4, The 39th Annual
1:‘(:. AAAI Conference on
. Artificial Intelligence

FEBRUARY 25 — MARCH 4, 2025 | PHILADELPHIA,

PENNSYLVANIA, USA

PR Fiiog ARSEEESe
rE- :

User-Driven
Capability Assessment of

Taskable Al Systems pu:nk:e;ma

bit.ly/aia25-tutorial

Siddharth Srivastava

A
AAI Q/ N
Autonomous Agents { \

\
" \)
and Intelligent Robots _/

musze ()

bit.ly/aia25-tutorial

Schedule

08:30 AM

09:00 AM

10:30 AM

11:00 AM

12:30 PM

Meet and Greet over Coffee

Session 1

* Introduction and Motivation

* Assessment through Model Learning

* Assessment of Black-Box Al Systems in Stationary Settings

Coffee Break

Session 2

* Discovering Capabilities for Black-Box Al Assessment
* Al Assessment in Adaptive Settings

* Future Directions and Conclusion

Lunch

Taskable Al Systems

Expected to improve, adapt, learn, and achieve user-desired task

»®
AAL 4
Autonomous Agents
and Intelligent Robots

rsuszz- QD

a 1[‘ {u | ‘:HFE‘:.'...

JENE i \\ 7

Video Link: bit.ly/taskable-ali

https://bit.ly/taskable-ai

Taskable Al Systems

Expected to improve, adapt, learn, and achieve user-desired task

|
AAL.
Am§‘
and Intelligent

BSU &iess

This tutorial: how these properties lead to new
open questions on Al safety and assessment

S . (: \1.'.‘\ L=
L , .!9 y&- "4 y * 0 s
“ - 4 — _; , ,. !

Classical Notion of Verification

Designer’s Designer’s
—>

User’s Intent — e
Intent Specification

A

System Behavior - Executable
= Possible Executions Program/Controller

Classical Notion of Verification

Designer’s Designer’s
—_—

User’s Intent — e
Intent Specification

Validation

Input for Verification: Executable Program/Controller
(includes task spec)
+ Model/assumptions on env

+ Safety property Verification

The designer plays a central role

e B

System Behavior - Executable
= Possible Executions Program/Controller

Conventional Approach to Verification: Example

Deceleration a= -2 Deceleration a= -5
A SetzalarmZ
driver=0 @ ﬁ
t=at+2 v=0
Deceleration a= -4
A set alarm1
g“ driver==1 ﬁ
t=at v=0

Fig. 8. Illustration of AEB.

Property 1 is Termination; when the car reaches the term location, its velocity must be

0. We set the forbidden states as loc(Carl) == term &v > 0.

* Property 2 is Velocitylimit; the velocity must always be in the range O to 20. The
forbidden states of this property are definedas v < 0| v > 20.

* Property 3 is Evolve; we define this property to show the evolution of velocity.

Ran Li, Huibiao Zhu, Richard Banach, Translating and verifying Cyber—Physical systems with shared-variable concurrency in SpaceEx, Internet of Things, Volume 23, 2023

TECH = €he New Hork Times 2
hess NEWSLETTERS
5 'Play,’
flng ng rop
e r duri ot b re k DISRUPTIONS
PuBL ng m s a s yo
SHED MON, syt gg 4o atch in MOScowung boy’s Nest Thermostat Glitch Leaves Users
V& NBC B in the Cold
NEWS 'Dylan Butts ang Tatyan
Lo e | ? Chistikos

—

-

—

~ A4y
el & -

i |

Tesla self-driving software update
begins rollout though company says
to use with caution

Charisse Jones USA TODAY
Published 1:05 p.m. ET July 11, 2021 | Updated 2:29 p.m. ET July 12, 2021

User-Aligned Al Assessment is a Different Problem:
How would a user know what their current Al system can do safely?

Taskable Al Systems

What is the design spec?

. User’s Intent — Designer’s Des.ig.ner"s
WhCI‘I' IS The prog rqm/confro”er? Intent Specification

Validation

What should the safety property
be?

What should the user do when the
system’s behavior changes?

Verification

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Y

System Behavior Executable
= Possible Executions Program/Controller

The Al Assessment Problem

//D/esignj’ Designer’s \

User’s Intent > o User’s
Intent Specification e
Specification

>

Validation

Verification

¢ mmmmmmmmmmmm e m e s s s s e s e s e e e e ——————

System Behavior Executable
—
= Possible Executions Program/Controller

11

/Designj’ Designer’s \

User’s Intent > o User’s
Intent Specification e
Specification

Agent’s Goal /Control
Obijective /Cost/Constraints

Validation

Verification

¢ mmmmmmmmmmmm e m e s s s s e s e s e e e e ——————

System Behavior Executable
—
= Possible Executions Program/Controller

12

/Tesignj’ Designer’s \

User’s Intent > o User’s
Intent Specification e
Specification

Agent’s Goal /Control
Obijective /Cost/Constraints

|

Agent’s Computation
* Constraints (unknown to user)

Validation

Verification
* Adaptive code (unknown to designer)

* Mostly suboptimal

¢ mmmmmmmmmmmm e m e s s s s e s e s e e e e ——————

System Behavior Executable
—
= Possible Executions Program/Controller

13

S

User’s Intent

T

The designer is out of the loop!

How would a user know whether it is

safe to assign a certain task to the Al

system?

Agent Behavior
= Possible Executions

User’s
Specification

|

Agent’s Goal /Control
Obijective /Cost/Constraints

|

Agent’s Computation
* Constraints (unknown to user)
* Adaptive code (unknown to designer)
* Mostly suboptimal

\ 4

Executable
Program/Controller

14

Conventional Verification

Designer’s

User’s Intent —
Intent

Designer’s
Specification

Validation

Verification

System Behavior
= Possible Executions

>

Known at
design stage

Sy

Executable
Program/Controller

Needed for Al Systems

User’s

User’s Intent

A

User-Driven
Al Assessment

v

Agent Behavior
= Possible Executions

Specification

l

Agent's Goal /Control
Obijective /Cost/Constraints

Agent’s Behavior Synthesis
* Constraints (unknown to user)

I'+ Mostly suboptimal

Only for stationary
systems: known at
design-stage

A\ 4

Executable
Program/Controller

* Adaptive code (unknown to designer) |

15

Translating a user’s implicit intent to their explicit
specification

Translating a user’s specification to a formal
representation of a goal or a utility function for the agent

Computing agent’s behavior given a goal /utility function

The real results of executing the computed
control /behavior

Needed for Al Systems

1) Intent vs Specification

User’s Intent >
(latent)

User’s

(observed)
Specification

2) Specification vs Al Objective l

Agent’s Goal/Control Objective
& Cost function

3) Al Objective vs Al Behavior l

User-Driven . Agent’s Behavior Synthesis |
Al Assessment -« Constraints (unknown to user) |
* Adaptive code (unknown to designer) -
I'+ Mostly suboptimal !

Only for stationary
systems: known at
design-stage

A 4

Agent Behavior Executable

<«

= Possible Executions Program/Controller

4) Computed Behavior vs Real Outcome

16

Needed for Al Systems

How do Al Safety Issues Fit in?

1) Intent vs Specification ,
User’s

\ 4

User’s Intent e
pecification

Reward Hacking
The agent optimizes reward but exploits flaws in the 2) Specification vs Al OBR

reward specification

& Cost function

Wireheading
3) Al Objective vs Al Behavior

Agent’s Behavior Synthesis |

Reward Misspecification
i * Constraints (unknown to user) I
. * Adaptive code (unknown to designer) |

'+ Mostly suboptimal

Side Effects

Only for stationary
systems: known at
design-stage

Off-Switch

Executable

Agent Behavior
Program/Controller

= Possible Executions

4) Computed Behavior vs Real Outcome

Needed for Al Systems

How do Al Safety Issues Fit in?

1) Intent vs Specification User’s
User’s Intent >

Reward Hacking
2) Specification vs Al Objective

Agent’s Goal/Control OB}€

Wireheading
Agent manipulates its reward function. E.g., convince & Cost function
user; add noise to reward signal l
3) Al Objective vs Al Behavior

Reward Misspecification Agent’s Behavior Synthesis |
i * Constraints (unknown to user) |
. * Adaptive code (unknown to designer) -
Side Effects I'« Mostly suboptimal !

Only for stationary
systems: known at

Off-Switch
design-stage

Executable

Agent Behavior
Program/Controller

= Possible Executions

4) Computed Behavior vs Real Outcome

Needed for Al Systems

How do Al Safety Issues Fit in?

1) Intent vs Specification

R User’s
ew " .p .
ard Mlsspec,'fcati Specification

User’s Intent
Reward Hacking

2) Specification'V

Wireheading Agent’s Goal/Control Objective
& Cost function

Reward Misspecification 3) Al Objective vs Al Behavior l
User rewards observations, beliefs, or correlated . 2
features . Agent’s Behavior Synthesis

= Constraints (unknown to user)

Side Effects I'+ Mostly suboptimal

Only for stationary
systems: known at

Off-Switch

design-stage

A\ 4

Agent Behavior Executable

<«

= Possible Executions Program/Controller

4) Computed Behavior vs Real Outcome

. * Adaptive code (unknown to designer) |

19

aded for Al Systems

How do Al Safety Issues Fit in?

User’s Intent Specificati
Reward Hacking pecification

2) Specification vs Al Objective l

Wireheading Agent’s Goal/Control Objective
& Cost function
Reward Misspecification 3) Al Objective vs Al Behavior l
_ . Agent’s Behavior Synthesis |
Side Effects L Constraints (unknown to user) |
Agent achieves objective, but with unexpected -+ Adaptive code (unknown to designer) -
problems I'+ Mostly suboptimal

Only for stationary

systems: known at
design-stage

Off-Switch

Agent Behavior Executable
= Possible Executions Program/Controller

A

4) Computed Behavior vs Real Outcome

20

Needed for Al Systems

How do Al Safety Issues Fit in?

1) Intent vs Specification

User’s
ecification

[
»

User’s Intent

Reward Hacking

2) Specification vs A

Agent’s Goal/Control Obje

Wireheading
& Cost function

. . . 3) Al Objective vs Al Behavior
Reward Misspecification

Agent’s Behavior Synthesis
* Constraints (unknown to user)

Side Effects I * Adaptive code (unknown to designer) |
I '« Mostly suboptimal
Off-Switch Only for stationary
,) systems: known at
Agent doesn’t let the user turn it off design-stage
Agent Behavior Executable
= Possible Executions Program/Controller

4) Computed Behavior vs Real Outcome

21

Needed for Al Systems

How do Al Safety Issues Fit in?

1) Intent vs Specification

User’s
Specification

Reward Hacking

2) Specification vs Al Objective 1

Agent’s Goal/Control Objective

Wireheading
& Cost function

. . . 3) Al Objective vs Al Behavior
Reward Misspecification

Agent’s Behavior Synthesis
* Constraints (unknown to user)

Side Effects I * Adaptive code (unknown to designer) |
I '« Mostly suboptimal
Off-Switch Only for stationary
,) systems: known at
Agent doesn’t let the user turn it off design-stage

A 4

Agent Behavior Executable
= Possible Executions Program/Controller

A

4) Computed Behavior vs Real Outcome

22

// e N

User’s Intent User’s
Specification

|

Agent’s Goal /Control
Obijective /Cost/Constraints
The designer is out of the loop! l

Agent’s Computation
* Constraints (unknown to user)
Adaptive code (unknown to designer)
Mostly suboptimal

User-Driven Assessment:
End-to-end assessment of the

system’s capabilities from the

user’s perspective:
continual; deployment-specific;
user-specific

\ 4

Agent Behavior Executable
= Possible Executions Program/Controller

23

Vocabulary + Semantics
Terms that the user understands

(e.g., “holding(x, gripper)”)

|

Query-Response
Protocol

|

Black-Box
Al

Arbitrary internal
implementation

Doesn’t know
user’s vocabulary

24

Vocabulary + Semantics
Terms that the user understands

(e.g., “holding(x, gripper)”)

<€

Interpretable model
of

Black-Box Al
capabilities

Personalized
Al Evaluator

(Query)

instruction

(Response) result
from sim

Black-Box
Al

Arbitrary internal
implementation

Doesn’t know
user’s vocabulary

25

ing

Assessment through Model Learn

Vocabulary + Semantics
Terms that the user understands

(e.g., “holding(x, gripper)”)

<

lnterpre’rqble model

of

Black-Box Al
capabilities

How does this model
look like?

Personalized
Al Evaluator

(Query)

instruction

(Response) result

from sim

Black-Box
Al

Arbitrary internal
implementation

Doesn’t know
user’s vocabulary

27

Interpretable Description: PDDL/PPDDL

(:action open-door
:parameters (?11)
:precondition (and
(has_key)
(player_at ?11)
(door_adjacent ?11))
:effect (probabilistic
0.95 (and (door_open))
0.05 (and (not (has_key))
(game-over))

Precondition: This condition must be true for this action
to execute

Effect: This is a set of conditions, one of which becomes
true when this action is executed

Probabilities: Each set of effect has an associated
probability with which that effect set is executed

28

Interpretable: Easily Convertible to Natural Language

(:action open-door
:parameters (?11)
cprecondition (and

(player_at ?711)
(door_adjacent ?11))
:effect (probabilistic
0.95 (and (door_open))
0.05 (and (not(has_key))
(game-over))

The player can open the door when in location 211
if:

* The player is at location 21

* The door is adjacent to location 211

After executing that capability:

* With 95% probability, the door will open

* With 5% probability, the player will not have
the key and the game will be over

29

Assessment using Passive Observations

(:action pick-up-beaker
:parameters (?x - beaker)
:precondition (and (ontable ?x)
(SO, al, Sl) (not-in-use ?x)
(handempty))
:effect (and (not (ontable ?x))

(S1,Az,52)
(not (handempty))
—_—> . —> B[N —> (holding 7x)))

. (:action put-on-shelf
:parameters (?x - beaker)
(E;Tl—-li ClTl’:;Tl> :precondition (holding ?x)
ceffect (and (not (holding ?x))
Inb ut (handempty)
nput] What kind of (onshelf 2x)))

approaches these [PDDL Example]
learners use?

30

Inference Rules based Learners

* Take intersection of all states where an action is applicable to create precondition.

* Take intersection of all states after executing an action to create effect.

dzrl QTZ QTS : F(H{T1,T2,T3})
: — Te
v v e || Movens Unload, (:action move-A-B
(So, al, Sl) — ——r e l BREN el :parameters ()
ss A B ls, A A s, A A Eff 8 Eff 8 :precondition (and (at A))
(Sl' a,, SZ) a, Move,, f}a, Move,s | 3, Pick, | Moves Unload, reffect (and (not (at A)) (at B))
s, B B s, B A s, A T | Pre B Pre C T)
ﬁ i ! Eff C Eff C
a, Pickg a, Moveyc a, Move,, | ﬁ
s B T s, C A s, 8 1 | Fida (:action move-B-C
. a, Move,. é~ 2, Unload, ! PErff-; A : fparametgr§ @)
mEE s, B B | :precondition (and (at B))
(Sn_l, Cln, Sn> 2 Unload, © Fa : P""‘;re —) reffect (and (not (at B)) (at C))
s € C : -
[Input] o v !
| [PDDL Example]
: |

Stern et al. (IJCAI'17), SLAM - Juba et al. (KR’21)
31

Finite State Machine based Learners

* For each object type create a finite state machine.

* Create PDDL by combining them.

put_on_table.2

blockO0—on a block and clear
blockl—gripped by [gripper]

block2—on a block and covered by [block]
block3—on table and clear

block4—on table and covered by [block]

put_on_blocks.2

(So, A1, S1)

(Sl' a21 SZ)
. e

(Sn—1» An, Sn)

[Input]

grippero putﬁonioneiblockE gripper'l

[block] 4_grip_from_blocks.2 0
grip_from_table.2

grip_from_one
block.2

grip_from_blocks.1

grip_from_one
_block.1

put_on_blocks.1

block1
[gripper]

put_on_table.1

rip_from_table.1
put_on_one_block.1

rip_from_one_block.3
put_on_blocks.3 grip-rom.one-
. block2
grip_from_blocks.3 [block]

LOCM?2 - Cresswell et al. (ICAPS’11, Know. Engg. Rev.’13),
NLOCM - Gregory et al. (ICAPS’16)

put_on_one_block.3

LOCM - Cresswell et al. (ICAPS’09),
LOP - Gregory et al. (ICAPS’15),

—>

(:action pick-up-beaker
:parameters (?x - beaker)

:precondition (and (ontable ?x)
(not-in-use ?x)
(handempty))

:effect (and (not (ontable ?x))
(not (handempty))
(holding ?x)))

(:action put-on-shelf
:parameters (?x - beaker)
:precondition (holding ?x)
ceffect (and (not (holding ?x))
(handempty)
(onshelf ?x)))

[PDDL Example]

32

SAT based Learners

* Create a SAT problem using constraint axioms.

* Extract PDDL from the SAT problem’s solution.

(S0, a1, 51) 1. (par(px) N par(pri;) = &) A (par(pi) N par(pregou) = @)

= pi & add; \ pi & del;

—> 2. pre; # ¢ Nadd; # ¢ A\ del; # ¢
3. pre; Nadd; = ¢

(Sl' as, SZ)

(Sn—ll An, STl) 4. del; C pre;.

[Input]

ARMS -Yang et al. (AlJ 2007), Zhuo et al. (1JCAI'1 3)

—>

(:action pick-up-beaker
:parameters (?x - beaker)

:precondition (and (ontable ?x)
(not-in-use ?x)
(handempty))

:effect (and (not (ontable ?x))
(not (handempty))
(holding ?x)))

(:action put-on-shelf
:parameters (?x - beaker)
:precondition (holding ?x)
ceffect (and (not (holding ?x))
(handempty)
(onshelf ?x)))

[PDDL Example]

33

Planning based Learners

* Create Planning problem using SAT-like rules.

* Extract correct PDDL from solution to the planning problem.

(raction apply_stack (:aCtlon p1ck—up-beaker‘
:parameters (?o0l - object 202 - cbject) :parameters (?X - beaker‘)
:precondition :precondition (and (ontable ?x)
(So, al’ Sl) (and (or (not (pre_stack_on_vl_wvl) 70l 7ol) (not-in-use ?X)

() (on)

(or (not (pre_stack_on_vl_vZ)) (on 7ol 70Z))

(or (not (pre_stack_on_v2_vl)) (on 202 ?7o0l)) (handemptY))
(() (on)

(Sl'a2152> tox

not (pre_stack_on_wv2_wv2) 702 702) reffect (and (nOt (ontable ?X))
. (not (handempty))
---eab» —-—-—-%;)» ; ?
. (or (not (pre_stack_handempty)) (handempty))) (h01d1ng ’ X)))
: ’?ttzci hen (del . Ll (on 701 201))) (:action put-on-shelf
an when el stack_on_vwvl_vw not {(on 7o g . 5 _
(S a S) (when (del_stack_on_vl_vZ2) (not (on 70l 702))) .p?r'amete?tg.x hbijl.(er‘)p
n—1 “nr°n (when (del_stack_on_vZ_vwl) (not (on ?c2 Zol))) :precondition (holding 1X) 5
(when (del_stack_on_v2_v2) (not (on %02 ?%02))) ceffect (and (not (holding 2x))

T (handempty)
[Input] (onshelf ?x)))

(when (add_stack_holding_vwl) (holding ?o0l))

(when (add_stack_holding_vw2) (holding 7o2))
(when (add_stack_handempty) (handempty)) [PDDL EXGmple]
{when (modeProg) (not (modeProg)))))

FAMA — Aineto et al. (ICAPS’18, AlJ’19)
34

MACQ: Model Acquisition Toolkit

* Library of passive learning
approaches

* Re-implementations of landm
approaches

* Open source

* Visualization tools

Neighboring Papers

To get to this new paper, our Al thinks you should be looking at the following papers known to our system as the state of the art that immediately makes the

Learning Partially Observable Deterministic
® Action Models. Amir, Eyal, and Allen Chang.
® JAIR. (2008)

new work possible. Each paper is tagged with features that need relaxation or extension to get to the new paper.

Efficient, Safe, and Probably Approximately
Complete Learning of Action Models by Stern, Roni,
and Brendan Juba. 13CAI (2017) 3,

Constructing Symbolic Representations for High-

Level Planning by Konidaris, George, Leslie Kaelbling,

and Tomas Lozano-Perez. AAAI (2014) i’,

Learning First-Order Representations for Planning
from Black-Box States: New Results by Rodriguez,
Ivan D., Blai Bonet, Javier Romero, and Hector
Geffner. arXiv (2021) 3,

Learning Parameters /

Learning Parameters /

Learning Parameters /

Learning Parameters /
Learning Parameters /
Learning Parameters /
Learning Parameters /
Learning Parameters /
Learning Parameters /

Data Features / Trace / Cost / True

Data Features / State Information / Init Access / False
Data Features / Trace / Cost / True

Model Features / Actions / Parameterized / False

Model Features / Predicates / Parameterized / False

Data Features / Fluent Observability / Fully Observable / True
Data Features / Fluent Observability / Unobservable / False
Data Features / Fluent Observability / Noise / False

Data Features / Trace / Cost / True

35

Tutorial on Model Acquisition using MACQ

https://icaps23.icaps-conference.org/program/tutorials/model/

| ”*mtemtmn =
ited Planniggal

R

¥

FRA

”

B
:

HOME DATES ATTENDING ~ CALLS ~ COMPETITIONS SUBMISSIONS PROGRAM ~ SCHEDULE ~ COMMITTEES ~

CODE OF CONDUCT VENUE PHOTO

Model Acquisition in the Modern Era (Tutorial Materials)

Description

This tutorial will cover some of the landmark methods in the area of planning action model acquisition that our community has produced over the years.
From OBSERVER in the early 90's to the modern forms of action-label-only LOCM techniques, we will cover both the concepts behind these approaches and

grounded hands-on examples for attendees to try for themselves.

36

https://icaps23.icaps-conference.org/program/tutorials/model/

Limitations of Learning from Passive Observations
* Susceptible to incorrect or incomplete model learning.

* E.g., if all packages are brown in color, a possible i)
a d a’

precondition will be that the package must be brown to 500
v v
unload them. v, ®..
al1 Move, 5 ai Move, , all Pick,
* Such methods don’t capture correct causal relationships. R
az Move, - 3 a) : Unload,
s, C T s, B B
a, Unload, \ a)
2 e

Active Acquisition of Observations

* Does not depend on third-party to provide
observations.

* Strategy to acquire observations:

* Directed Search: What action should | execute more
to acquire more samples?

EXPO — Gil (ICML'93), IRALe — Rodrigues et al. (ILP‘11), GLIB — Chitnis et al. (AAAI‘21)

38

Online Learning of Action Models for
PDDL Planning

Leonardo Lamanna, Alessandro Saetti, Luciano Serafini, Alfonso Emilio Gerevini, and
Paolo Traverso

IJCAI 2021

Online Learning of Action Models for PDDL Planning

* Assumptions:
* the set of predicates, operators and objects are known;
* no negative preconditions and inconsistent effects;
* full observability.

* Two ways to learn from action executions:
°* Learn from execution success.
* Learn from execution failures.

40

Learning from Action Execution Success

(:action move
:parameters (?from ?to)
:precondition (and
(at ?from)
(connected ?to ?from)
(at ?to))
:effect (and)

41

Learning from Action Execution Success

° If action successful

* Remove incorrect preconditions.

* Add necessary effects.

7]

—>

H

move(roomG roomB)

(:action move
:parameters (?from ?to)
:precondition (and
(at ?from)
(connected ?to ?from)
—at—"to))
:effect (and
(at ?to)
(not (at ?from)))

42

Learning from Action Execution Failure

* If action failed
* Confirm preconditions.

H

move(roomB roomO)

C]

—>

H

(:action move

:parameters (?from ?to)
:precondition (and

(at ?from)

(connected ?to ?from))
:effect (and

(at ?to)

(not (at ?from)))

43

(at robot roomG)

(connected roomG roomB)

PDDL State

OLAM Algorithm

—> Goal Specification —

(:action move
:parameters (?from ?to)
:precondition (and
(at ?from)

move(roomG roomB)
move(roomB roomQ) —

Plan 1T

a = pop(m)

(connected ?to ?from) <€
fat="to))
:effect (and
(at ?to)
(not (at ?from))))

(:action move
:parameters (?from ?to)
:precondition (and
(at ?from)

Success

execute(a) €——

Failure

(connected ?to ?from)) €
:effect (and

(at ?to)

(not (at ?from)))

44

Goal Specification for OLAM

H

move(roomG roomB)

45

Goal Specification for OLAM

Precondition: Effect:

 P*:atomstruein s’ e E7: possible effects false in s’ but

* P7: atoms false in s’ can become true on executing op(c)
and are yet to be E7: possible effects true in s’ but
verified as necessary can become false on executing op(¢)

for executing op(c¢)

46

Goal Specification for OLAM

Precondition: Effect:

 P*:atomstruein s’ e E™: possible effects false in 8" but

* P7: atoms false in s’ can become true on executing op(c)
and are yet to be e E7: possible effects true in s’ but
verified as necessary can become false on executing op(¢)

for executing op(c¢)

Goal = V ARG YA

op(c) € A p(c) e PFTUE™ p(c) EPTUET
P*P=EYE~ satisfy (i -vi)

(()PTUEYUE™ # 0 (iv) P~ & pre, (op(c)){®}
() PTNP =0 (v) ETC ef f5 (op(c))
(i) P*Y U P~ =pre(op(c)) (vi)E"Ceff; (op(c))

47

OLAM outperforms the baseline in accuracy

OLAM Fama
Domain Time P R | Time P R
TP blocksworld 5.03 1 1 510 1 1
P = driverlog 2042 093 1 349 0.79 0.85
TP+FP ferry 754 094 1 267 0.80 0.93
floortile 4734 083 1 517 0.82 0.78
grid 36.92 082 1 306 0.81 0.74
TP gripper 3.50 1 1 | 165 0.86 0.93
— hanoi 238 088 1 818 0.88 0.86
T'P+FN miconic 424 1 1 | 200 081 1
n-puzzle 1.97 088 1 23 086 1
parking 18394 089 1 895 0.84 0.84
rover 154.10 0.83 0.84 | 629 0.51 0.53
satellite 11.26 1 1 65 0.70 0.89
transport 7498 095 1 280 0.80 0.89

48

GLIB: Efficient Exploration for
Relational Model-Based Reinforcement
Learning via Goal-Literal Babbling

Rohan Chitnis, Tom Silver, Joshua Tenenbaum, Leslie Pack Kaelbling, and
Tomas Lozano-Pérez

AAAI 2021

1.

2.

3.

4,

5.

Exploration via Goal-Literal Babbling (GLIB)

Sample (babble) a conjunctive goal that has not yet been seen

i. Max number of literals in conjunction is a hyperparameter
ii. Whether the goals are lifted or ground is a hyperparameter

Plan to achieve the goal using the current (wrong) operators

Execute the plan to acquire data

Use the resulting data to improve the operators

Repeat

50

GLIB can find errors and update the model

="

“I wonder if I can...”

goal:
holding(@®)

execute:
pick(i)
#

A

Unexpected transition,
so update model

new precondition

for pick(X):
nothing-above(X)

generalization

A

Prediction and planning
with novel objects

51

Exploration via Goal-Literal Babbling (GLIB)

Sample a novel (goal, action) pair.

If we can't sample a goal that yields a non-empty plan after several tries,
fall back to taking a random action.

Ground goals (GLIB-G) vs. lifted goals (GLIB-L): GLIB-G tends to under-
generalize while GLIB-L tends to over-generalize.

52

Exploration in GLIB-L

No goals achievable

(:action move
:parameters (?from ?to)
:precondition ()
effect ()

53

Exploration in GLIB-L

(:action move
:parameters (?from ?to)
:precondition ()
effect ()

])

No goals achievable

Sample random action: move (7-2, 5-7)

54
5/

Exploration in GLIB-L

(:action move
:parameters (?from ?to)
:precondition (and
(at ?from))
:effect (and
(not (at ?from))
(at ?to))

55

Exploration in GLIB-L

Bl

F

Babble Goal: at(2-3) A keyat(keyB, 2-3)
with final action: pick(2-3, keyB)

(:action move
:parameters (?from ?to)
:precondition (and
(at ?from))
:effect (and
(not (at ?from))
(at ?to))

56

Exploration in GLIB-L

E

Babble Goal: at(7-9) A locked(roomG)

with final action: move(7-9, 6-5)

Plan: (move(2x7-9), move(7-9,6-5)

(:action move
:parameters (?from ?to)
:precondition (and
(at ?from))
:effect (and
(not (at ?from))
(at ?to))
)
(:action pick
:parameters (?loc ?room)
:precondition (and
(keyat ?loc)
(at ?loc)
(keyforroom ?room))
:effect (and
(not (keyat ?loc))
(not (locked ?room)))

57

Exploration in GLIB-L

I -

(:action move
:parameters(?from ?to ?room)
:precondition (and

(at ?from)

(inroom ?to ?room)

(not (locked ?room))
: effect (and

(not (at ?from))

(at ?to))

)

(:action pick
:parameters (?loc ?room)
:precondition (and

(keyat ?loc)

(at ?loc)

(keyforroom ?room))
:effect (and

(not (keyat ?loc))

(not (locked ?room)))

58

Theoretical Properties of GLIB

* Theorem: Under mild assumptions about the environment, planner, and
operator learning algorithm, GLIB will visit all reachable transitions
infinitely often in the limit.

* Corollary: The model learned using GLIB will converge almost surely to the
ground truth model over the space of reachable transitions.

Empirical Evaluation

Measured the following as a function of the number

of interactions with the environment.

* Prediction accuracy of the learned operators

* Planning performance of the learned operators
on a hand-designed test set of goals

Baselines: SOTA algorithms for exploration in

relational model-based RL.

* REX (Lang 2012), ILM (Ng 2019), IRALe
(Rodrigues 2011), EXPO (Gil 1994)

60

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

0

GLIB is sample efficient

Planning Success Rate vs. # Environment Interactions
Gripper, LNDR

Blocks, LNDR

100

[(A

200 300 400 500

Exploding Blocks, LNDR

0

100 200 300 400 500
Blocks, TILDE
100 200 300 400 500

—— Oracle
—— Action babbling

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0

0.6
0.4
0.2
0.0

AT

DAV

0 500

1000 1500

Triangle Tireworld, LNDR

0 100

200

300 400

Gripper, TILDE

A e _X</

0 500

—— |RALe
—— EXPO

1000 1500

—— REX
— ILM

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

Keys and Doors, LNDR

}—___—___/r__________J/

\

0 500 1000 1500 2000 2500
Pybullet, LNDR

\

o

100 200 300 400 500
Keys and Doors, TILDE

I

0 500 1000 1500 2000 2500

—— GLIB-G (ours)
—— GLIB-L (ours)

61

Assessment of Black-Box Al Systems in
Stationary Settings

Vocabulary + Semantics
Terms that the user understands

(e.g., “holding(x, gripper)”)

<€

Interpretable model
of

Black-Box Al
capabilities

Personalized
Al Evaluator

(Query)

instruction

(Response) result
from sim

Black-Box
Al

Arbitrary internal
implementation

Doesn’t know
user’s vocabulary

63

Asking the Right Questions:

Learning Interpretable Action Models
Through Query Answering

Pulkit Verma, Shashank Rao Marpally, and Siddharth Srivastava
AAAI 2021

Deterministic and Stationary Setting

Input

* Predicates (User vocabulary)
* With their evaluation functions
* List of capabilities.

Ovutput
* PPDDL-like description of each capability.

Assumptions

* User’s vocabulary matches
simulator’s vocabulary.

Black-Box Al provides a list of
capabilities.

Stationary agent model.

* Deterministic environment.

Fully observable setting.
65

Exponential Search for Learning Correct Description

* Consider the following 4

predicates/concepts:
* (has_key)
* (door_open)
 (door_adjacent 7?x)
 (player_at ?x)

* Consider just one capability:
(open—-door ?x)

o 9ICIXIPI = 91X4=6561 possible models
(Assuming deterministic models/
descriptions, i.e., no probabilities).

(:action open-door
:parameters (?11)
:precondition (and
(+/-/0) (has_key)
(+/-/®) (door_open)
(+/-/0) (door_adjacent ?11)
(+/-/0) (player_at ?711))
:effect (and
(+/-/0) (has_key)
(+/-/0) (door_open)
(+/-/0) (door_adjacent ?11)
(+/-/0) (player_at ?11))

66

Simple Queries

Quer In state S;, what will happen if you execute the KSeliRZIIReIN {¢e]o I (o] IV Lo}
y plan T = (¢4, ..., C;)? state Sp?
| can execute first £ steps of the plan, endin
Response : S AL S Yes / No.
up in state Sg.

Plan Outcome Queries State Reachability Query

* How to generate the queries?

* How to use the responses to
generate models?

Hierarchical Query Synthesis

(:action open-door
:parameters (?11)
:precondition (and

LY (+/-/0) (has_key) |

n, (+/-/0)(door_open)

ng (+/-/0)(door_adjacent 211)

n, (+/-/0)(player_at ?11))
reffect (and

ns (+/-/0) (has_key)

ne (+/-/0)(door_open)

n, (+/-/0)(door_adjacent ?11)

ng (+/-/0)(player_at 211))

Query-plan generated
automatically by reduction

to planning

v
Generate a
distinguishing query:
Q such that Q(M_) # Q(M,)

68

Query Synthesis as Planning

Models differ in only one predicate in
precondition or effect.

(:action open-door
:parameters (?loc)
:precondition (and

(p1) (p2))
:effect (and
(p3)

(not (has-key)))

M_

(:action open-door
:parameters (?loc)
:precondition (and

M, (p1) (p2))
:effect (and

(p3)
(has-key))

open-door (?location ?item)
precondition:
(precondition)y_ V (precondition)y,

effect:

((precondition)y_ A !(precondition)y, —» (goal))
(!(precondition)y_ A (precondition)y, — (goal))
((precondition)y_ A (precondition)y, -

((effect)y. A (effect)y,))]’

Consolidated capability used to generate

the Planning Domain

If the precondition of only one model is satisfied,
the goal is reached.

If the preconditions of both models are satisfied,
apply the effects of both.

69

Hierarchical Query Synthesis

(:action open-door
:parameters (?11)
:precondition (and

LY (+/-/0) (has_key) |

n, (+/-/0)(door_open)

ng (+/-/0)(door_adjacent ?11)

n, (+/-/0)(player_at 211))
:effect (and

ns (+/-/0) (has_key)

ng (+/-/0)(door_open)

n, (+/-/0)(door_adjacent ?11)

ng (+/-/0)(player_at ?11))

70

Hierarchical Query Synthesis

(:action open-door
:parameters (?11)
:precondition (and

LY (+/-/0) (has_key) |

n, (+/-/0)(door_open)

ng (+/-/0)(door_adjacent 211)

n, (+/-/0)(player_at ?11))
:effect (and

ns (+/-/0) (has_key)

ne (+/-/0)(door_open)

n, (+/-/0)(door_adjacent ?11)

ng (+/-/0)(player_at 211))

Check the consistency

of refinements with the
agent response

0 = Q(Agent)
QM_) # Q(M,)

71

Hierarchical Query Synthesis

(:action open-door
:parameters (?11)
:precondition (and

LY (+/0) (has_key)

n, (+/-/0)(door_open)

ng (+/-/0)(door_adjacent ?11)

n, (+/-/0)(player_at 211))
:effect (and

ns (+/-/0) (has_key)

ng (+/-/0)(door_open)

n, (+/-/0)(door_adjacent ?11)

ng (+/-/0)(player_at ?11))

Reject abstract model(s) that are
not consistent with the agent

72

Hierarchical Query Synthesis

v

Generate a distinguishing query
for these two abstract models

(:action open-door
:parameters (?11)
:precondition (and

LY (+/0) (has_key)

n, (+/-/0)(door_open)

ng (+/-/0)(door_adjacent ?11)

n, (+/-/0)(player_at 211))
:effect (and

ns (+/-/0) (has_key)

ng (+/-/0)(door_open)

n, (+/-/0)(door_adjacent ?11)

ng (+/-/0)(player_at ?11))

73

Hierarchical Query Synthesis

(:action open-door
:parameters (?11)
:precondition (and

LY (+) (has_key)

n, (+/-/0)(door_open)

ny (+/-/0)(door_adjacent 211)

n, (+/-/0)(player_at 211))
effect (and

ns (+/-/0) (has_key)

ng (+/-/0)(door_open)

n, (+/-/0)(door_adjacent ?11)

ng (+/-/0)(player_at ?11))

Lemma

At least one of these 3 options will be

consistent with the agent

Reject the abstract model
that is not consistent with the agent

74

Hierarchical Query Synthesis

Key feature of the algorithm

Whenever we prune an abstract
model, we prune a large number of
concrete models.

Active Learning

75

Deterministic and Stationary Setting

Input

* Predicates (User vocabulary)
* With their evaluation functions
* List of capabilities.

Ovutput
* PDDL-like description of each capability.

Assumptions

* User’s vocabulary matches
simulator’s vocabulary.

Black-Box Al provides a list of
capabilities.

Stationary agent model.

* Deterministic environment.

Fully observable setting.
76

AAM learns Accurate Model with fewer Queries

Random deterministic Accuracy: — AAM — FAMA
planning agent from IPC Time: ---- AAM ---- FAMA

* Asses by learning the model and compare
with ground truth.

* Baseline’: A passive learner (FAMA) that
observes agent behavior

Gripper Blocksworld

1.0 1.0

AAM learned the correct model
FAMA ran out of memory with with 134 queries

46 traces as input
- Termes
0 1.0 |

0.5 0.5

0.0i=

1.0

1.0
05 0.5] [:

0.0

o
=}

Logistics x10°2

.0 1.0

=
o

= 0.5

0.0L=

o
=}

Model Accuracy
o

Time per Query (sec.)

1.0

(higher values better)
odel Accura
O
Ul
Time per Query (sec.)
(lower values better)

0.5 0.5

M
o
-

Number of Queries

0.0 0.0

0 AAM takes very

0 200 400
Barman x10-2

107 4 10 less time
05! 0.5

"ﬁ 12
0.0 0.0

0 100 200 300
Number of Queries

tAineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning Action Models With Minimal Observability. Artificial Intelligence 275: 104-137. 77

AAM learns Accurate Deterministic Models

* Theorem (termination) : The algorithm terminates after a finite
number of iterations.

* Theorem (soundness): The resulting (set of) model(s) is(are)
functionally equivalent to the ground truth model.

78

Autonomous Capability Assessment of
Sequential Decision-Making Systems in
Stochastic Settings

Pulkit Verma, Rushang Karia, and Siddharth Srivastava
NeurlPS 2023

Stochastic and Stationary Setting

Input

* Predicates (User vocabulary)
* With their evaluation functions
* List of capabilities.

Ovutput
* PPDDL-like description of each capability.

Assumptions

* User’s vocabulary matches
simulator’s vocabulary.

* Black-Box Al provides a list of
capabilities.

* Stationary agent model.
Stochastic

* Deterrmimisiic environment.

* Fully observable setting.

80

Changes for Stochastic Settings

New Queries

Initial State

(empty-arm) pick-item (tablel soda-can)
(robot-at tablel)

(at tablel soda-can)
pick-item (tablel soda-can)

(holding soda-can) move-to (dish-washer)

move-to (dish-washer)

(robot-at dish-washer)

Policy: Generated Autonomously by
Reduction to Non-Deterministic
Planning

What happens if you start in the given
initial state and follow this partial
policy?

Assumptions

User’s vocabulary matches
simulator’s vocabulary.

Black-Box Al provides a list of
capabilities.

Stationary agent model.
Stochastic

Determmisiic environment.

Fully observable setting.

81

Changes for Stochastic Settings

Step 1: Learn a Non-Deterministic Model

(:action open-door
:parameters (?11)
:precondition (and
(+/-/0) (has_key)
(+/-/0) (door_open)
(+/-/0) (door_adjacent ?11)
(+/-/0) (player_at ?11))
:effect (oneof
(and
(+/-/0) (has_key)
(+/-/0) (door_open)
(+/-/0) (door_adjacent ?11)
(+/-/0) (player_at 211))
(and
(+/-/0) (has_key)
(+/-/0) (door_open)
(+/-/0) (door_adjacent ?11)
(+/-/0) (player_at 211)))

Apply Maximum
Likelihood Estimation

on the observed data
(query responses)

Step 2: Convert to Probabilistic Model

(:action open-door
:parameters (?11)
:precondition (and
(+/-/9) (has_key)
(+/-/0) (door_open)
(+/-/0) (door_adjacent ?11)
(+/-/0) (player_at 211))
:effect (probabilistic
0.xx (and
(+/-/0) (has_key)
(+/-/0) (door_open)
(+/-/0) (door_adjacent ?11)
(+/-/0) (player_at ?11))
0.yy (and
(+/-/0) (has_key)
(+/-/®) (door_open)
(+/-/0) (door_adjacent 2?11)
(+/-/0) (player_at 211)))

82

AAM learns accurate probabilistic models faster

* Baseline: directed exploration approach (GLIB)

* Increase the time taken to learn the model.

Warehouse Robot

> Random probabilistic
.. planning agent from IPC

«C

.......................................

AAM learns a much
better model than
GLIB

© 50 100 150 200 250

Café Server Robot AAM TCI keS Ve I')’

°| - less time
9:13

© 1@ 20 30 40 50 60

Learning Time (minutes)

1.0
o.e —><— AAM
0.4
0.2,
T . . . l ° @_ ."-_
© 50 100 150 200 250 --
DriverAgent
Y 0.8
c
, S 0.6]
o o 50 100 150 200 250 .& == —
s}
E First Responder Robot Q @ 4 |
8 — °
% S
c]
2 o 0.2
8 i] . .]] -
% © 50 100 158 200 250 +
> (®) /
Elevator Control Agent e T N S
100 - ~ /
0.8/
0.6 | g
0.4 @
0.2
7

50 160 150 200 250
Learning Time (minutes)

tChitnis, R.; Silver, T.; Tenenbaum, J.; Kaelbling, L. P.; Lozano-Perez, T. GLIB: Efficient Exploration for Relational MBRL via Goal-Literal Babbling. AAAI 2021.

83

AAM learns accurate models for Continuous Domains

* Use Task and Motion Planning (TMP) to convert L Probabilistic planning agent using
actions intfo motion plans. . OpenRave and TMP

* |Increase the time taken to learn the model.

—><— AAM
Café Server Robot
o 1.01
2 9.8
S .
L 0.6
S 0.4
S
.
s T
§ ® 10 20 30 40 50 60
X z 0 P . . .
robot-base 1.0 -3.5 4709 1.3(p3.1 (empty-arm) Learning Time (mlnutes)
soda-can1 6.0 -2.8 3.58.3 6.7 9.2 — (robot-at tablel)

: : (attablel soda-can)
table4 -2.1 41 1.9 3.7 9.5 4.8

84

AAM learns Accurate Probabilistic Models

* Theorem (soundness and completeness):
The intermediate non-deterministic model (after step 1) is sound and complete w.r.t. the
ground truth model.

* Theorem (probabilistic correctness):
The resulting probabilistic model is correct w.r.t. the ground truth model.

85

Coffee Break

86

	Slide 1
	Slide 2: Schedule
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: User-Aligned AI Assessment is a Different Problem: How would a user know what their current AI system can do safely?
	Slide 9
	Slide 10: The AI Assessment Problem
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

