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Introduction

Recent advances in Artificial Intelligence (AI) have pro-
pelled its integration into autonomous systems (Winfield
et al. 2019). However, applying Al to safety-critical sys-
tems poses a significant challenge, demanding rigorous ver-
ification of decision-making properties for safety assurance.
This challenge has given rise to an active research area
known as data-driven verification (or control synthesis), fo-
cusing on verifying properties of Al-enabled systems against
logical specifications using data (Fan et al. 2017; Jackson
et al. 2020; Badings et al. 2023; Reed, Laurenti, and Lahi-
janian 2023; Martin, Schon, and Allgower 2023). Current
approaches include statistical- and Bayesian-based methods,
which respectively provide confidence-based and hard prob-
abilistic results (Fan et al. 2017; Jackson et al. 2020). While
Bayesian methods provide harder guarantees, their effective-
ness relies heavily on data quality. That is, there is a trade-
off between amount of data and computational cost. Hence,
in situations with limited data, a critical question emerges:
where should one strategically collect data to optimize the
verification outcome, a concept known as data-refinement?
In this talk, we present our progress in addressing the
above question, with a focus on efficient data-refinement
for Interval Markov Decision Process (IMDP) abstraction
and verification. Our previous work laid the foundation
for constructing IMDP abstraction models from data us-
ing Gaussian process (GP) regression (Jackson et al. 2020;
Skovbekk et al. 2023), and investigated online data collec-
tion (Jackson et al. 2021). Similarly, work (Jiang, Zhao, and
Coogan 2022) performs safe exploration on IMDPs via sub-
optimal random sampling. Given the trade-off between size
of dataset and computational cost, an important aspect of
data-refinement must be data-efficiency, especially in online
settings. Our ongoing work aims to advance data-refinement
strategies for IMDPs that can efficiently provide consistent
improvements in the abstraction and verification results.

Data-driven IMDP Abstraction & Verification

IMDPs generalize MDPs with uncertain transition probabil-
ities between each pair of states, which lay in independent
intervals (Givan, Leach, and Dean 2000). They are power-
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ful models for abstracting systems where exact transition
probabilities cannot be computed. IMDPs are particularly
effective for abstracting nonlinear systems, including those
learned via deep kernels (Reed, Laurenti, and Lahijanian
2023) and GP regression (Skovbekk et al. 2023; Jiang, Zhao,
and Coogan 2022). The procedure first discretizes the state
space and then computes lower- and upper-bounds for the
transition probabilities between the discretized states to ac-
count for the multiple sources of uncertainty.

Consider stochastic system ™ = f(z,a) + w, where
xz € X C R", ais a general decision or control input, w is
a sub-Gaussian random variable, and f is unknown. Instead
an estimate f is available (via, e.g., GP regression or deep
kernels) with learning error ey,. When performing IMDP ab-
straction, there are three sources of uncertainty: 1) the dis-
cretization of the set X, 2) the disturbance w, and 3) the
learning error ey,. Each of these can be accounted for in the
transition probability intervals as described in our previous
work (Jackson et al. 2020; Skovbekk et al. 2023).

The IMDP abstraction can then be verified against
a temporal logic specification ¢, including probabilistic
computational-tree logic (Lahijanian, Andersson, and Belta
2015) and linear temporal logic over finite traces (Wells et al.
2020) specifications. The verification result is a probabil-
ity interval for each state that contains the true probabil-
ity of satisfying ¢. As the abstraction is sound (uncertainty
is correctly handled), the satisfaction interval also contains
the probability that the original stochastic system satisfies ¢
(Jackson et al. 2020).

Given a probability threshold for the satisfaction of the
specification, the states of the IMDP (and consequently the
original system) can be classified as satisfying, violating,
or possibly satisfying. The latter is undesirable in verifica-
tion, and the goal is to reduce these states. The root cause
of existence of these states is typically high error values
in the abstraction due to, e.g., the space discretization be-
ing too coarse or the learning uncertainty being too high.
Discretization-refinement improves the abstraction (reduces
its error) by making the discretized states finer, reducing the
size of transition probability intervals. While this can have
a positive effect on the verification results, discretization-
refinement is computationally expensive and can lead to the
state-explosion problem (Valmari 1996). Alternatively, data-
refinement directly reduces the learning error ey by col-



lecting additional data to improve the abstraction without
changing the space discretization. Our first motivating ques-
tion is when is it more beneficial to perform data-refinement
over state-refinement? Currently, heuristics are used to guide
data-collection on an IMDP abstraction at each step after
deployment of the system, such as choosing the action that
provides the most progression towards satisfying ¢ (Jack-
son et al. 2021). However, those heuristics do not provide
guarantees on the quality of the final abstraction or verifica-
tion result. Our second motivating question is which data-
refinement strategies lead to verification improvement?

Space vs. Data Refinement

To determine the impact of the learning error in the ver-

ification result, we run the abstraction procedure with f
alone and neglect the learning error ey, essentially codify-
ing f as the true model (similar to the concept of certainty-
equivalence in stochastic control (Whittle 1981)). The un-
certainty embedded in this pseudo-abstraction is due to the
space discretization and stochastic disturbance alone. The
pseudo-abstraction is a potential “best-case” for the current
discretization if the learning error were driven to zero.

Example. To illustrate, consider a 2D linear system
xt = Ax + w where A is an unknown, stable matrix,
and w ~ N(0,0.017). Initially, 50 datapoints are sam-
pled from the system to build an IMDP abstraction. Then,
the pseudo-abstraction is constructed by using the learned
model as the true model and treating ey, as zero everywhere.
Another abstraction is made using 600 randomly-sampled
points (large data) to approximate the zero-error verifica-
tion results. All are verified against a specification that the
system eventually reaches the region with label “G” while
avoiding “O” (shown in Figure 1) with a probability greater
than 90%. The results for pseudo- and large-data abstrac-
tions in Figures 1(b) and 1(c) are similar, which suggests
1) the pseudo-abstraction is a good zero-error approxima-
tion, and 2) some states need discretization-refinement to
be definitively classified, and others can be improved using
data-refinement. Establishing formal relationships using the
pseudo-abstraction is ongoing work.

Data Refinement Strategies

Efficiently collecting data to realize the results of the
pseudo-abstraction is an open question. As uniform sam-
pling to drive ey, to zero everywhere is infeasible, we study
several data-refinement strategies for efficient collection.
Currently, we assume that we can collect data from any state.
In the future, we will generalize to the online setting where
system trajectories are considered. We present preliminary
results for the following data-collection strategies:

* Random - sample from a random target state;
* Max Sigma - sample the state with the max o;

e Trans. Width & o - sort states according to the prod-
uct of transition interval improvements using the pseudo-
abstraction and max o;

e Ver. Int. Width & o - sample the state with the largest
product of satisfaction interval width and max o.

(a) Original (b) Pseudo (c) Large data
Figure 1: Verification results for the original (small-dataset),
pseudo (error-free), and large-dataset abstractions. Il are

satisfying, [l are violating, and [] are possibly satisfying.
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Figure 2: Comparison of metrics from employing different
data-collection strategies.

Batches of 10 datapoints were sampled using each strat-
egy, up to 600 additional datapoints. Figure 2 shows the re-
sults of three metrics: average transition interval width, av-
erage max o in each state, and average satisfaction interval
width. The strategy using the product of max verification
width with uncertainty was the most effective in reducing the
satisfaction interval widths. While the pseudo-abstraction
estimates the best-possible results, using the transition in-
terval improvements to guide data-refinement was not effec-
tive. These results encourage our further development of the
pseudo-abstraction and efficient data-refinement strategies.

Conclusion

While IMDP abstractions are effective for verifying stochas-
tic systems from data, when and where additional data is the
most beneficial remains a challenge. Our initial work uses
the error-free model called pseudo-abstraction to approxi-
mate the best-possible results and compares data-collection
strategies that progress towards this outcome. Our prelim-
inary results show that this method is effective. Ongoing
work includes the formalization of the pseudo-abstraction
and strategies, and adapting them for the online setting.
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