
User-Driven
Capability Assessment of
Taskable AI Systems
bit.ly/aia25-tutorial

Siddharth SrivastavaPulkit Verma

bit.ly/aia25-tutorial

Schedule

Session 1
• Introduction and Motivation
• Assessment through Model Learning
• Assessment of Black-Box AI Systems in Stationary Settings

09:00 AM

Coffee Break10:30 AM

Meet and Greet over Coffee08:30 AM

Lunch12:30 PM

Session 2
• Discovering Capabilities for Black-Box AI Assessment
• AI Assessment in Adaptive Settings
• Future Directions and Conclusion

11:00 AM

2

Discovering Capabilities for Black-Box AI
Assessment

3

Agent Actions

(Keystrokes)

W

A

S

D

E

Knowledge of primitive actions might be

insufficient to understand the agent’s capabilities

(defeat ganon)
(go to door)
(go to key)

(go to ganon)
(pick key)

(open door)

Learned

Capabilities

4

Link

Ganon
Key

Door

• Functionality: Set of possible low-level actions of the agent.

• Capability: What agent’s planning and learning algorithms can do.

Capability v/s Functionality

4

Discovering User-Interpretable Capabilities of
Black-Box

Planning Agents

Pulkit Verma, Shashank Rao Marpally, and Siddharth Srivastava

KR 2022

• Users share same vocabulary in same workspaces.

• E.g., factory workers, coworkers, etc.

• Training the users on some predefined vocabulary.

• Using vocabulary acquisition techniques like TCAV†, etc.

Vocabulary Acquisition

6†Kim et al. Interpretability beyond feature attribution: Testing with Concept Activation Vectors. In Proc. ICML 2018.

Link

Ganon

Key

Door

User Vocabulary can be Less Expressive

7

Agent’s State

Representation

pixel_1_1(#42A8B3)
pixel_1_2(#42A8B3)

.

.

.
pixel_n_m(#203A3D)

State Representation

in User’s Vocabulary

(at ganon 5,3)

(at link 6,3)

(at key 9,4)

(at door 9,2)

Discovering Capabilities

8

• User’s vocabulary matches
simulator’s vocabulary.

• Black-Box AI provides a list of
capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

transitions.
S A E A

Input

• Predicates (User vocabulary)

• With their evaluation functions

• Samplers: high-level state to low-level state.

• Low-level state transitions.

Output

• List of capabilities.

• PDDL-like description of each capability.

[Verma, Marpally, Srivastava; KR ‘22]

at(p0,cell_6_3)
clear(cell_0_0)…
wall(cell_0_1)…
door_at(cell_9_2)
key_at(9_4)

at(p0,cell_6_3)
at(m0,cell_5_3)
clear(cell_0_0)…
wall(cell_0_1)…
next_to(monster)
alive(m0)
door_at(cell_9_2)
key_at(9_4)

c1 c2

S A E A

at(p0,cell_5_3)
clear(cell_0_0)…
wall(cell_0_1)…
door_at(cell_9_2)
key_at(9_4)

The player and the monster

are in neighboring cells.

The player killed the

monster, and is still

in the same location.

The player has

moved to a

new location.

Expressed

in User

Vocabulary

Discovering Capabilities using Input Predicates as Abstractions

9

For each capability:

• Extract what predicates were different in the pre
and post-states of the capability.

• Extract the parameters from those predicates to
create a candidate parameter set.

• Complete the parameter set along with capability
description as precondition and effect of a
capability by active querying.

at(p0,cell_6_3)

clear(cell_0_0)…

wall(cell_0_1)…

door_at(cell_9_2)

key_at(9_4)

at(p0,cell_6_3)

at(m0,cell_5_3)

clear(cell_0_0)…

wall(cell_0_1)…

next_to(monster)

alive(m0)

door_at(cell_9_2)

key_at(9_4)

[Sample pre and post states of a capability]

[Learned capability description]

How to learn

these?

Parameterizing a Capability

10

11

(:capability c1

 :parameters (…)

 :precondition (…)

 :effect (…))

. . .

𝑠0,⟨𝑐1, 𝑐2, … , 𝑐𝑛⟩ s0, 𝑐1, 𝑠1, 𝑐2, 𝑠2, … , 𝑐𝑛, 𝑠𝑛

⟨s0, 𝑠1⟩, 𝑠1, 𝑠2 , … , ⟨𝑠𝑛−1, 𝑠𝑛⟩

What will happen if
you execute the plan
⟨𝑐1, 𝑐2, … , 𝑐𝑛⟩ starting

in a state 𝑠0?

Can you reach

state ҧ𝑠1from

state ҧ𝑠0?

Can you reach

state ҧ𝑠2from

state ҧ𝑠1?

Can you reach

state ҧ𝑠𝑛 from

state ҧ𝑠𝑛−1?
. . .

Plan Outcome Query

State Reachability Queries

⟨ ҧ𝑠0, ҧ𝑠1⟩, ⟨ ҧ𝑠1, ҧ𝑠2⟩, … , ⟨ ҧ𝑠𝑛−1, ҧ𝑠𝑛⟩

State Refinement

11

Query Refinement

(:capability c2

 :parameters (…)

 :precondition (…)

 :effect (…))

Can you reach

state ҧ𝑠1 from

state ҧ𝑠0?⟨ ҧ𝑠0, ҧ𝑠1⟩

YES

⟨ ҧ𝑠1, ҧ𝑠2⟩ Can you reach

state ҧ𝑠2 from

state ҧ𝑠1?

⟨ ҧ𝑠𝑛−1, ҧ𝑠𝑛⟩ Can you reach

state ҧ𝑠𝑛 from

state ҧ𝑠𝑛−1?

High-level
Query

Generator

⟨𝑛, 𝑠𝑛⟩

. . .

Iterative Capability Model Learning

[iCaML]

Response Interpretation

12

Response Interpretation

13

Can you reach

state ҧ𝑠1 from

state ҧ𝑠0?

No

Can you reach

state ҧ𝑠2 from

state ҧ𝑠1?

⟨ ҧ𝑠0, ҧ𝑠1⟩

⟨ ҧ𝑠1, ҧ𝑠2⟩

⟨ ҧ𝑠𝑛−1, ҧ𝑠𝑛⟩

High-level
Query

Generator

⟨1, 𝑠1⟩

. . .

Iterative Capability Model Learning

[iCaML]

Position of Link has not changed

Ganon is not at its previous location

Ganon is not alive anymore

Link is not next to Ganon

This capability is: “Defeat Ganon”

14

Example of a Learned Capability Description

[Capability Description Example] [Functionality Description Example]

15

Pr
ec

on
di

tio
ns

Ef
fe

ct
s

Possible options
to choose from

Possible options
to choose from

Ke
ys

tr
ok

e
D

es
cr

ip
tio

n

User Study Setup to Verify Interpretability

16

If Link starts in the state

shown below:

Which sequence of actions can

Link take to reach the state

shown below:

Utility of Discovered Capability Descriptions

Results: Capability Summarization Study

17

18

• Theorem (consistency):
The learned descriptions are consistent with the observations and the queries.

• Theorem (maximal consistency):
This approach is maximally consistent, i.e., we cannot add any more literals to the
preconditions or effects without ruling out some truly possible models.

• Theorem (probabilistic completeness):
In the limit of infinite execution traces, the probability of discovering all capabilities
expressible in the user vocabulary is 1.

Learned Capability Descriptions are Maximally Consistent

Learning Neuro-Symbolic Skills for

Bilevel Planning

Tom Silver, Ashay Athalye, Josh Tenenbaum, Tomás Lozano-Pérez, and

Leslie Pack Kaelbling

CoRL 2022

Learn High-Level Skills for Robots

cupfilled (?c)
potOnPlate (?p ?p1)
aboveCup(?r ?c)
Holding (?r ?p)
…

⟨𝑠0, 𝑎1, 𝑠1⟩

⟨𝑠1, 𝑎2, 𝑠2⟩

⟨𝑠𝑛−1, 𝑎𝑛 , 𝑠𝑛⟩

.

..

Learned Skills

Learning

Concepts/Symbols

Low-Level Transitions

Pick up Pot
Place on Plate
Turn Plate On

…

Learning such skills can lead to efficient long horizon

planning in continuous state and action spaces.

20

Key Properties of a Skill

Abstractions are lossy, hence:

1. A skill should be able to reach many different environment states (“subgoals”) that
correspond to the same abstract state.

2. An agent should be able to consider multiple skill sequences that reach the same goal
from the same initial abstract state.

21

Components of a Skill

• Each Skill has 3 components:

• A Symbolic Operator (like action in PDDL)

• Neural subgoal-conditioned policy (like an option in RL)

• Neural subgoal sampler

22

Architecture

Skills Φ

Goal g

Predicates Ψ

Initial state 𝑥0

Abstract state 𝑠0 Operator 𝜔

Sampler 𝜎

Policy 𝜋

Subgoal 𝑥′

Action 𝑎1 𝑓 State 𝑥1 Policy 𝜋 Subgoal 𝑥′

Abstract state 𝑠1

Ground Skill

Learned

𝐹

AI Planner

abstract abstract

…

…

…

…

23

Learning Neuro-Symbolic Skills

1. Preprocess demonstrations into skill datasets

2. Learn operators: symbolic techniques

3. Learn policies: supervised learning

4. Learn samplers: distribution learning

24

Empirical Evaluation

25

Efficient and Better Generalization across all domains

26

AI Assessment in Adaptive Settings

27

28

Adaptive Taskable AI Systems

Maintaining Evolving Domain Models

Dan Bryce, J. Benton, and Michael W. Boldt

IJCAI 2016

Model Maintenance Problem

• Real-world domains evolve (e.g., changes in effectors or conditions).

• Model drift : Ground-truth and the model diverge

• Model Maintenance: A user’s understanding (mental model) of a domain evolves, drifting
away from the formal computational model of the domain

30

Model Maintenance Problem

• Real-world domains evolve (e.g., changes in effectors or conditions).

• Model drift : Ground-truth and the model diverge

Automated Planner

using model 𝑀

Domain Expert

knows model 𝑀𝑢

Marshal

Model Maintenance Tool

that must keep 𝑀 updated

according to 𝑀𝑢

𝑀𝑢 can evolve over time

31

Model Representation

(:action open-door
 :parameters (?l1)
 :precondition (and
 (⊤/⊥) (has_key)
 (⊤/⊥) (door_open)
 (⊤/⊥) (door_adjacent ?l1)
 (⊤/⊥) (player_at ?l1))
 :effect (and
 (⊤/⊥) (has_key)
 (⊤/⊥) (door_open)
 (⊤/⊥) (door_adjacent ?l1)
 (⊤/⊥) (player_at ?l1))

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

Ԧ𝑥Model

• User query is 𝑢𝑡 , and observation received is 𝑧𝑡

• Formulate the prior distribution 𝑃(𝑋0) over
models by assuming starting model where
every feature is ⊥

• Each possible model is a particle that can be
sampled from a proposal distribution that
considers both model drift and observations

𝑞(Ԧ𝑥𝑡
𝑖 | Ԧ𝑥𝑡−1

𝑖 , 𝑧𝑡)

32

Marshal’s Learning Process

1. Query the User: Query the user with 𝑢𝑡 and receive 𝑧𝑡 .

2. Generate N Samples based from proposal distribution:

 Ԧ𝑥𝑡
𝑖

 ~ 𝑞(Ԧ𝑥𝑡
𝑖

| Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡)

3. Weight the Particles with their likelihoods

 𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡

4. Resample Particles from the set of normalized-weighted particles to create the next

belief state { Ԧ𝑥𝑡
𝑖

}.

33

Updating the Particles

• Verbatim (V)

• Uniform Drift (U)

• Uniform Drift Generalization (UG)

• Well-Formed Drift (W)

• Well-Formed Generalization (WG)

𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡

34

Updating the Particles

• Verbatim (V): Update particles to be complicit with user domain update and query
response observations. Ignore plan observations.

• Uniform Drift (U)

• Uniform Drift Generalization (UG)

• Well-Formed Drift (W)

• Well-Formed Generalization (WG)

𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡
=

1, if Ԧ𝑥𝑡
𝑖

 respects Ԧ𝑥𝑡−1
𝑖

 aside from updates

 specified by 𝑧𝑡

0, otherwise

35

Updating the Particles

• Verbatim (V)

• Uniform Drift (U): Similar to verbatim, but for plan observations, uniformly sample a single
domain model feature to add (remove).

• Uniform Drift Generalization (UG)

• Well-Formed Drift (W)

• Well-Formed Generalization (WG)

𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡
=

1

|𝒳|
, if Ԧ𝑥𝑡

𝑖
 differs from Ԧ𝑥𝑡−1

𝑖

 by exactly one

 assignment

0, otherwise

36

Updating the Particles

• Verbatim (V)

• Uniform Drift (U)

• Uniform Drift Generalization (UG): In addition to uniform drift, also add (remove) related
domain model features.

• Well-Formed Drift (W)

• Well-Formed Generalization (WG)

𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡
=

1

|𝒳𝐺|
, if Ԧ𝑥𝑡

𝑖
 differs from Ԧ𝑥𝑡−1

𝑖

 by exactly one group

 of assignments

0, otherwise

37

Updating the Particles

• Verbatim (V)

• Uniform Drift (U)

• Uniform Drift Generalization (UG)

• Well-Formed Drift (W): Similar to uniform drift, but treat plans differently.

• Well-Formed Generalization (WG)

𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡
=

𝛼𝑎, if Ԧ𝑥𝑡
𝑖

 differs from Ԧ𝑥𝑡−1
𝑖

 by exactly one group

 of assignments

0, otherwise

• 𝛼 is a normalization constant

• a comes from a heuristic (see paper)

38

Weighting Particles

𝑤𝑡
𝑖

=
𝑃 𝑧𝑡 Ԧ𝑥𝑡

𝑖
𝑃 Ԧ𝑥𝑡

𝑖
Ԧ𝑥𝑡−1

𝑖

𝑞 Ԧ𝑥𝑡
𝑖

Ԧ𝑥𝑡−1
𝑖

, 𝑧𝑡

𝑃 𝑧𝑡 Ԧ𝑥𝑡
𝑖 =

1

2 𝒳
𝑃 Ԧ𝑥𝑡

𝑖 Ԧ𝑥𝑡−1
𝑖

 set such that observations agreeing with a

domain model have high probability (0.99) and those

disagreeing have low probability (0.01)

39

Empirical Evaluation

Q1. Must Marshal assume an evolving model, or can static change be assumed?

Q2. Do answers to queries help with the learning process, or are plan observations enough?

Q3. Does a uniform transition function operate as effectively as a more well-formed
transition function that captures common traits of domains?

40

Empirical Evaluation

• The user updates their mental model six times. Each change is over a precondition, add or
delete effect in an action schema.

• After each change, the user provides a series of 108 plans that they believe are valid.

• After each plan, the user answers a series of Marshal’s questions in the order that Marshal
determines.

• After each series of plans, and just prior to the next drift in the user’s model, we ask
Marshal to calculate the probability (given its distribution over models) that each plan within
a testing set of 28 plans is valid.

• Marshal uses 128, 256, 512, or 1024 particles in its particle filter

41

Observations beyond just plans are useful to learn drifted models

• Each stacked column lists results for

a method, from left to right (V, U,

UG, W, WG).

• Within each column the results from

the bottom to the top of the stack

are for each number of queries per

plan (0, 1, 2, 3).

42

Differential Assessment of

Black-Box AI Agents

Rashmeet Kaur Nayyar*, Pulkit Verma*, and Siddharth Srivastava

AAAI 2022

44

• User’s vocabulary matches
simulator’s vocabulary.

• Black-Box AI provides a list of
capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

AdaptiveOutput

• Updated PDDL-like description of each

capability.

Input

• Initial model of the AI system.

• Predicates (User vocabulary)

• With their evaluation functions

• List of capabilities.

• Observations of AI system working in the

environment.

Can we learn an updated model without

doing a complete assessment?

Differential Assessment

Will it be able to safely

navigate from the lab to the

warehouse?

Lab

Warehouse

Airport

Factory

45

Initial Model

known to the user

𝑀𝑖𝑛𝑖𝑡

Agent updates

Sparse Observations

(collected once)

E.g., software update,

new deployment,

adapted for user needs, etc.

Use observations and 𝑀𝑖𝑛𝑖𝑡
to

predict what might’ve changed

simulator

Personalized

AI-Assessment Module

46

How to identify how the model
has changed given what has

changed?

Challenge 2

How to identify what has
changed from sparse

observations of agent’s
behavior?

Challenge 1

simulator

Personalized

AI-Assessment Module

ResponseQuery

Updated model 𝑀drift of

Black-Box AI System’s

capabilities

47

• Any of these could change their form:

• From + to –, e.g., (handempty) to (not(handempty))

• From – to +, e.g., (not(handempty)) to (handempty)

• Can get dropped from precondition or effect.

• Another predicate can get added as a
precondition or effect.

What can change?

(:action pick-samples
 :parameters (?s)
 :precondition (and
 (handempty)
 (onshelf ?s))
 :effect (and
 (not (handempty))
 (not (onshelf ?s))
 (holding ?s))
)

Two broad categories

48

Observed that the agent executed

move(lab,warehouse)

Increased Functionality

49

Observation Traces

• “State -> Action -> State” tuples.

Executes

move(lab,warehouse)

How is it executing

move(lab,warehouse)?

Many approaches learn models based on such observations but…

How to identify increased functionality ?

50

Observed that the agent executed

⟨move(lab,factory),
move(factory,warehouse)⟩

Reduced Functionality

51

I wonder why it didn’t execute

move(lab,warehouse)?
• Not a trivial problem to solve.

• Observations not directly available.

Executes

move(lab,factory)

Executes

move(factory,warehouse)

• Can we use similar intuitions of optimality?

How to identify reduced functionality?

52

⟨𝑠0, 𝑎1, 𝑠1⟩ ⟨𝑠1, 𝑎2, 𝑠2⟩ … ⟨𝑠𝑛−1, 𝑎𝑛, 𝑠𝑛⟩

Agent placed in an

optimal planning mode

If length of plan < k, then subset of

actions in the plan has changed!

⟨𝑠0, 𝑠𝑘⟩ (length of plan = k)
planning

problem

optimal plan

Initial Model

known to the user

𝑀𝑖𝑛𝑖𝑡

Agent updates

Sparse Observations

(collected once)

E.g., software update,

new deployment,

adapted for user needs, etc.

How to identify how the model
has changed given what has

changed?

Solves Challenge 1

53

• Combine knowledge of increased and reduced functionality to identify parts of model
that may have changed.

54

(:action pick-samples

 :parameters (?s)

 :precondition (and

 (handempty)

 (+/-/∅)(onshelf ?s))

 :effect (and

 (+/-/∅)(handempty)

 (not(onshelf ?s))))

• How do we identify their correct form?

Only some parts of action changed Complete action changed

Marking the changes

(:action pick-samples

 :parameters (?s)

 :precondition (and

 (+/-/∅)(handempty)

 (+/-/∅)(onshelf ?s))

 :effect (and

 (+/-/∅)(handempty)

 (+/-/∅)(onshelf ?s)))

54

• Randomly generate initially known agents using IPC benchmark suite.

• Generate observations for unknown drifted IPC agent using IPC problems.

• Using previous model and available observations, predict what may have changed.

• Learn the updated model by querying for changed portions of the model.

• Evaluate performance of the assessment module and compare it with the vanilla active
querying approach of assessing model from scratch.

Experimental Setup

55

Domain #Tuples AIA DAAISy

Gripper 20 15.0 6.5

Miconic 36 32.0 7.7

Satellite 50 34.0 9.0

Blocksworld 52 40.0 11.4

Termes 134 115.0 27.0

Rovers 402 316.0 61.0

• Results with FD planner with LM-Cut.

• AIA takes up to 5 times more number of

queries than our approach, DAAISy.

The average number of queries to achieve

same level of accuracy for 50% drifted models

Fewer Queries Needed Compared to Learning from Scratch

56

134 queries needed if

starting from scratch

0.9

21

Number of queries

are much lower than 134

Accuracy Used 10 observations

per domain

Number of queries when learning from scratch

Fewer Queries Needed Compared to Learning from Scratch

57

Random deterministic

planning agent from IPC

58

• Theorem (consistency): The learned descriptions are consistent with the
observations and the query responses.

Learned Updated Capability Descriptions are Consistent

Future Directions and Conclusion

59

Interpretability Analysis of
Symbolic Representations for

Sequential Decision-Making Systems

Pulkit Verma and Julie A. Shah

HRI 2025 Workshop on Explainability for Human-Robot Collaboration

Representations beyond PDDL.

• Temporal Logic (LTL/STL)

• Bayesian Networks

• RDDL

How interpretable each representation is?

Which representation fits the requirements of end user well?

Interpretable Representations

61

Interpretable Representations

62

Classification of Interpretable Representations for Sequential Decision-Making Systems along different dimensions

∀uto∃ l: Autonomous Evaluation of LLMs for
Truth Maintenance and Reasoning Tasks

Rushang Karia*, Daniel Bramblett*, Daksh Dobhal, and Siddharth Srivastava

ICLR 2025

∨∧

Can LLMs maintain factual accuracy when translating formal language?

Autoformalization: converting natural language into formal language

 E.g., Code synthesis, synthesis of formal safety specifications in linear temporal logic

Informalization: converting formal language into natural language

 E.g., code summarization, summarization of legal documents, interpretation of bug reports

Objectives:

1. Generating out-of-distribution datasets without human annotators

2. Accurately measure a LLM’s truth maintenance capabilities

3. Use our metric as a predicter of performance on other metrics

Emerging Direction: Evaluation of LLM Based Agents

64

65

CFGs used for synthesizing the datasets in

Dataset Generation Using CFG Parse Trees

AutoEval Process

66

Example: Prompt for Informalization

67

Evaluating LLMs Using AutoEval

68

Evaluating Large Reasoning Models: o1

69

Let 𝐿1and 𝐿2 ​ be two language models evaluated on two benchmarks 𝐴 and 𝐵 with ranks
≥𝐴 ​ and ≥𝐵 ​ . The predictive power of ≥𝑨 over ≥𝑩 is defined as:

𝒫≥𝐴
≥𝐵 = Pr(𝐿1 ≥𝐵 𝐿2|𝐿1 ≥𝐴 𝐿2)

Predictive Power of AutoEval

70

What Remains to Be Done

71

User’s
Specification

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Executable
Program/Controller

User’s Intent

User-Driven
AI Assessment

Only for stationary

systems: known at

design-stage

Agent’s Goal/Control

Objective/Cost/Constraints

Revisiting AI Assessment

72

Reward Hacking

Wireheading

Reward Misspecification

Side Effects

Off-Switch

Agent doesn’t let the user turn it off

User’s
Specification

Agent’s Goal/Control Objective
& Cost function

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Agent Behavior
= Possible Executions

Executable
Program/Controller

User’s Intent

Needed for AI Systems

Only for stationary

systems: known at

design-stage

1) Intent vs Specification

2) Specification vs AI Objective

3) AI Objective vs AI Behavior

4) Computed Behavior vs Real Outcome

Reward Misspecifcation

Revisiting AI Assessment

73

Reward Hacking

Wireheading

Reward Misspecification

Side Effects

Off-Switch

Several gaps in ongoing research

User’s
Specification

Agent’s Goal/Control Objective
& Cost function

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Agent Behavior
= Possible Executions

Executable
Program/Controller

User’s Intent

Needed for AI Systems

Only for stationary

systems: known at

design-stage

1) Intent vs Specification

2) Specification vs AI Objective

3) AI Objective vs AI Behavior

4) Computed Behavior vs Real Outcome

Revisiting AI Assessment

74

bit.ly/aia25-tutorial

Siddharth SrivastavaPulkit Verma

User-Driven
Capability Assessment of
Taskable AI Systems

bit.ly/aia25-tutorial

	Slide 1
	Slide 2: Schedule
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: How to identify increased functionality ?
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: What Remains to Be Done
	Slide 72
	Slide 73
	Slide 74
	Slide 75

