Exploring Requirement Specification for Software that Learns

Anastasia Mavridou', Marie Farrell?, Johann Schumann', Tom Pressburger’

IKBR Inc. / NASA Ames Research Center, USA
2University of Manchester, UK
3NASA Ames Research Center, USA
anastasia.mavridou@nasa.gov

Abstract

The development of software that learns has revolutionized
how many systems perform. For the most part, these systems
are neither safety- nor mission-critical. However, as technol-
ogy and aspirations advance, there is an increased desire and
need for Machine Learning (ML) software in safety- and
mission-critical systems, e.g., driverless cars or autonomous
space robotics. In these domains, reliability is crucial and sys-
tems have to undergo much scrutiny in terms of both the de-
veloped artefacts and the adopted development process. Cen-
tral to the development of such systems is the elicitation and
definition of software requirements that are used to guide
the design and verification process. The addition of software
components that learn, and the associated capability for un-
foreseen behavior, makes defining detailed software require-
ments challenging. In this talk, we examine requirements for
ML components and identify key characteristics. We also
present ongoing work on extending NASA’s Formal Require-
ment Elicitation Tool (FRET) for capturing and formalizing
requirements for software that learns.

Introduction

The design of critical systems begins with the defini-
tion of natural-language objectives and high-level require-
ments. Once defined, high-level objectives and requirements
are subsequently decomposed into detailed system- and
module-level requirements. Any subsequent verification and
validation effort must support traceability of requirements
and provide evidence that they are upheld. In fact, require-
ments traceability is prescribed by a number of international
standards including DO-178C for the aerospace domain (Ri-
erson 2017).

This process is well-understood for traditional systems
since these systems typically operate in constrained, well-
defined environments and thus usually exhibit predictable
behavior. As a result, requirement analysis for such systems
typically returns absolute answers, i.e., absolute success (re-
quirements are satisfied by the system) or absolute failure
(requirements are not satisfied by the system).

Non-traditional systems, on the other hand, such as ones
that rely on Machine Learning (ML) components, bring un-
certainty that impacts requirements specification and analy-

AAAI 2024 Spring Symposium on User-Aligned Assessment of
Adaptive Al Systems. Stanford University, Stanford, CA, USA.

sis. Requirements for ML components often use probabili-
ties to quantify uncertainties about system behavior and the
environment. Furthermore, their analysis may return either
absolute or probabilistic answers.

Understanding the nature of requirements for systems
that incorporate ML components is important, particularly
if these systems are to operate in critical domains e.g.,
aerospace. To this end, we examine existing requirements
from industry and academia to determine commonalities
and differences between requirements for classical systems
and those that learn. We discover that requirements for au-
tonomous systems usually differ from classical systems be-
cause they make decisions based on learning and/or inter-
actions with a stochastic physical environment. Specifically,
these requirements often contain probabilities, e.g., “robot
shall correctly identify rocks with 80% accuracy”. Require-
ment specification tools like NASA’s Formal Requirement
Elicitation Tool (FRET) (Giannakopoulou et al. 2020) tradi-
tionally don’t support writing requirements with probabil-
ities. To this end, we are currently working on extending
FRET to support probabilistic requirements in order to ac-
curately express requirements for autonomous systems that
can be used to guide the verification process and result in
more reliable software.

In this talk, we present work that was previously pub-
lished in (Farrell, Mavridou, and Schumann 2023). We also
give a glimpse of ongoing work on FRET that has not been
published yet.

Requirements for Autonomous Systems

We have gathered requirements from different sources. We
only present a subset of these requirements (due to space
limitations) in Tables land 2. First we present requirements
that we gathered by performing a detailed literature review.
Requirements [LR-001] and [LR-002] in Table 1 refer to the
TaxiNet system (Frew et al. 2004), which uses a vision-
based neural network to predict an aircraft’s position on the
runway relative to the center-line to enable autonomous run-
way taxiing. Table 1, Part 2 shows requirements that we
elicited in conjunction with developers as part of the R-RAV
project at NASA Ames, which takes a similar approach to
TaxiNet and is driven by a neural network.

Table 2 contains 4 (out of 14) sanitized requirement pat-
terns, which were obtained after manually analyzing 770 re-

Req ID Requirement Source
Literature Studies
[LR-001] The aircraft location does not exceed a specified lateral (Asaadi et al. 2020;
offset from the runway centerline during taxiing. Pasareanu et al. 2023)
[LR-002] The aircraft does not veer off the sides of the runway dur- (Asaadi et al. 2020;

ing taxiing.

Pasareanu et al. 2023)

R-RAV Project

[RRAV-005] Neural network shall output a sensible angle: the value [R-RAV]

must be between -90 and 90 degrees.

[RRAV-006] The neural network shall achieve a minimum of X% ac- [R-RAV]
curacy on training and Y% accuracy on testing.
[RRAV-007] (Local robustness) The neural network shall be robust to [R-RAV]

small perturbations in the image (pixels).

Table 1: Requirement examples from literature review and the NASA R-RAV project.

Req ID

Requirement Pattern (source: NASA)

[IC-001] The sw shall achieve an average PARAMETER value of X.

[IC-002] The sw shall estimate PARAMETER to within + — X with a Y% confidence.

[IC-004] The requirement shall be verified by measuring the average of the parameter over N

repetitions.

[IC-012] The sw shall detect CONDITION that implies EVENT is probable.

Table 2: Requirement patterns extracted from missions and industrial case studies.

quirements from missions and industrial case studies that
use Al components. We call these patterns as they do not
contain specific system details. Upper case variables must be
instantiated by actual names and values to yield a multitude
of similar requirements. Many of the requirements shown
in Table 2 specify constraints on the computed parameters
(e.g., [IC-001]) and have a notion of confidence (e.g., [IC-
002]). The majority of the requirements that we collected use
probabilities. Examples include: [RRAV-006] and [IC-012].

We observed that notions of confidence, accuracy, and av-
erage value are often used to describe probabilistic require-
ments. In some cases, e.g., requirements [LR-001] and [LR-
002], although confidence levels are not part of the require-
ment text, they are added through separate requirement at-
tributes. For example, [LR-001] must hold 95% of the time
(lower confidence level), while [LR-002] must hold 100% of
the time (always, higher confidence level), i.e., the TaxiNet
system must avoid any runway excursion.

Extending FRET

FRET! is an open source framework developed at NASA
Ames Research Center for capturing, understanding, formal-
izing, and analyzing requirements.

In practice, requirements are typically written in natu-
ral language, which is ambiguous and consequently not
amenable to formal analysis. Since formal, mathematical no-
tations are unintuitive, requirements in FRET are written in
a structured natural language, named FRETish, which aims
at providing a vocabulary natural to the user. Once a require-
ment is captured in FRETish, FRET automatically generates

"https://github.com/NASA-SW-VnV/fret

metric temporal logic (MTL) formulae that can be directly
digested by formal analysis tools.

Traditionally, FRET does not support writing require-
ments with probabilities. To be able to capture and formalize
such requirements, we are currently working on extending
the FRETish language to support probabilistic requirements.
A probabilistic FRETish requirement consists of six fields:
1) is a Boolean expression that whenever true
specifies that the response shall happen; 2) component
is the system component that the requirement is levied upon;
3) shall is used to express that the component’s behavior
must conform to the requirement; 4) probability
defines the probability associated with the timing and
response; 5) timing specifies when the response shall
happen, subject to the constraints defined in
and 6) response is the Boolean expression that the
component’s behavior must satisfy. An example require-
ment for TaxiNet is: The aircraft shall with
probability < 0.001 eventually satisfy
turn > prescribedDegree.

We are also building a formalization framework that sup-
ports the automatic translation of FRETish requirements into
PCTL (Aziz et al. 1995) formulae. Our approach to for-
malization is compositional by leveraging instances of the
FRETish fields explained above. The goal is to generate
probabilistic formulae that can be directly digested and used
for analysis by state-of-the-art probabilistic verification? and
runtime monitoring tools.

2E.g., for closed-loop analysis of vision-based autonomous sys-
tems (Pdsareanu et al. 2023)

References

Asaadi, E.; Beland, S.; Chen, A.; Denney, E.; Margineantu,
D.; Moser, M.; Pai, G.; Paunicka, J.; Stuart, D.; and Yu, H.
2020. Assured Integration of Machine Learning-based Au-
tonomy on Aviation Platforms. In Digital Avionics Systems,
1-10. IEEE.

Aziz, A.; Singhal, V.; Balarin, F.; Brayton, R. K.; and
Sangiovanni-Vincentelli, A. L. 1995. It usually works: The
temporal logic of stochastic systems. In Computer Aided
Verification: 7th International Conference, CAV’95 Liége,
Belgium, July 3-5, 1995 Proceedings 7, 155-165. Springer.

Farrell, M.; Mavridou, A.; and Schumann, J. 2023. Explor-
ing Requirements for Software that Learns: A Research Pre-
view. In Ferrari, A.; and Penzenstadler, B., eds., Require-
ments Engineering: Foundation for Software Quality, 179—
188. Cham: Springer Nature Switzerland. ISBN 978-3-031-
29786-1.

Frew, E.; McGee, T.; Kim, Z.; Xiao, X.; Jackson, S.; Mori-
moto, M.; Rathinam, S.; Padial, J.; and Sengupta, R. 2004.
Vision-based road-following using a small autonomous air-
craft. In IEEE Aerospace Conference, volume 5, 3006-3015.

Giannakopoulou, D.; Mavridou, A.; Rhein, J.; Pressburger,
T.; Schumann, J.; and Shi, N. 2020. Formal requirements
elicitation with FRET. In Requirements Engineering: Foun-
dation for Software Quality.

Pésareanu, C. S.; Mangal, R.; Gopinath, D.; Getir Yaman,
S.; Imrie, C.; Calinescu, R.; and Yu, H. 2023. Closed-Loop
Analysis of Vision-Based Autonomous Systems: A Case
Study. In Enea, C.; and Lal, A., eds., Computer Aided Verifi-
cation, 289-303. Cham: Springer Nature Switzerland. ISBN
978-3-031-37706-8.

Rierson, L. 2017. Developing safety-critical software: a

practical guide for aviation software and DO-178C compli-
ance. CRC Press.

