
User-Driven
Capability Assessment of
Taskable AI Systems
bit.ly/aia25-tutorial

Siddharth SrivastavaPulkit Verma

bit.ly/aia25-tutorial

Schedule

Session 1
• Introduction and Motivation
• Assessment through Model Learning
• Assessment of Black-Box AI Systems in Stationary Settings

09:00 AM

Coffee Break10:30 AM

Meet and Greet over Coffee08:30 AM

Lunch12:30 PM

Session 2
• Discovering Capabilities for Black-Box AI Assessment
• AI Assessment in Adaptive Settings
• Future Directions and Conclusion

11:00 AM

2

Expected to improve, adapt, learn, and achieve user-desired task

Taskable AI Systems

3
Video Link: bit.ly/taskable-ai

https://bit.ly/taskable-ai

This tutorial: how these properties lead to new

open questions on AI safety and assessment

Expected to improve, adapt, learn, and achieve user-desired task

Taskable AI Systems

4

Executable
Program/Controller

System Behavior
= Possible Executions

Designer’s
Intent

Designer’s
Specification

User’s Intent

Classical Notion of Verification

5

Input for Verification: Executable Program/Controller
 (includes task spec)
 + Model/assumptions on env
 + Safety property

The designer plays a central role

Executable
Program/Controller

System Behavior
= Possible Executions

Designer’s
Intent

Designer’s
Specification

User’s Intent

Verification

Validation

Classical Notion of Verification

6

• Property 1 is Termination; when the car reaches the 𝑡𝑒𝑟𝑚 location, its velocity must be

0. We set the forbidden states as 𝑙𝑜𝑐(𝐶𝑎𝑟1) == 𝑡𝑒𝑟𝑚 & 𝑣 > 0.
• Property 2 is VelocityLimit; the velocity must always be in the range 0 to 20. The

forbidden states of this property are defined as 𝑣 < 0 | 𝑣 > 20.
• Property 3 is Evolve; we define this property to show the evolution of velocity.

Conventional Approach to Verification: Example

7Ran Li, Huibiao Zhu, Richard Banach, Translating and verifying Cyber–Physical systems with shared-variable concurrency in SpaceEx, Internet of Things, Volume 23, 2023

User-Aligned AI Assessment is a Different Problem:
How would a user know what their current AI system can do safely?

8

• What is the design spec?

• What is the program/controller?

• What should the safety property
be?

• What should the user do when the
system’s behavior changes?

Taskable AI Systems

9

The AI Assessment Problem

10

Executable

Program/Controller

System Behavior

= Possible Executions

Designer’s

Intent

Designer’s

Specification
User’s Intent

Verification

Validation

User’s

Specification

11

Executable

Program/Controller

System Behavior

= Possible Executions

Designer’s

Intent

Designer’s

Specification
User’s Intent

Verification

Validation

User’s

Specification

Agent’s Goal/Control

Objective/Cost/Constraints

12

Executable

Program/Controller

System Behavior

= Possible Executions

Designer’s

Intent

Designer’s

Specification
User’s Intent

Verification

Validation

User’s

Specification

Agent’s Computation

• Constraints (unknown to user)

• Adaptive code (unknown to designer)

• Mostly suboptimal

Agent’s Goal/Control

Objective/Cost/Constraints

13

Executable

Program/Controller

User’s

Specification

Agent’s Computation

• Constraints (unknown to user)

• Adaptive code (unknown to designer)

• Mostly suboptimal

System Behavior

= Possible Executions

Designer’s

Intent

Designer’s

Specification

Verification

Validation

User’s Intent

Executable

Program/Controller

Agent Behavior

= Possible Executions

The designer is out of the loop!

How would a user know whether it is

safe to assign a certain task to the AI

system?

Agent’s Goal/Control

Objective/Cost/Constraints

14

Executable
Program/Controller

System Behavior
= Possible Executions

Designer’s
Intent

Designer’s
Specification

User’s Intent

Verification

Validation

User’s
Specification

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Agent Behavior
= Possible Executions

Executable
Program/Controller

User’s Intent

User-Driven
AI Assessment

Conventional Verification

Known at

design stage

Only for stationary

systems: known at

design-stage

Agent’s Goal/Control

Objective/Cost/Constraints

Needed for AI Systems

15

1. Translating a user’s implicit intent to their explicit
specification

2. Translating a user’s specification to a formal
representation of a goal or a utility function for the agent

3. Computing agent’s behavior given a goal/utility function

4. The real results of executing the computed
control/behavior

User’s
Specification

Agent’s Goal/Control Objective
& Cost function

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Executable
Program/Controller

User’s Intent

User-Driven
AI Assessment

Needed for AI Systems

Only for stationary

systems: known at

design-stage

1) Intent vs Specification

2) Specification vs AI Objective

3) AI Objective vs AI Behavior

4) Computed Behavior vs Real Outcome

(latent)

(observed)

Agent Behavior
= Possible Executions

16

Reward Hacking
The agent optimizes reward but exploits flaws in the
reward specification

Wireheading

Reward Misspecification

Side Effects

Off-Switch

User’s
Specification

Agent’s Goal/Control Objective
& Cost function

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Agent Behavior
= Possible Executions

Executable
Program/Controller

User’s Intent

Needed for AI Systems

Only for stationary

systems: known at

design-stage

1) Intent vs Specification

2) Specification vs AI Objective

3) AI Objective vs AI Behavior

4) Computed Behavior vs Real Outcome

How do AI Safety Issues Fit in?

17

Reward Hacking

Wireheading
Agent manipulates its reward function. E.g., convince
user; add noise to reward signal

Reward Misspecification

Side Effects

Off-Switch

User’s
Specification

Agent’s Goal/Control Objective
& Cost function

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Agent Behavior
= Possible Executions

Executable
Program/Controller

User’s Intent

Needed for AI Systems

Only for stationary

systems: known at

design-stage

1) Intent vs Specification

2) Specification vs AI Objective

3) AI Objective vs AI Behavior

4) Computed Behavior vs Real Outcome

How do AI Safety Issues Fit in?

18

Reward Hacking

Wireheading

Reward Misspecification
User rewards observations, beliefs, or correlated
features

Side Effects

Off-Switch

User’s
Specification

Agent’s Goal/Control Objective
& Cost function

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Agent Behavior
= Possible Executions

Executable
Program/Controller

User’s Intent

Needed for AI Systems

Only for stationary

systems: known at

design-stage

1) Intent vs Specification

2) Specification vs AI Objective

3) AI Objective vs AI Behavior

4) Computed Behavior vs Real Outcome

How do AI Safety Issues Fit in?

19

Reward Hacking

Wireheading

Reward Misspecification

Side Effects
Agent achieves objective, but with unexpected
problems

Off-Switch

User’s
Specification

Agent’s Goal/Control Objective
& Cost function

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Agent Behavior
= Possible Executions

Executable
Program/Controller

User’s Intent

Needed for AI Systems

Only for stationary

systems: known at

design-stage

1) Intent vs Specification

2) Specification vs AI Objective

3) AI Objective vs AI Behavior

4) Computed Behavior vs Real Outcome

How do AI Safety Issues Fit in?

20

Reward Hacking

Wireheading

Reward Misspecification

Side Effects

Off-Switch

Agent doesn’t let the user turn it off

User’s
Specification

Agent’s Goal/Control Objective
& Cost function

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Agent Behavior
= Possible Executions

Executable
Program/Controller

User’s Intent

Needed for AI Systems

Only for stationary

systems: known at

design-stage

1) Intent vs Specification

2) Specification vs AI Objective

3) AI Objective vs AI Behavior

4) Computed Behavior vs Real Outcome

How do AI Safety Issues Fit in?

21

Reward Hacking

Wireheading

Reward Misspecification

Side Effects

Off-Switch

Agent doesn’t let the user turn it off

User’s
Specification

Agent’s Goal/Control Objective
& Cost function

Agent’s Behavior Synthesis
• Constraints (unknown to user)
• Adaptive code (unknown to designer)
• Mostly suboptimal

Agent Behavior
= Possible Executions

Executable
Program/Controller

User’s Intent

Needed for AI Systems

Only for stationary

systems: known at

design-stage

1) Intent vs Specification

2) Specification vs AI Objective

3) AI Objective vs AI Behavior

4) Computed Behavior vs Real Outcome

Reward Misspecifcation

How do AI Safety Issues Fit in?

22

Executable

Program/Controller

System Behavior

= Possible Executions

Designer’s

Intent

Designer’s

Specification

Verification

Validation

User’s Intent

The designer is out of the loop!

User-Driven Assessment:

End-to-end assessment of the

system’s capabilities from the

user’s perspective:

continual; deployment-specific;

user-specific

User’s

Specification

Agent’s Computation

• Constraints (unknown to user)

• Adaptive code (unknown to designer)

• Mostly suboptimal

Executable

Program/Controller

Agent Behavior

= Possible Executions

Agent’s Goal/Control

Objective/Cost/Constraints

23

Vocabulary + Semantics

Terms that the user understands

(e.g., “holding(x, gripper)”)

Arbitrary internal

implementation

Doesn’t know

user’s vocabulary

Black-Box

AI

Query-Response

Protocol?

24

Vocabulary + Semantics

Terms that the user understands

(e.g., “holding(x, gripper)”)

Interpretable model

of

Black-Box AI

capabilities

(Response) result

from sim

(Query)

 instruction

Arbitrary internal

implementation

Doesn’t know

user’s vocabulary

Personalized

AI Evaluator

Black-Box

AI

25

Assessment through Model Learning

Vocabulary + Semantics

Terms that the user understands

(e.g., “holding(x, gripper)”)

Interpretable model

of

Black-Box AI

capabilities

(Response) result

from sim

(Query)

 instruction

Arbitrary internal

implementation

Doesn’t know

user’s vocabulary

Personalized

AI Evaluator

Black-Box

AI

27

How does this model

look like?

(:action open-door
 :parameters (?l1)
 :precondition (and
 (has_key)
 (player_at ?l1)
 (door_adjacent ?l1))
 :effect (probabilistic
 0.95 (and (door_open))
 0.05 (and (not (has_key))
 (game-over))
)

Precondition: This condition must be true for this action

to execute

Effect: This is a set of conditions, one of which becomes

true when this action is executed

Probabilities: Each set of effect has an associated

probability with which that effect set is executed

Interpretable Description: PDDL/PPDDL

28

(:action open-door
 :parameters (?l1)
 :precondition (and
 (has_key)
 (player_at ?l1)
 (door_adjacent ?l1))
 :effect (probabilistic
 0.95 (and (door_open))
 0.05 (and (not(has_key))
 (game-over))
)

The player can open the door when in location ?l1

if:

• It has the key

• The player is at location ?l1

• The door is adjacent to location ?l1

After executing that capability:

• With 95% probability, the door will open

• With 5% probability, the player will not have

the key and the game will be over

Interpretable: Easily Convertible to Natural Language

29

Assessment using Passive Observations

⟨𝑠0, 𝑎1, 𝑠1⟩

⟨𝑠1, 𝑎2, 𝑠2⟩

⟨𝑠𝑛−1, 𝑎𝑛, 𝑠𝑛⟩

.

..

[Input]

Learner

What kind of

approaches these

learners use?
[PDDL Example]

30

Inference Rules based Learners

⟨𝑠0, 𝑎1, 𝑠1⟩

⟨𝑠1, 𝑎2, 𝑠2⟩

⟨𝑠𝑛−1, 𝑎𝑛 , 𝑠𝑛⟩

.

..

[Input]

• Take intersection of all states where an action is applicable to create precondition.

• Take intersection of all states after executing an action to create effect.

Stern et al. (IJCAI’17), SLAM - Juba et al. (KR’21)

[PDDL Example]

31

⟨𝑠0, 𝑎1, 𝑠1⟩

⟨𝑠1, 𝑎2, 𝑠2⟩

⟨𝑠𝑛−1, 𝑎𝑛 , 𝑠𝑛⟩

.

..

[Input]

• For each object type create a finite state machine.

• Create PDDL by combining them.

LOCM - Cresswell et al. (ICAPS’09), LOCM2 - Cresswell et al. (ICAPS’11, Know. Engg. Rev.’13),

LOP - Gregory et al. (ICAPS’15), NLOCM - Gregory et al. (ICAPS’16)

[PDDL Example]

Finite State Machine based Learners

32

⟨𝑠0, 𝑎1, 𝑠1⟩

⟨𝑠1, 𝑎2, 𝑠2⟩

⟨𝑠𝑛−1, 𝑎𝑛 , 𝑠𝑛⟩

.

..

[Input]

• Create a SAT problem using constraint axioms.

• Extract PDDL from the SAT problem’s solution.

ARMS -Yang et al. (AIJ 2007), Zhuo et al. (IJCAI’13)

1.

2.

3.

4.

[PDDL Example]

.

.

.

33

SAT based Learners

Planning based Learners

⟨𝑠0, 𝑎1, 𝑠1⟩

⟨𝑠1, 𝑎2, 𝑠2⟩

⟨𝑠𝑛−1, 𝑎𝑛 , 𝑠𝑛⟩

.

..

[Input]

FAMA – Aineto et al. (ICAPS’18, AIJ’19)

• Create Planning problem using SAT-like rules.

• Extract correct PDDL from solution to the planning problem.

. . .

. . .

[PDDL Example]

34

MACQ: Model Acquisition Toolkit

• Library of passive learning
approaches

• Re-implementations of landmark
approaches

• Open source

• Visualization tools

35

Tutorial on Model Acquisition using MACQ
https://icaps23.icaps-conference.org/program/tutorials/model/

36

https://icaps23.icaps-conference.org/program/tutorials/model/

• Susceptible to incorrect or incomplete model learning.

• E.g., if all packages are brown in color, a possible
precondition will be that the package must be brown to
unload them.

• Such methods don’t capture correct causal relationships.

Limitations of Learning from Passive Observations

37

Active Acquisition of Observations

• Does not depend on third-party to provide
observations.

• Strategy to acquire observations:

• Directed Search: What action should I execute more
to acquire more samples?

EXPO – Gil (ICML’93), IRALe – Rodrigues et al. (ILP‘11), GLIB – Chitnis et al. (AAAI‘21) 38

Online Learning of Action Models for
PDDL Planning

Leonardo Lamanna, Alessandro Saetti, Luciano Serafini, Alfonso Emilio Gerevini, and

Paolo Traverso

IJCAI 2021

Online Learning of Action Models for PDDL Planning

• Assumptions:
• the set of predicates, operators and objects are known;

• no negative preconditions and inconsistent effects;
• full observability.

• Two ways to learn from action executions:

• Learn from execution success.
• Learn from execution failures.

40

Learning from Action Execution Success

(:action move
 :parameters (?from ?to)
 :precondition (and
 (at ?from)
 (connected ?to ?from)
 (at ?to))
 :effect (and)
)

41

• If action successful
• Remove incorrect preconditions.

• Add necessary effects.

Learning from Action Execution Success

(:action move
 :parameters (?from ?to)
 :precondition (and
 (at ?from)
 (connected ?to ?from)
 (at ?to))
 :effect (and
 (at ?to)
 (not (at ?from)))
)

move(roomG roomB)

42

• If action failed
• Confirm preconditions.

Learning from Action Execution Failure

(:action move
 :parameters (?from ?to)
 :precondition (and
 (at ?from)
 (connected ?to ?from))
 :effect (and
 (at ?to)
 (not (at ?from)))
)

move(roomB roomO)

43

OLAM Algorithm

(:action move
 :parameters (?from ?to)
 :precondition (and
 (at ?from)
 (connected ?to ?from)
 (at ?to))
 :effect (and
 (at ?to)
 (not (at ?from))))

(at robot roomG)
(connected roomG roomB)

…

PDDL State

Goal Specification
move(roomG roomB)
move(roomB roomO)

…

Plan 𝜋

execute(a)

a = pop(𝜋)

(:action move
 :parameters (?from ?to)
 :precondition (and
 (at ?from)
 (connected ?to ?from))
 :effect (and
 (at ?to)
 (not (at ?from)))
)

Success

Failure

44

Goal Specification for OLAM

45

move(roomG roomB)

𝑠 𝑠′
𝜋

Goal Specification for OLAM

46

𝑠′ 𝑠′′
𝜋

Precondition:

• 𝑃+: atoms true in 𝑠’
• 𝑃−: atoms false in 𝑠’

and are yet to be

verified as necessary

for executing 𝑜𝑝(𝑐)

Effect:

• 𝐸+: possible effects false in 𝑠’ but

can become true on executing 𝑜𝑝(𝑐)
• 𝐸−: possible effects true in 𝑠’ but

can become false on executing 𝑜𝑝(𝑐)

𝑠
𝑜𝑝(𝑐)

Goal Specification for OLAM

47

∨ ∧
𝑝 𝑐 ∈ 𝑃+ ∪ 𝐸−

𝑝 𝑐 ∧ ∧
𝑝 𝑐 ∈ 𝑃− ∪ 𝐸+

¬𝑝 𝑐

o𝑝 𝑐 ∈ 𝐴
𝑃+𝑃−𝐸+𝐸−satisfy (i -vi)

Goal =

Precondition:

• 𝑃+: atoms true in 𝑠’
• 𝑃−: atoms false in 𝑠’

and are yet to be

verified as necessary

for executing 𝑜𝑝(𝑐)

Effect:

• 𝐸+: possible effects false in 𝑠’ but

can become true on executing 𝑜𝑝(𝑐)
• 𝐸−: possible effects true in 𝑠’ but

can become false on executing 𝑜𝑝(𝑐)

(i) 𝑃− ∪ 𝐸+ ∪ 𝐸− ≠ ∅
(ii) 𝑃+ ∩ 𝑃− = ∅
(iii) 𝑃+ ∪ 𝑃− = 𝑝𝑟𝑒(𝑜𝑝(𝑐))

(iv) 𝑃− ∉ 𝑝𝑟𝑒⊥(𝑜𝑝 𝑐){∅}
(v) 𝐸+⊆ 𝑒𝑓𝑓?

+(𝑜𝑝 𝑐)
(vi) 𝐸−⊆ 𝑒𝑓𝑓?

−(𝑜𝑝 𝑐)

OLAM outperforms the baseline in accuracy

48

P =
𝑇𝑃

𝑇𝑃+𝐹𝑃

R =
𝑇𝑃

𝑇𝑃+𝐹𝑁

GLIB: Efficient Exploration for
Relational Model-Based Reinforcement

Learning via Goal-Literal Babbling

Rohan Chitnis, Tom Silver, Joshua Tenenbaum, Leslie Pack Kaelbling, and

Tomás Lozano-Pérez

AAAI 2021

1. Sample (babble) a conjunctive goal that has not yet been seen
i. Max number of literals in conjunction is a hyperparameter
ii. Whether the goals are lifted or ground is a hyperparameter

2. Plan to achieve the goal using the current (wrong) operators

3. Execute the plan to acquire data

4. Use the resulting data to improve the operators

5. Repeat

Exploration via Goal-Literal Babbling (GLIB)

50

GLIB can find errors and update the model

51

• Sample a novel (goal, action) pair.

• If we can't sample a goal that yields a non-empty plan after several tries,

fall back to taking a random action.

• Ground goals (GLIB-G) vs. lifted goals (GLIB-L): GLIB-G tends to under-

generalize while GLIB-L tends to over-generalize.

Exploration via Goal-Literal Babbling (GLIB)

52

Exploration in GLIB-L

(:action move
 :parameters (?from ?to)
 :precondition ()
 :effect ()
)

53

No goals achievable

Exploration in GLIB-L

(:action move
 :parameters (?from ?to)
 :precondition ()
 :effect ()
)

54

No goals achievable

Sample random action: move (7-2, 5-7)

54

Exploration in GLIB-L

(:action move
 :parameters (?from ?to)
 :precondition (and
 (at ?from))
 :effect (and
 (not (at ?from))
 (at ?to))
)

55

Exploration in GLIB-L

(:action move
 :parameters (?from ?to)
 :precondition (and
 (at ?from))
 :effect (and
 (not (at ?from))
 (at ?to))
)

56

Babble Goal: at(2-3) ∧ keyat(keyB, 2-3)

with final action: pick(2-3, keyB)

Exploration in GLIB-L

(:action move
 :parameters (?from ?to)
 :precondition (and
 (at ?from))
 :effect (and
 (not (at ?from))
 (at ?to))
)
(:action pick
 :parameters (?loc ?room)
 :precondition (and
 (keyat ?loc)
 (at ?loc)
 (keyforroom ?room))
 :effect (and
 (not (keyat ?loc))
 (not (locked ?room)))
)

57

Babble Goal: at(7-9) ∧ locked(roomG)

with final action: move(7-9, 6-5)

Plan: ⟨move(2-3,7-9), move(7-9,6-5)

Exploration in GLIB-L

(:action move
 :parameters(?from ?to ?room)
 :precondition (and
 (at ?from)
 (inroom ?to ?room)
 (not (locked ?room))
 : effect (and
 (not (at ?from))
 (at ?to))
)
(:action pick
 :parameters (?loc ?room)
 :precondition (and
 (keyat ?loc)
 (at ?loc)
 (keyforroom ?room))
 :effect (and
 (not (keyat ?loc))
 (not (locked ?room)))
)

58

• Theorem: Under mild assumptions about the environment, planner, and
operator learning algorithm, GLIB will visit all reachable transitions
infinitely often in the limit.

• Corollary: The model learned using GLIB will converge almost surely to the
ground truth model over the space of reachable transitions.

Theoretical Properties of GLIB

59

• Measured the following as a function of the number
of interactions with the environment.
• Prediction accuracy of the learned operators

• Planning performance of the learned operators
on a hand-designed test set of goals

• Baselines: SOTA algorithms for exploration in
relational model-based RL.
• REX (Lang 2012), ILM (Ng 2019), IRALe

(Rodrigues 2011), EXPO (Gil 1994)

Empirical Evaluation

60

61

GLIB is sample efficient

Assessment of Black-Box AI Systems in
Stationary Settings

Vocabulary + Semantics

Terms that the user understands

(e.g., “holding(x, gripper)”)

Interpretable model

of

Black-Box AI

capabilities

(Response) result

from sim

(Query)

 instruction

Arbitrary internal

implementation

Doesn’t know

user’s vocabulary

Personalized

AI Evaluator

Black-Box

AI

63

Asking the Right Questions:
Learning Interpretable Action Models

Through Query Answering

Pulkit Verma, Shashank Rao Marpally, and Siddharth Srivastava

AAAI 2021

Deterministic and Stationary Setting

65

• User’s vocabulary matches
simulator’s vocabulary.

• Black-Box AI provides a list of
capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

Output

• PPDDL-like description of each capability.

Input

• Predicates (User vocabulary)

• With their evaluation functions

• List of capabilities.

• Consider the following 4
predicates/concepts:
• (has_key)
• (door_open)
• (door_adjacent ?x)
• (player_at ?x)

• Consider just one capability:
(open-door ?x)

• 9 𝐶 ×|𝑃| = 91×4=6561 possible models
(Assuming deterministic models/
descriptions, i.e., no probabilities).

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

Exponential Search for Learning Correct Description

66

Query
In state 𝑠𝐼, what will happen if you execute the

plan 𝜋 = ⟨𝑐1, … , 𝑐𝑛⟩?

Response
I can execute first ℓ steps of the plan, ending

up in state 𝑠𝐹.

Plan Outcome Queries State Reachability Query

Can you go from state 𝑠𝐼 to

state 𝑠𝐹?

Yes / No.

• How to generate the queries?

• How to use the responses to
generate models?

Simple Queries

67

𝑛1

𝑛2

𝑛3

𝑛4

𝑛5

𝑛6

𝑛7

𝑛8

𝑛2 𝑛7

𝑛1 𝑛8

…

𝑛1

(∅)has_key(-)has_key

𝑀− 𝑀∅

(+)has_key

𝑀+

Generate a

distinguishing query:

𝑄 such that 𝑄 𝑀− ≠ 𝑄 𝑀+

Hierarchical Query Synthesis

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

(+/-/∅)(has_key)

68

Query-plan generated

automatically by reduction

to planning

(:action open-door
 :parameters (?loc)
 :precondition (and
 (p1) (p2))
 :effect (and
 (p3)
 (not (has-key)))

open-door (?location ?item)
 precondition:
 (precondition)𝑀−

 ∨ (precondition)𝑀+

 effect:
 ((precondition)𝑀−

 ⋀ ! (precondition)𝑀+
→ (goal))

 (!(precondition)𝑀−
 ⋀ (precondition)𝑀+

→ (goal))

 ((precondition)𝑀−
 ⋀ (precondition)𝑀+

 →

 ((effect)𝑀−
 ⋀ (effect)𝑀+

))

𝑀−

Models differ in only one predicate in

precondition or effect.

Consolidated capability used to generate

the Planning Domain

69

Query Synthesis as Planning

(:action open-door
 :parameters (?loc)
 :precondition (and
 (p1) (p2))
 :effect (and
 (p3)
 (has-key))

𝑀+

If the precondition of only one model is satisfied,

the goal is reached.

If the preconditions of both models are satisfied,

apply the effects of both.

𝑄

𝑛2 𝑛7

𝑛1 𝑛8

…

𝑛1

¬ℎ𝑎𝑠_𝑘𝑒𝑦

𝑀𝐴 𝑀𝐶

ℎ𝑎𝑠_𝑘𝑒𝑦

𝑀𝐵

(-)has_key

𝑀− 𝑀∅

𝑀+

𝑛1

𝑛2

𝑛3

𝑛4

𝑛5

𝑛6

𝑛7

𝑛8

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

(+/-/∅)(has_key)

Hierarchical Query Synthesis

70

(∅)has_key

(+)has_key

𝜃 = 𝑄(𝐴𝑔𝑒𝑛𝑡)

𝑄 𝑀− ≠ 𝑄 𝑀+

𝑛2 𝑛7

𝑛1 𝑛8

…

𝑛1

¬ℎ𝑎𝑠_𝑘𝑒𝑦

𝑀𝐴 𝑀𝐶

ℎ𝑎𝑠_𝑘𝑒𝑦

𝑀𝐵

𝑛1

𝑛2

𝑛3

𝑛4

𝑛5

𝑛6

𝑛7

𝑛8

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

(+/-/∅)(has_key)

𝑀− 𝑀∅

𝑀+

Hierarchical Query Synthesis

71

Check the consistency

of refinements with the

agent response

(-)has_key (∅)has_key

(+)has_key

𝑀∅

𝑀+

Reject abstract model(s) that are

not consistent with the agent

𝑛2 𝑛7

𝑛1 𝑛8

…

𝑛1

𝑛1

𝑛2

𝑛3

𝑛4

𝑛5

𝑛6

𝑛7

𝑛8

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

(+/∅)(has_key)

Hierarchical Query Synthesis

72

(∅)has_key

(+)has_key

Generate a distinguishing query

for these two abstract models

𝑛2 𝑛7

𝑛1 𝑛8

…

𝑛1

𝑛1

𝑛2

𝑛3

𝑛4

𝑛5

𝑛6

𝑛7

𝑛8

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

(+/∅)(has_key)

Hierarchical Query Synthesis

𝑀∅

𝑀+

73

(∅)has_key

(+)has_key

Reject the abstract model

that is not consistent with the agent

𝑛2 𝑛7

𝑛1 𝑛8

…

𝑛1

(∅)ℎ𝑎𝑠_𝑘𝑒𝑦

𝑛1

𝑛2

𝑛3

𝑛4

𝑛5

𝑛6

𝑛7

𝑛8

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

(+)(has_key)

𝑀+

Hierarchical Query Synthesis

74

At least one of these 3 options will be

consistent with the agent

Lemma

(+)has_key

𝑛2 𝑛7

𝑛1 𝑛8

…

𝑛1

… … …

𝑀− 𝑀∅𝑀+

𝑛2 𝑛3 𝑛8

𝑛3 𝑛8

𝑛8

…

…

…

Whenever we prune an abstract

model, we prune a large number of

concrete models.

Key feature of the algorithm

Hierarchical Query Synthesis

75

Active Learning

Deterministic and Stationary Setting

76

• User’s vocabulary matches
simulator’s vocabulary.

• Black-Box AI provides a list of
capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

Output

• PDDL-like description of each capability.

Input

• Predicates (User vocabulary)

• With their evaluation functions

• List of capabilities.

AAM learned the correct model

with 134 queries

AAM

AAM takes very

less time

AAM

AAM learns Accurate Model with fewer Queries

77

• Asses by learning the model and compare

with ground truth.

• Baseline†: A passive learner (FAMA) that
observes agent behavior

FAMA ran out of memory with

46 traces as input

(h
ig

he
r v

al
ue

s
be

tt
er

)

(lo
w

er
 v

al
ue

s
be

tt
er

)

Random deterministic

planning agent from IPC

†Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning Action Models With Minimal Observability. Artificial Intelligence 275: 104–137.

78

AAM learns Accurate Deterministic Models

• Theorem (termination) : The algorithm terminates after a finite

number of iterations.

• Theorem (soundness): The resulting (set of) model(s) is(are)

functionally equivalent to the ground truth model.

Autonomous Capability Assessment of
Sequential Decision-Making Systems in

Stochastic Settings

Pulkit Verma, Rushang Karia, and Siddharth Srivastava

NeurIPS 2023

Stochastic and Stationary Setting

80

• User’s vocabulary matches
simulator’s vocabulary.

• Black-Box AI provides a list of
capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

Stochastic

Output

• PPDDL-like description of each capability.

Input

• Predicates (User vocabulary)

• With their evaluation functions

• List of capabilities.

81

• User’s vocabulary matches
simulator’s vocabulary.

• Black-Box AI provides a list of
capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

pick-item (table1 soda-can)

pick-item (table1 soda-can)

(holding soda-can) move-to (dish-washer)

move-to (dish-washer)

(empty-arm)
(robot-at table1)

(at table1 soda-can)

(robot-at dish-washer)

New Queries

Initial State

Policy: Generated Autonomously by

Reduction to Non-Deterministic

Planning

What happens if you start in the given
initial state and follow this partial

policy?

Changes for Stochastic Settings

Stochastic

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (oneof
 (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1)))

Changes for Stochastic Settings

Step 1: Learn a Non-Deterministic Model

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (probabilistic
 0.xx (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 0.yy (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1)))

Step 2: Convert to Probabilistic Model

Apply Maximum

Likelihood Estimation

on the observed data

(query responses)

82

Elevator Control Agent
1.0

0.8

0.6

0.4

0.2

0 50 100 150 200 250

Learning Time (minutes)

Va
ri

a
ti

o
na

l D
is

ta
nc

e

AAM GLIB-G GLIB-L

AAM learns accurate probabilistic models faster

AAM takes very

less time

AAM learns a much

better model than

GLIB

83

• Baseline: directed exploration approach (GLIB)

• Increase the time taken to learn the model.

Random probabilistic

planning agent from IPC

†Chitnis, R.; Silver, T.; Tenenbaum, J.; Kaelbling, L. P.; Lozano-Perez, T. GLIB: Efficient Exploration for Relational MBRL via Goal-Literal Babbling. AAAI 2021.

Va
ri

a
ti

o
na

l D
is

ta
nc

e

AAM

AAM learns accurate models for Continuous Domains

84

• Use Task and Motion Planning (TMP) to convert
actions into motion plans.

• Increase the time taken to learn the model.

Probabilistic planning agent using

OpenRave and TMP

…

robot-base
soda-can1

table4

…

1.0 -3.2 4.7 0.9 1.3 3.1
6.0 -2.8 3.5 8.3 6.7 9.2

-2.1 4.1 1.9 3.7 9.5 4.8

x y z 𝜃 𝜑 𝜓
(empty-arm)

(robot-at table1)
(at table1 soda-can)

Learning Time (minutes)

85

AAM learns Accurate Probabilistic Models

• Theorem (soundness and completeness):

The intermediate non-deterministic model (after step 1) is sound and complete w.r.t. the

ground truth model.

• Theorem (probabilistic correctness):
The resulting probabilistic model is correct w.r.t. the ground truth model.

Coffee Break

86

	Slide 1
	Slide 2: Schedule
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: User-Aligned AI Assessment is a Different Problem: How would a user know what their current AI system can do safely?
	Slide 9
	Slide 10: The AI Assessment Problem
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

