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Abstract

A lesser-investigated challenge to effective offline reinforce-
ment learning is the assumed access to a scalar reward func-
tion, which is not only hard to engineer, but often insufficient
for capturing diverse user preferences as a single metric. To
mitigate this we combine ideas from multiobjective optimiza-
tion to develop an offline RL approach that allows an agent to
learn behavior via multiple, interpretable user-specified met-
rics, rather than a hand-engineered scalar reward. Subdomi-
nance is a margin-based, hinge loss that measures the qual-
ity of one behavior trajectory relative to another based on
an arbitrary number of cost metrics; minimizing subdomi-
nance explicitly encourages better-than-demonstrated behav-
ior on the specified cost metrics. Recently-proposed autore-
gressive decision transformer models perform offline RL
via history-conditioned, next-token prediction; while pow-
erful, these methods self-report performance degradation
with increasing suboptimality in the training data. By em-
ploying negative subdominance loss as a surrogate for the
true reward signal we show that our method, Minimally
Subdominant Decision Transformer (MinSubDT), can con-
sistently learn better-than-demonstrated behavior even when
the demonstrated data is suboptimal. We also demonstrate
how subdominance-minimizing cost feature representations
can be learned from offline demonstration data. Our exper-
iments are performed on Mujoco robotics tasks with offline
RL benchmark datasets.

Introduction
In this paper, we combine powerful policy architectures
(from offline RL literature) and imitation loss functions
(from online, better-than-demonstrator IRL literature) to de-
velop an approach that aims to explicitly learn learn better-
than-demonstrator behavior policies offline from suboptimal
demonstration data using a general loss function that inte-
grates any user-specified cost metrics.

Preliminaries and Related Work
Offline Reinforcement Learning
We define a Markov decision process (MDP), M =
(S,A, P,R) characterized by states s ∈ S , actions a ∈ A,
transition dynamics P (s′|s, a), and reward function r =
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R(s, a). A policy π : S → A maps a state to a specific
action. A trajectory ξ = (s0, a0, r0, . . . , sT , aT , rT ) is a se-
quence of states st, the actions at, and the corresponding
reward received rt, for t = 0, . . . , T . The return of a tra-
jectory at timestep t is the sum of future rewards starting
from t, and is computed as Rt =

∑T
t′=t. In reinforcement

learning an optimal policy is sought that maximizes the ex-
pected return from t = 1, π∗ = argmaxπ Eπ

[∑T
t=1 rt

]
.

The core formulation of offline RL is identical to traditional
online reinforcement learning, with the key difference being
the training data is collected via some (unknown) behavior
policy πβ , and the agent’s policy π is not allowed to interact
with the environment.

Transformers and Offline Sequence Modeling
Decision Transformer (DT) (Chen et al. 2021) uses a
causally-masked transformer (Vaswani et al. 2017; Rad-
ford et al. 2018) as policy architecture to predict actions
that maximize returns conditioned on the observation his-
tory and a target return. Their architecture consists of stacks
of self-attention layers, which enable learning associations
between each previous “token” (or observation) in the se-
quence. The trajectory representation developed therein is
key to enabling the use of transformers; a trajectory is rep-
resented as a sequence of states, actions, and returns (not
rewards) as ξ = (R1, s1, a1, R2, s2, a2, . . . , RT , sT , aT ),
where Rt =

∑T
t′=t rt is the future return.We note that meth-

ods discussed thus far assume access to the true reward func-
tion of the environment.

Subdominance Minimization
Given a set of trajectory-level cost metrics f : Ξ → RK≥0, the
margin-based, absolute subdominance (Ziebart et al. 2022)
of trajectory ξ relative to another trajectory ξ̃ is defined for
each feature fk as:

subdomk
αk,βk

(ξ, ξ̃) ≜
[
αk(fk(ξ)− fk(ξ̃)) + βk

]
+

(1)

where [x]+ ≜ max(x, 0) denotes the hinge function, βk
is the required margin by which ξ is required to domi-
nate ξ̃ in feature k, and αk is the relative sensitivity of
feature k. The individual feature subdominance measures



MinSubDT (Ours) Offline RL
Dataset Environment Engg. Cost Metrics Learned Cost Metrics DT CQL BEAR BRAC-v AWR BC

Medium-Expert HalfCheetah 89.5 86.8 87 62.4 53.4 41.9 52.7 59.9
Medium-Expert Hopper 110.7 110.8 107.6 111.0 96.3 0.8 27.1 79.6
Medium-Expert Walker 108.1 108.5 108.1 98.7 40.1 81.6 53.8 36.6

Medium HalfCheetah 41.3 40.9 42.6 44.4 41.7 46.3 37.4 43.1
Medium Hopper 56.8 55.8 67.6 58.0 52.1 31.1 35.9 63.9
Medium Walker 70.4 74.9 74.0 79.2 59.1 81.1 17.4 77.3

Medium-Replay HalfCheetah 32.3 31.8 36.6 46.2 38.6 47.7 40.3 4.3
Medium-Replay Hopper 40.5 37.1 82.7 48.6 33.7 0.6 28.4 27.6
Medium-Replay Walker 37.1 36.0 66.6 26.7 19.2 0.9 15.5 36.9

Average 65.2 64.7 74.7 63.9 48.2 36.9 34.3 46.4

Average (w/o Medium-Replay) 79.5 79.6 81.1 75.6 57.1 47.1 37.4 60.1

Table 1: Expert-normalized scores for the D4RL datasets. We report the mean and variance for three seeds.

for all k = 1, . . . ,K from equation 1 are then sum-
aggregated into total subdominance as subdomΣ

α,β(ξ, ξ̃) ≜∑
k subdomk

αk,βk
(ξ, ξ̃). 1

MinSubDT (Our Formulation)
We begin by defining the minimum subdominance of a
trajectory ξ with respect to a set of trajectories Ξ̃ =
{ξ̃1, ξ̃2, . . . , ξ̃N} as

subdom[Σ]
α∗,β∗(ξ, Ξ̃)= min

α,β≥0

1

|Ξ̃|

∑
ξ̃∈Ξ̃

subdom[Σ]
α,β(ξ, ξ̃). (2)

The minimum subdominance (Equation 2) is a (cost) es-
timate of the performance of trajectory ξ relative to the
demonstrated trajectory set Ξ̃. We can then use the nega-
tive subdominance to compute a surrogate reward signal r′t
at each timestep t in trajectory ξ as: r′t = 0 if t < T , and
r′t = −subdom[Σ]

α∗,β∗(ξ, Ξ̃) if t = T . Computing the sur-
rogate reward at the final timestep T avoids having to de-
termine the correct credit assignment for each state t ̸= T
in the trajectory. Finally, a trajectory’s surrogate returns R′

t

starting from t can be computed as R′
t =

∑T
t′=t r

′
t′ . Then,

leveraging the transformer-compatible trajectory represen-
tation of Chen et al. (2021), we represent each trajectory
ξ̃′ ∈ Ξ̃′ as ξ̃′ = (R′

1, s1, a1, R
′
2, s2, a2, . . . , R

′
T , sT , aT )

where the surrogate return R′
t is computed as defined previ-

ously. With this surrogate trajectory representation available,
the autoregressive architecture can be applied exactly as in
Decision Transformer to predict actions that maximize the
future negative subdominance (same as minimizing the sub-
dominance), rather than maximizing the true returns, thereby
decoupling our approach from relying on the true, underly-
ing reward/cost function.

Learning Cost Representation A set of trajectory cost
metrics f : Ξ → RK≥0 is required to compute subdominance
(Ziebart et al. 2022). In essence, these metrics are proper-
ties of an environment that, when minimized over a trajec-

1Intuitively, minimizing subdominance with respect to a set of
demonstrated trajectories explicitly encourages an agent to outper-
form those trajectories i.e., incur lower cost features, by a margin
βk in each cost feature dimension fk.

tory, allow an agent to successfully complete a task; hand-
engineering these can still be a significant burden in many
domains. To mitigate this, we propose to learn a set of cost
metrics fψ from pairwise preferences over demonstrations.
Given pairwise preferences over demonstrated trajectories
D̃ = {ξ̃i ≺ ξ̃j |ξ̃i, ξ̃j ∈ Ξ̃}, a preference-preserving (latent)
representation fψ : S → RK′

≥0 (of dimensionality K ′) can be
learned by minimizing subdominance via

argmin
fψ∈F

E(ξ̃i≺ξ̃j)∼D̃

[
− log

e−cj,i

e−ci,j + e−cj,i

]
, (3)

where cost ci,j = subdomα,β(fψ(ξ̃i), fψ(ξ̃j)), and x ≺ y in-
dicates a preference for y over x. The cost representation fψ
thus learned can be employed directly to compute subdom-
inance, and subsequently surrogate rewards. This formula-
tion is most similar to Trajectory-Ranked Reward Extrapo-
lation (T-REX) (Brown et al. 2019) but differs in one key
aspect: our formulation permits learning latent representa-
tions of any dimensionality, rather than just a scalar cost sig-
nal; this allows us to recover multiple, competing objectives
from preferences, rather than arbitrarily extrapolating over a
scalar reward signal.

Experiments
For our experiments, we choose three continuous control,
Mujoco robotics tasks: HalfCheetah, Hopper, and Walker.
The engineered cost metrics comprise the x-velocity (for
HalfCheetah), and x and z velocities (for Hopper and
Walker) monotonically transformed into cost metrics; do-
ing so allows the agent to maximize these velocities and
thereby complete the respective tasks. For reliable compar-
ison, we follow the same training methodology as for De-
cision Transformer (Chen et al. 2021), use the same D4RL
benchmark data (Fu et al. 2020) and compare against the
baselines therein.

Results The results in Table 1 are normalized scores (%
relative to unnormalized score of an online SAC agent
trained using the true reward function). MinSubDT outper-
forms DT and other baselines on 4 out of the 9 tasks. Over-
all, MinSubDT (using engineered and learned cost metrics)
without access to the exact underlying reward has an average
performance within 0.5 percentage points of DT.
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