing 

move(lab,warehouse)?

Many approaches learn models based on such observations but… 

How to identify increased functionality ?

50



Observed that the agent executed

⟨move(lab,factory),
move(factory,warehouse)⟩

Reduced Functionality 

51



I wonder why it didn’t execute 

move(lab,warehouse)?
• Not a trivial problem to solve.

• Observations not directly available.

Executes 

move(lab,factory)

Executes 

move(factory,warehouse)

• Can we use similar intuitions of optimality?

How to identify reduced functionality? 

52



⟨𝑠0, 𝑎1, 𝑠1⟩ ⟨𝑠1, 𝑎2, 𝑠2⟩ … ⟨𝑠𝑛−1, 𝑎𝑛, 𝑠𝑛⟩

Agent placed in an 

optimal planning mode

If length of plan < k, then subset of 

actions in the plan has changed!

⟨𝑠0, 𝑠𝑘⟩ (length of plan = k)
planning 

problem

optimal plan

Initial Model

known to the user

𝑀𝑖𝑛𝑖𝑡

Agent updates

Sparse Observations

(collected once)

E.g., software update,

new deployment,

adapted for user needs, etc.

How to identify how the model 
has changed given what has 

changed?

Solves Challenge 1

53



• Combine knowledge of increased and reduced functionality to identify parts of model 
that may have changed.

54

(:action pick-samples

  :parameters (?s)

  :precondition (and 

     (handempty)

     (+/-/∅)(onshelf ?s))

  :effect (and 

     (+/-/∅)(handempty) 

     (not(onshelf ?s))))

• How do we identify their correct form?

Only some parts of action changed Complete action changed

Marking the changes

(:action pick-samples

  :parameters (?s)

  :precondition (and 

     (+/-/∅)(handempty)

     (+/-/∅)(onshelf ?s))

  :effect (and 

     (+/-/∅)(handempty) 

     (+/-/∅)(onshelf ?s)))

54



• Randomly generate initially known agents using IPC benchmark suite. 

• Generate observations for unknown drifted IPC agent using IPC problems.

• Using previous model and available observations, predict what may have changed.

• Learn the updated model by querying for changed portions of the model.

• Evaluate performance of the assessment module and compare it with the vanilla active 
querying approach of assessing model from scratch.

Experimental Setup

55



Domain #Tuples AIA DAAISy

Gripper 20 15.0 6.5

Miconic 36 32.0 7.7

Satellite 50 34.0 9.0

Blocksworld 52 40.0 11.4

Termes 134 115.0 27.0

Rovers 402 316.0 61.0

• Results with FD planner with LM-Cut.

• AIA takes up to 5 times more number of 

queries than our approach, DAAISy.

The average number of queries to achieve 

same level of accuracy for 50% drifted models

Fewer Queries Needed Compared to Learning from Scratch 

56



134 queries needed if

starting from scratch

0.9

21

Number of queries

are much lower than 134

Accuracy Used 10 observations 

per domain

Number of queries when learning from scratch

Fewer Queries Needed Compared to Learning from Scratch 

57

Random deterministic 

planning agent from IPC
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• Theorem (consistency): The learned descriptions are consistent with the 
observations and the query responses.

Learned Updated Capability Descriptions are Consistent 



Future Directions and Conclusion

59



Interpretability Analysis of 
Symbolic Representations for 

Sequential Decision-Making Systems

Pulkit Verma and Julie A. Shah

HRI 2025 Workshop on Explainability for Human-Robot Collaboration



Representations beyond PDDL.

• Temporal Logic (LTL/STL)

• Bayesian Networks

• RDDL

How interpretable each representation is?

Which representation fits the requirements of end user well?

Interpretable Representations

61



Interpretable Representations

62

Classification of Interpretable Representations for Sequential Decision-Making Systems along different dimensions



∀uto∃ l: Autonomous Evaluation of LLMs for 
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Can LLMs maintain factual accuracy when translating formal language?

Autoformalization: converting natural language into formal language

 E.g., Code synthesis, synthesis of formal safety specifications in linear temporal logic

Informalization: converting formal language into natural language

 E.g., code summarization, summarization of legal documents, interpretation of bug reports

Objectives:

1. Generating out-of-distribution datasets without human annotators

2. Accurately measure a LLM’s truth maintenance capabilities

3. Use our metric as a predicter of performance on other metrics

Emerging Direction: Evaluation of LLM Based Agents
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CFGs used for synthesizing the datasets in 

Dataset Generation Using CFG Parse Trees



AutoEval Process
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Example: Prompt for Informalization
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Evaluating LLMs Using AutoEval
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Evaluating Large Reasoning Models: o1
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Let 𝐿1and 𝐿2 ​  be two language models evaluated on two benchmarks 𝐴 and 𝐵 with ranks 
≥𝐴 ​  and ≥𝐵 ​ . The predictive power of ≥𝑨 over ≥𝑩 is defined as:

𝒫≥𝐴
≥𝐵 = Pr(𝐿1 ≥𝐵 𝐿2|𝐿1 ≥𝐴 𝐿2)

Predictive Power of AutoEval
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What Remains to Be Done
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User’s 
Specification

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Executable 
Program/Controller

User’s Intent

User-Driven
AI Assessment

Only for stationary 

systems: known at 

design-stage

Agent’s Goal/Control 

Objective/Cost/Constraints

Revisiting AI Assessment
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Reward Hacking

Wireheading

Reward Misspecification

Side Effects

Off-Switch

Agent doesn’t let the user turn it off

User’s 
Specification

Agent’s Goal/Control Objective 
& Cost function

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Agent Behavior
= Possible Executions

Executable 
Program/Controller

User’s Intent

Needed for AI Systems

Only for stationary 

systems: known at 

design-stage

1) Intent vs Specification

2) Specification vs AI Objective

3) AI Objective vs AI Behavior

4) Computed Behavior vs Real Outcome

Reward Misspecifcation

Revisiting AI Assessment
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Reward Hacking

Wireheading

Reward Misspecification

Side Effects

Off-Switch

Several gaps in ongoing research

User’s 
Specification

Agent’s Goal/Control Objective 
& Cost function

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Agent Behavior
= Possible Executions

Executable 
Program/Controller

User’s Intent

Needed for AI Systems

Only for stationary 

systems: known at 

design-stage

1) Intent vs Specification

2) Specification vs AI Objective

3) AI Objective vs AI Behavior

4) Computed Behavior vs Real Outcome

Revisiting AI Assessment
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bit.ly/aia25-tutorial

Siddharth SrivastavaPulkit Verma

User-Driven 
Capability Assessment of 
Taskable AI Systems

bit.ly/aia25-tutorial
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