
Self-monitoring Adaptive AI Agents Operating in Open Worlds

Wiktor Piotrowski1, Roni Stern2, Sachin Grover1, Shiwali Mohan1

1 PARC, a part of SRI International, CA, USA
2 Ben-Gurion University of the Negev, Beer-Sheva, Israel

{wiktor.piotrowski,sachin.grover,shiwali.mohan}@sri.com, sternron@bgu.ac.il

Artificial Intelligence (AI) and Machine Learning (ML)
research on sequential decision-making usually relies on the
assumption of a static world. That is, all relevant character-
istics of the environment are known ahead of deployment,
during agent design time and remain unchanged during run-
time. However, the real world is open, evolving, and can
change without any prior indication. Online adaptation and
learning is a desirable property of any real-world AI system.
Prominent model-free learning techniques such as reinforce-
ment learning acquire knowledge in non-interpretable repre-
sentations (as network weights, biases etc.), posing signifi-
cant challenges in assessment, validation, and regulation of
what has been learned. Our research explores open-world
adaptation in model-based reasoning systems which encode
knowledge explicitly. Explicit representation of acquired
knowledge enables inspection of what has been learned, sup-
porting assessment, validation, and regulation of the sys-
tem’s evolving behavior in an open world.

In this paper, we study model-based reasoning in intelli-
gent agents that can robustly operate in environments whose
characteristics change while the agent is operational. We
term such a shift in environmental characteristics as a nov-
elty (Boult et al. 2021). Novelties pose a significant chal-
lenge to the deployment of intelligent agents. For model-
based agents, the knowledge about the environment they rely
on may be incomplete, incorrect, or outdated due to a nov-
elty. For model-free learning agents, the policy they learned
may be ineffective due to a novelty, and they may need nu-
merous interactions with the environment to learn a new pol-
icy. Consequently, both types of agents may fail catastroph-
ically during deployment. An effective open world agent
should autonomously detect when a novelty has been in-
troduced in the environment, characterize it, as it pertains
to what it knows about the environment, and then accom-
modate it by changing its decision-making strategies. Ide-
ally, it transfers relevant operational knowledge from before
novelty is introduced to after, i.e., it learns without fully re-
training and in orders of magnitude less time. This challenge
of designing such an open-world agent, where novelties can
appear at an unspecified time, has been gaining significant
interest in the literature (Senator 2019; Kejriwal et al. 2022).

To meet this challenge, we present HYDRA a domain-
independent architecture for implementing a novelty-aware
agent in complex, mixed discrete and continuous domains

Figure 1: HYDRA: a self-monitoring adaptive architecture
(Mohan et al. 2023; Piotrowski et al. 2023a,b; Stern et al.
2022; Piotrowski et al. 2021). The HYDRA architecture in-
cludes a base agent and novelty meta-reasoning components
designed to detect novelties and adapt the base agent’s be-
havior to them. A notional architecture is shown in Figure
1. The base agent (Figure 1 - left) implements a perceive-
decide-act cycle in the environment. The novelty meta-
reasoning components in HYDRA (Figure 1 - right) detect
the presence of novelty, characterize, and accommodates it
by updating its knowledge bases.

Base Agent The HYDRA base agent follows stan-
dard agent architectures such as Belief-Desire-Intention
(BDI) (Georgeff et al. 1999), Soar (Laird 2019), and
ICARUS (Choi and Langley 2018). Its main components
are: (1) state inference, which maintains and updates be-
liefs about the current state of the environment and aug-
ments them with background assumptions; (2) task selec-
tion, which selects the intermediate tasks the agent intends
to perform; and (3) action reasoning and execution, which
uses a planner to determine the sequence of actions to exe-
cute in order to perform the selected task. Each component
reasons about the current beliefs using a variety of long-
term knowledge encoded in the agent (shown in cylinders).
HYDRA can use any type of planner to determine the se-
quence of actions to execute in order to perform the active
task. To support rich environments with complex dynamics
and discrete and numeric state variables, we implemented
HYDRA with a planner that accepts domains specified in
PDDL+ (Fox and Long 2006). This PDDL+ model defines
the composition of the target system and its evolution via
various happenings that include actions the agent may per-
form, exogenous events that may be triggered, and durative



Figure 2: Adaptation performance of static and adaptive version of planning and DQN agents in CartPole++. Red line denotes
the introduction of novelty which increases the mass of the cart 10-fold.

processes that may be active. To reason and plan in the en-
vironment, the HYDRA base agent first generates a PDDL+
planning problem representing the goal it aims to achieve
and the current state. Then, HYDRA solves the resulting
planning task, yielding a valid temporal plan. The plan is
then sequentially executed in the environment, and the exe-
cution trace is collected for future analysis.

Novelty Meta Reasoner HYDRA introduces a novel a
meta-reasoning process to detect, characterize, and accom-
modate novelties. The process maintains explicit expecta-
tions about the agent’s observations, transitions in the state
space due to agent actions and extraneous dynamics, as well
as its performance. Their violation indicates that a novelty
has been introduced in the environment which must be fur-
ther inspected, characterized, and accommodated for. Intro-
ducing such a process frames learning as a volitional activ-
ity undertaken by the agent to which resources are devoted
only when an opportunity presents itself (as indicated by vi-
olation of expectations). This is in stark contrast with the
classical machine learning setup in which agent learning is
controlled externally. Specifically, HYDRA (Figure 1) im-
plements (1) a set of novelty monitors that maintain a vari-
ety of explicit expectations about the environment evolution
and monitor divergence; (2) novelty determination, that ag-
gregates the information from the monitors and determines
if a novelty has been introduced and requires adaptation; and
(3) a set of novelty adaptation strategies.

Novelty Monitors and Determination Novelty monitors
are a set of components that maintain explicit expectations
about various aspects of agent behavior in the environment.
They capture violations of those expectations which are pro-
cessed by further downsteram reasoning. Monitors are dedi-
cated to different parts in the base agent reasoning cycle and
are implemented using diverse computational techniques.
We implemented several monitors:
• Unknown Objects and Entities. This monitor encodes

an expectation that all observed entities processed by the
state inference module are known i.e., they are of a type
that is encoded in the agent’s planning model.

• Plan Inconsistency. This monitor measures how accu-
rately the observed environment dynamics, i.e., the be-
havior of the different happenings (actions, effects, and
processes), match the agent’s internal domain model. This
novelty monitor is thus geared towards detecting novelties
that change these environment transitions.

• Reward Divergence. This monitor maintains expecta-

tions about the quality of its own performance. Any
change in performance quality can indicate that a novelty
has been introduced in the environment. This monitor is
applicable in environments that supply an explicit reward
signal, e.g., game environments that return a score.
Each novelty monitor generates information about the ex-

istence of novelty based on various aspects of agent be-
havior (unknown objects in the observation space, environ-
ment transitions, and performance quality). The novelty de-
termination component collects information from all novelty
monitors as well as some other observations about the agent
(e.g., success or failure at the overall task) and determines if
novelty has been introduced and the agent’s domain needs
to be adapted. Upon exploring several approaches, we even-
tually implemented domain-specific decision rules.

Adaptation Strategy The main adaptation strategy
adopted by HYDRA is a heuristic search-based model
repair approach that manipulates the base agent’s PDDL+
model to be consistent with the detected novelty. The
search-based model repair adaptation strategy works by
searching for a domain repair, which is a sequence of
model modifications that, when applied to the agent’s
internal domain, returns a domain that is consistent with the
observations. To find such a domain repair, repair algorithm
accepts as input a set possible basic Model Manipulation
Operators (MMOs) and outputs a sequence of one or more
basic MMOs. An example of an MMO is to add a fixed
amount to one of the numeric domain constants.

Evalaution We implemented HDYRA on three research
domains: CartPole++ (a higher dimension variant of a
classic control problem CartPole), ScienceBirds (an AI
competition domain for the Angry Birds game), and
PogoStick (a task in the Minecraft game). Our results show
that for certain types of novelties, HYDRA agents can
adapt quickly with few interactions with the environment.
Additionally, the adaptations produced by HYDRA are
interpretable by design - they are represented in terms
of changes to the elements of its model (shown below),
enabling inspection of proposed changes.
Repair 1: mass cart:0,length pole:0.3,mass pole:0,
force mag:0,gravity:0,angle limit:0,x limit:0
Repair 2: mass cart:0,length pole:0,mass pole:0,
force mag:0, gravity:1.0,angle limit:0,x limit:0
This property of a HYDRA agent is a considerable advantage
when developing adaptive systems that can be assessed and
validated by human experts. Figure 2 shows example results for
Cartpole++ domain compared with static, DQN based adaptive,
planning based static and HYDRA agents.



References
Boult, T.; Grabowicz, P.; Prijatelj, D.; Stern, R.; Holder, L.; Alspec-
tor, J.; Jafarzadeh, M.; Ahmad, T.; Dhamija, A.; Li, C.; et al. 2021.
Towards a Unifying Framework for Formal Theories of Novelty. In
AAAI Conference on Artificial Intelligence, 15047–15052.
Choi, D.; and Langley, P. 2018. Evolution of the ICARUS Cogni-
tive Architecture. Cognitive Systems Research, 48: 25–38.
Fox, M.; and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. Journal of Artificial Intelli-
gence Research, 27: 235–297.
Georgeff, M.; Pell, B.; Pollack, M.; Tambe, M.; and Wooldridge,
M. 1999. The Belief-Desire-Intention Model of Agency. In In-
telligent Agents V: Agents Theories, Architectures, and Languages,
1–10. Springer.
Kejriwal, M.; Shrivastava, A.; Kildebeck, E.; Bhargava, B.; and
Vondrick, C. 2022. Designing Artificial Intelligence for Open
Worlds. https://usc-isi-i2.github.io/AAAI2022SS/.
Laird, J. E. 2019. The SOAR Cognitive Architecture. MIT press.
Mohan, S.; Piotrowski, W.; Stern, R.; Grover, S.; Kim, S.; Le, J.;
and De Kleer, J. 2023. A Domain-Independent Agent Architecture
for Adaptive Operation in Evolving Open Worlds. arXiv preprint
arXiv:2306.06272.
Piotrowski, W.; Sher, Y.; Grover, S.; Stern, R.; and Mohan, S.
2023a. Heuristic Search For Physics-Based Problems: Angry Birds
in PDDL+. In International Conference on Automated Planning
and Scheduling, 518–526.
Piotrowski, W.; Stern, R.; Klenk, M.; Perez, A.; Mohan, S.;
de Kleer, J.; and Le, J. 2021. Playing Angry Birds with a Domain-
Independent PDDL+ Planner. International Conference on Auto-
mated Planning and Scheduling (Demo Track).
Piotrowski, W.; Stern, R.; Sher, Y.; Le, J.; Klenk, M.; deKleer, J.;
and Mohan, S. 2023b. Learning to Operate in Open Worlds by
Adapting Planning Models. AAMAS International Conference on
Autonomous Agents and Multiagent Systems.
Senator, T. 2019. Science of AI and Learning for Openworld Nov-
elty (SAIL-ON). Technical report, DARPA.
Stern, R.; Piotrowski, W.; Klenk, M.; de Kleer, J.; Perez, A.; Le,
J.; and Mohan, S. 2022. Model-Based Adaptation to Novelty for
Open-World AI. In Proceedings of the ICAPS Workshop on Bridg-
ing the Gap Between AI Planning and Learning.


