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Abstract

Sequence models have emerged as an alternate paradigm for
offline Reinforcement Learning (RL) with their remarkable
generative capabilities. However, it struggles in cases where
the trajectories only cover limited states or have sparse re-
wards. In scenarios with multi-task missions often involve
exploration, key pickup, room transition, and door open-
ing, the reward is only assigned at the end of all the tasks.
We introduce Adaptformer, an adaptive planner that uti-
lizes sequence models for sample-efficient exploration and
exploitation. This framework relies on learning an energy-
based heuristic, which needs to be minimized over an ac-
tion sequence. It generates stochastic, goal-conditioned tra-
jectories imposed through a lower bound on entropy, balanc-
ing the exploration and exploitation trade-off. Adaptformer
aids in generalizing to unseen test scenarios via iterative
re-planning through energy minimization. Empirical results
over BABYAI environments demonstrate the effectiveness
of Adaptformer. For example, Adaptformer outperforms the
previous state-of-the-art LEAP (Chen et al. 2023) by ∼10%
at BABYAI environments and adapts to long horizon tasks.1

Introduction
Conventional Reinforcement Learning (RL) methods, which
attempt to estimate value functions, often face limitations in
dealing with environments characterized by long horizons,
and sparse rewards, and are susceptible to distractor sig-
nals (Hung et al. 2019), or favoring short-term goals. While
sequence models address some of these shortcomings, their
performance is reliant on the diversity of training data, re-
sults tend to fall short when training data is insufficient.
Moreover, the sequence models do not offer a straightfor-
ward way to optimize the generated trajectories.

Drawing inspiration from the ideas in (Chen et al. 2023),
where sequence models are viewed as implicit energy mod-
els, our methodology leverages these models to develop
policies that adapt to previously unseen environments. This
is achieved through a probabilistic objective (Zheng, Zhang,
and Grover 2022), which enables a balance between explo-
ration and exploitation. This strategy reframes the condi-
tional generative properties of sequence models to perform
iterative planning. It offers a dual advantage: it facilitates
generalization on unseen environments and adaptive skill
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Figure 1: Energy Landscape. Adaptformer when condi-
tioned with re-scaled RTG, implicitly assigns minimum en-
ergy values to sub-goals (pick-up key, open doors) required
for task completion. The states closer to white regions (low-
energy) are more likely to be transitioned into.

learning (i.e., obstacle unblocking). Empirical results on the
adaptability of models in modified BABYAI environments
validate the effectiveness of Adaptformer.
Related Works. Sequence modeling in RL adopts an au-
toregressive modeling objective. This approach leverages
the conditional generative capabilities of sequence models,
where conditioning on desired returns or goal states fa-
cilitates the generation of future actions leading to those
states or returns. (Chen et al. 2021; Janner, Li, and Levine
2021; Parisotto et al. 2020) Following DT’s (Chen et al.
2021) works on goal state conditioning, and iterative plan-
ners (Chen et al. 2023) we aim to learn a reward function
that allows additional guidance and encourages novel ac-
tions. While, the probabilistic objective (Zheng, Zhang, and
Grover 2022) allows the policy to adapt to unseen test envi-
ronments while learning from a limited dataset.

Adaptformer: Methodology
Problem Statement. Given a trajectory T in the form
(s1,a1, R̂1, . . . , sn,an, R̂n) which comprises state, action
and return-to-go (RTG) tuples, we learn the conditional
probability πθ(at|T\t, G), where, G denotes the goal states
and T\t denotes the the trajectory of length T1:H ex-
cluding the state, action and return tuple at time t. Here
H denotes the planning horizon. Our objective is to as-
sign the demonstration trajectories minimal energy defined
as the sum of negative pseudo-likelihood across the tra-
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jectory Eθ(T ) =
∑H

t=1

[
− log πθ(at|T\t, G)

]
subject to

E∼T

[∑H
t=1 H(πθ(at|T\t, G))

]
≥ β, here H represents the

entropy. In this manner, πθ learns to predict actions at a
given timestep using bi-directional context of actions across
all other timesteps.
Training Objective. The problem formulation reduces to

minθ

LNLL︷ ︸︸ ︷
E∼T [− log πθ(at|T\t, G)] − λ1

LCE︷ ︸︸ ︷
E∼T [H(πθ(·|T\t, G))]. (1)

The Negative Log-Likelihood (LNLL) corresponds to the
energy term, while the LCE represents the entropy com-
ponent. Here, λ is a lagrangian multiplier (a.k.a. tempera-
ture), balancing exploration and exploitation. In contrast to
SAC’s individual transition-based approach (Haarnoja et al.
2018), Adaptformer learns the energy level over a trajectory
subset with planning horizon H by predicting the masked
action token. The average entropy across the horizon is
lower bounded by β. This makes the policy less suscep-
tible to favoring local goals and the bidirectional context-
aware training avoids error accumulation. We also parame-
terize the action predictor network as a Gaussian distribution
with diagonal covariances, where the mean and log-variance
are predicted by two separate fully connected layers a ∼
N (µθ(T\t),Σθ(T\t)). The objective is modeled such that it
allows matching the training distribution T while allowing
some degree of mismatch which promotes exploratory ac-
tions.
Planning. Given the energy model, we estimate the energy
at masked positions at ∼ πθ(at|T\t), here T\t represents the
trajectories with masked actions, we update masked actions
with actions corresponding to low energy value each itera-
tion, this allows for long horizon consistent plan. The iter-
ative planner allows for multiple sampling which seeks to
minimize the total energy of the sequence. This strategy bal-
ances exploratory decisions with the exploitative nature of
the energy minimization function. Adaptformer focuses on
learning conditional generation of action sequences, similar
to reinforcement learning via supervised learning (Emmons
et al. 2022).

Results and Discussion
We use a modified BABYAI (Chevalier-Boisvert et al. 2019)
environment to asses Adaptformer’s generalization to test
conditions: (1) Single-goal to Multi-goal Transfer - Key-
Corridor, GoToObj. During training, the model learns to
navigate offline trajectories towards a single goal, typically
located behind a locked door. At test time, this learned ca-
pability is extended to solve multi-goal (#2) reaching prob-
lems. (2) Auxiliary Tasks - MiniBoss. The environment
features additional obstacles and goal states, located across
multiple rooms (#4) and looked doors.

In Table 1, we present the performance metrics that
demonstrate increasing difficulty across the environments.
Adaptformer outperforms the baseline model, achieving a
∼10%↑ due to the probabilistic objective function. Addi-
tionally, we noticed that RTG conditioning enhances the per-
formance of LEAP, leading us to incorporate additional RTG

Env Ours LEAP+RTG

GoToObjMazeS4 33% 36%
MiniBoss 40% 29%

KeyCorridorS3R3 27% 18%

Table 1: Comparison with Other Baselines. The models
were trained over 500 episodes and tested on 40 different
environments using three distinct seeds. The model inputs
consist of the agent’s current position and goal positions,
while LEAP additionally requires fully observable image of
the environment.

Env Ours

w/o action token + RTG 32 %
w/o RTG 33 %

w/o entropy (LCE) 31 %

Table 2: Ablation. Reported values correspond to mean suc-
cess rate over 3 seeds. The results correspond to MiniBoss
environment with an additional # 12 distractors at test time.

conditioning for LEAP+RTG in our experiments. Further-
more, LEAP+RTG excels in tasks focused solely on goal-
reaching GoToObj, without doors or object interactions.
RTG Conditioning. We introduce a proxy reward treated
as a cost-to-go, estimated with a reward network for better
feature representation. This additional guidance encourages
optimal planning, incentivizing novel actions like pickup,
drop, and toggle, aligning with findings in (Badrinath et al.
2023). Scaling RTG values beyond attainable levels also en-
hances performance, consistent with observations in (Zheng,
Zhang, and Grover 2022).
Ablation Results. Omitting either RTG conditioning or
the probabilistic objective affects Adaptformer’s adaptabil-
ity to test-time cases, resulting in a ∼10% ↓. Qualitatively,
we observed that the agent was only able to achieve a sin-
gle goal in a multi-goal environment, failing to adapt to the
additional goals.
Training Progression. Adaptformer, converges about 20x
faster than LEAP. We hypothesize that this is due to the ex-
clusion of image embeddings in the framework. Addition-
ally, we utilize auxiliary mean squared losses imposed on
states and reward prediction along with LNLL +LCE to learn
better state and reward representations.
Correlation between Energy and Task. Adaptformer
implicitly learns the sub-goal, as shown in Fig 1. Unlike
conditioning on the goals alone (without RTG), the re-scaled
RTG effectively captures sub-goals tied to the task, assign-
ing minimal energy values to crucial positions like doors and
keys. The iterative planner estimates energy distributions on
masked tokens (in the test case, masking all tokens within
the planning horizon of H). Action tokens are then sampled
and updated based on these energy values, seeks to reduce
the total energy of the planned trajectory.

Conclusion
We propose Adaptformer, which learns a novel planning
heuristic and empirically show improved planning behavior,
in test cases involving unseen environments, extended tasks,
and auxiliary distractors.
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