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Abstract
Artificial intelligence (AI), specifically machine learning, has
found its way into everyday life making it more important
than ever to find ways to assess the used machine learn-
ing models. Due to their currently observed superior perfor-
mance, black-box models are used in many cases. In the as-
sessment of these, interpretation of the models or their de-
cisions is one key element. Hence, in this extended abstract
we eloborate on the research field of explainable AI (XAI)
identifying four open problems that are specifically relevant
for AI systems with user interaction. We formally describe
and motivate the problems and propose to work on these to
contribute to the overriding goal of trustworthy AI.

1 Explainable AI: A brief introduction
With the increased performance of machine learning (ML)
models, their complexity has also increased. Many of the
currently successful ML models are “black box models”,
hence, are not interpretable. The lack of explainability or
interpretability may prevent end users from trusting the
models, preventing their use in industrial or medical set-
tings (Langone, Cuzzocrea, and Skantzos 2020; Dwivedi
et al. 2023; Raab, Theissler, and Spiliopoulou 2022). As
a consequence, the research field of explainable AI (XAI)
has emerged in recent years. (Biran and Cotton 2017) state
“systems are interpretable if their operations can be under-
stood by a human, either through introspection or through
a produced explanation.” Hence, a distinction can be made
between ML models providing interpretability, i.e. intrin-
sically interpretable models, and those requiring explana-
tions, i.e. post-hoc explanations, to become interpretable.

According to survey and position papers (Adadi and
Berrada 2018; Guidotti et al. 2018; Theissler et al. 2022),
post-hoc explanations can be further categorized into global
methods explaining the entire ML model and local methods
explaining model predictions for individual instances. More-
over, XAI methods (explainers) can be model-agnostic or
model-specific: Model-agnostic methods can be applied to
any ML model, given that inputs and outputs match the XAI
method (Barredo Arrieta et al. 2020). In contrast, model-
specific methods access the ML models’ internals and are
thereby restricted to specific types or classes of ML models.
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2 Our notation
We denote an ML model as Mj and its prediction for a single
data instance x as Mj(x). Based on that we wish to establish
the following notation: We denote a post-hoc explanation as
ϵi. More specifically we denote a local explanation, i.e. for a
single data instance, as ϵi(Mj(x)) and a global explanation
ϵi(Mj) (see Table 1).

Furthermore we introduce u(ϵ(...)) which refers to the –
hard to quantify – function of users understanding an expla-
nation, i.e. u(ϵi(Mj(x))) refers to understanding a local and
u(ϵi(Mj)) a global explanation.

3 Four open problems
Four open problems in the field of XAI that are specifically
relevant for AI systems with user interaction are identified.

3.1 The non-inherent semantics problem
For a data instance x, local explanations uncover which
parts, e.g. pixels in images or time points in time series, in-
fluenced a prediction Mj(x). However, we argue that these
types of explanations – for example attribution methods –
show where the relevant parts in the input data are, but not
why the prediction was made. Following our notation, we
can state that

ϵi(...) ̸= u(ϵi(...)) (1)

There are applications for which the localization of influ-
ential parts in the data can act as an explanation, e.g. for
standard images or in some cases for text, justifying the use
of these well-developed explainers. Yet, there is a wide range
of applications where the pure localization is not a suffi-
cient explanation, e.g. for the majority of time series data
(Theissler et al. 2022) and for non-self-explanatory images.
We term this as the non-inherent semantics problem.

3.2 The variance problem
For a set of well-trained ML models Mi we generally expect
the models to yield comparable performance on a represen-
tative data set X . Thus, it seems reasonable to demand the
same for explanations ϵi explaining these models. However,
we observe that we get rather different explanations ϵi from
different explainers. A recent experimental study (Bodria



model-agnostic model-specific
local ϵi(Mj(x))) ∀j where i = const ϵi(Mj(x))) ∀i, j where i = j

global ϵi(Mj)) ∀j where i = const ϵi(Mj)) ∀i, j where i = j

Table 1: Proposed notation allowing a compact description for the common categorization of post-hoc explanations.

et al. 2023) showed that XAI methods may yield highly vari-
ant explanations for the same underlying ML model, sug-
gesting different parts of the input data to be the potential
cause for a given prediction. So, we can state that for cur-
rently used explainers

ϵi(. . . )
!
≈ ϵj(. . . ) ∀i, j (2)

We refer to this as the variance problem.

3.3 The dynamic target user problem
The need to tailor explanations ϵi with the target users in
mind (e.g. ML engineers, domain experts, or laypersons) is
commonly agreed on.

However, from our point of view, there is one aspect to
be added: The capabilities of users to understand the ex-
planations, i.e. u(ϵ(...)), are to be seen dynamic: (a) users
have learning curves and (b) users understand in hierarchi-
cal ways, i.e. there is need for adaptive explanations which
– for the same user – should also adapt w.r.t. experience (or
time) t. Hence, we could state

u(ϵi(...), t) (3)

We refer to this as the dynamic target user problem.

3.4 The evaluation problem
We like to point out that the generation of an explanation ϵi
is not sufficient if ϵi is not understood by the targer users.
While this fact is well-known, we like to postulate that this
should be addressed when using or proposing XAI methods.
Based on our notation, one may demand to evaluate

u(ϵi(Mj(x))) or u(ϵi(Mj)) (4)

In (Doshi-Velez and Kim 2017), evaluation is subdi-
vided into threee levels: functional grounded (e.g. quantita-
tive metrics) and two levels of evaluations involving users
(laypersons and experts). However, evaluations involving
users are often avoided in papers, e.g. out of approx. 60 XAI
methods reviewed in (Theissler et al. 2022) four were eval-
uated with a user study. We observe that the plausibility of
explanations is often shown with a small set of examples
(including work by ourselves).

Research on quantitative metrics has made progress as
shown in (Hedström et al. 2023; Schlegel and Keim 2023),
but u(ϵi(...)) is hard to quantify. We believe that for the
time being users should be involved in the evaluation along-
side the use of quantitative metrics. If substantial progress
is made in studying the human interpretability of XAI ex-
planations quantitatively, they might be able to replace user
tests in the future for recurring cases. We refer to this as the
evaluation problem.
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