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Abstract

Scalable methods for verifying the safe behavior of learning-
enabled autonomous systems, especially those operating in
safety-critical settings, have become a crucial concern. The
inherent black-box nature of these systems, rooted in the
complexity of the learned models, prevents us from using
classical model-based verification techniques. To this end,
simulation-based analysis has become commonplace for as-
sessing the correctness of AI-based autonomous systems. The
challenge is then to make the simulation-based analysis tech-
niques more scalable. A critical piece of this problem is to
leverage the compositional nature of simulations to reduce
computation. In this paper, we focus on this challenge, high-
lighting the importance of compositional simulation-based
analysis and discussing future work in this domain.

Introduction
Artificial intelligence (AI) and machine learning (ML) are
increasingly being integrated into autonomous systems, han-
dling tasks spanning perception, prediction, planning, and
control. Yet, the correctness, and especially the safety, of
systems incorporating AI/ML-based components is still a
major concern. Formal methods can play a crucial role
in guaranteeing the correctness of these systems (Seshia,
Sadigh, and Sastry 2022). Due to the high complexity of
AI/ML components, contemporary verification and testing
methods often treat them as black-box, departing from clas-
sic model-based approaches. To this end, simulation-based
formal analysis has become a common practice for reason-
ing about the behaviors of autonomous systems. In this set-
ting, the correctness of the system is evaluated against a for-
mal specification defining the desired behavior of the system
by examining its behaviors in multiple simulation runs.
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High-confidence analysis results necessitate the execu-
tion of a large number of long-running simulations. Due to
the complex environment models and the high dimensional-
ity of feature spaces, simulation-based analysis continues to
be computationally expensive. Nonetheless, in numerous in-
stances, especially in autonomous driving, simulation mod-
els, also known as scenarios, compose several smaller sce-
narios. To improve the efficiency and therefore the scalabil-
ity of simulation-based analysis, it is important to leverage
the inherent composition of scenarios by converting a mono-
lithic analysis process into several smaller ones and combin-
ing the results of these smaller scenarios.

In our previous work (Yalcinkaya et al. 2023), we in-
troduced a compositional approach to the simulation-based
analysis of autonomous systems. It is a general frame-
work that can be applied to different tasks, e.g., falsifica-
tion (Dreossi, Donzé, and Seshia 2019) and statistical verifi-
cation (Legay, Delahaye, and Bensalem 2010). We define a
formal structure over the scenarios used in simulations. This
formalization allows for the definition of a scenario using a
hierarchical composition of other scenarios. Using this hier-
archical formal definition, the analysis method then decom-
poses a given scenario into several smaller sub-scenarios
and performs the analysis at the sub-scenario level. The out-
comes from each sub-analysis problem are then combined
to derive a solution for the larger problem. The method
assumes Markovian (memoryless) specifications. This as-
sumption is motivated by the fact that most specifications en-
countered in AI-based autonomous systems are Markovian,
such as the absence of collisions, adherence to traffic lights,
etc. In our section on future work, we briefly discuss how to
extend this approach to non-Markovian specifications.

In this paper, we present a summary of our previous
work (Yalcinkaya et al. 2023). We first present a motivating
example and briefly explain how the method works. We then
present experiment results highlighting the efficacy of our
compositional approach compared to its monolithic coun-
terpart. We finally conclude by emphasizing the scalability
of the compositional analysis and discussing future work.
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Figure 1: Snapshots of the sub-scenarios of the motivating example

Compositional Simulation-Based Analysis
Motivating Example. Consider an autonomous driving
task with two cars, namely Leader and Follower, both
equipped with AI-based components to drive and achieve
their goals. The former navigates through the city and, upon
reaching an intersection, randomly chooses to turn left, right,
or to proceed straight with uniform probability. The latter,
on the other hand, follows Leader while maintaining a
safe distance. We want to analyze to see whether this sys-
tem can keep a safe distance between the cars under various
environment conditions. To this end, on top of the simula-
tion environment, we provide a scenario defining the en-
vironment conditions we want to use for the simulations.
The scenario defines an initial straight road segment with
a curve at the end leading to an intersection. After the inter-
section, there are three road segments for turning left, right,
or proceeding straight. Each of these road segments includes
an adversarial object to trick the computer vision compo-
nents of the cars into violating the system-level specifica-
tion, which defines the safe distance between the cars, ex-
pressed in Metric Temporal Logic (MTL) (Koymans 1990)
as □ (distance ≥ 5 ∧ distance ≤ 15). The scenario
defines distributions for the initial positions of the cars and
distributions for the location and the color of the adversarial
objects. We use SCENIC (Fremont et al. 2023), a probabilis-
tic scenario-description language, to define this scenario.

Method. The given scenario is composed of sub-
scenarios. The first one (subScenario1 given in Fig-
ure 1(a)) is the initial straight road segment leading to
the intersection. The next scenario is at the intersection
and is composed sequentially with the previous one. The
intersection scenario consists of three sub-scenarios indi-
cating different possibilities that might happen, i.e., turn-
ing left, right, or proceeding straight (subScenario2L,
subScenario2R, subScenario2S given in Fig-
ures 1(b) to 1(d), respectively). Our method automati-
cally decomposes the given SCENIC scenario into its sub-
scenarios to analyze each one separately. For a scenario to
be decomposed in this manner, we define an abstract syntax
for writing scenarios formally in (Yalcinkaya et al. 2023),
and SCENIC programs inherently follow this syntax.

The procedure analyzes all sub-scenarios separately in
the order indicated by the hierarchical structure of the
sub-scenarios given by the monolithic scenario and com-
bines the analysis results at the end. Specifically, in this

example, we start with the analysis of subScenario1,
and we save the final state distribution at the end of
this scenario. The computed output distribution is then
used as the initial state distributions of the following
sub-scenarios, i.e., subScenario2L, subScenario2R,
subScenario2S. Since there are no other scenarios fol-
lowing these ones, once the analyses of these sub-scenarios
are completed, we terminate. The crucial insight behind this
method is that the monolithic analysis of this system redun-
dantly executes subScenario1 many times even though
that stage of the scenario does not yield any interesting be-
havior. On the other hand, the compositional approach ana-
lyzes subScenario1 only once and uses the obtained out-
put state distribution as the input distribution of other sub-
scenarios, and therefore it avoids redundant computation.

Experiment Results
We instantiate our high-level algorithm for falsification and
statistical verification, and we compare our compositional
method with the monolithic approach. To demonstrate the
performance gain obtained by our method we use the num-
ber of simulator steps taken for the analysis before termi-
nation as this is a platform-agnostic metric for evaluation.
In falsification, our compositional approach takes ∼2× less
simulator steps before finding a counterexample. In statis-
tical verification, our method needs ∼4× fewer steps com-
pared to the monolithic baseline. We also compare the speci-
fication satisfaction probabilities computed at the end of sta-
tistical verification. The experiment results show that our
method computes this probability with only a ∼2% error
with respect to the estimate of the monolithic baseline.

Conclusion & Future Work
We presented our framework for the compositional
simulation-based analysis of AI systems, which decomposes
a given simulation-based analysis task into several smaller
ones to reduce computation. We believe compositional ap-
proaches for the analysis of AI systems are crucial for more
scalable analyses in pursuit of safe AI systems. The next
step is to extend the given method to the general case of
non-Markovian specifications. This extension requires de-
veloping efficient ways to store the state of the specifica-
tion and other environment parameters along with the output
state distributions collected at the end of each sub-scenario.
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