
Action Model Learning Guarantees

Brendan Juba
Washington University in St. Louis

1 Brookings Dr.
St. Louis, MO 63130 USA

bjuba@wustl.edu

Abstract

We recall a line of work on algorithms for learning action
models from example trajectories that provide theoretical
guarantees. These algorithms feature time and sample com-
plexities that are polynomial in the description size of the ac-
tion models, and feature the “soundness” and “ approximate
completeness” guarantees of the following form: any plan
that is legal in the learned action model executes as predicted
in the real environment, and trajectories drawn from the train-
ing distribution are legal in the learned action model with high
probability. We briefly discuss the application of such algo-
rithms to assessing the capabilities of black-box agents.

Introduction
Knowledge engineering is widely acknowledged to be ex-
tremely challenging, and this is true in the particular case of
representing environments in domain modeling languages
such as such as STRIPS (Fikes and Nilsson 1971), the
Planning Domain Definition Language (PDDL) (Aeronau-
tiques et al. 1998), PDDL 2.1 (Fox and Long 2003), and
RDDL (Sanner 2010). Machine learning has had the pri-
mary impact of alleviating such knowledge engineering
challenges, and consequently a number of methods for learn-
ing such domain models have been proposed (Cresswell and
Gregory 2011; Aineto, Celorrio, and Onaindia 2019; Yang,
Wu, and Jiang 2007, for example), and in particular recently
in a line of work on a family of algorithms known as Safe
Action Model (“SAM”) learning (Stern and Juba 2017; Juba,
Le, and Stern 2021; Juba and Stern 2022; Mordoch, Juba,
and Stern 2023; Mordoch et al. 2023; Deng and Juba 2023;
Juba, Le, and Stern 2024). The distinguishing feature of this
family lies in the theoretical guarantees they provide: first,
they run in polynomial time in the worst-case description
size of the action models. Second, they provide a correctness
guarantee of the following form: supposing that the environ-
ment is actually represented by some action model M∗ from
a family of action models that may be represented using at
most S symbols, the learned action model M̂ satisfies

1. Soundness: For any plan π formulated according to M̂ ,
π may be executed in M∗ and executes “correctly”1

AAAI 2024 Spring Symposium on User-Aligned Assessment of
Adaptive AI Systems. Stanford University, Stanford, CA, USA.

1The precise definition of what counts as correctness varies de-

2. Approximate completeness: Suppose that there is a prob-
ability distribution P on planning problems (pairs of goal
predicate and initial state (g, s0)), giving rise to a prob-
ability distribution D on example trajectories by execut-
ing plans π∗ generated by some ideal policy (planner)
Π∗(g, s0) in the domain for (g, s0) sampled from P , that
achieves g (reaches a state s for which g holds) from
s0 with probability p∗ overall. Then given poly(S, 1

ϵ ,
1
δ )

example trajectories, with probability at least 1 − δ the
learned action model M̂ is such that there exists a policy
Π̂ that achieves a success rate in M̂ of at least p∗ − ϵ for
(g, s0) again sampled from P .

Together, the two properties ensure that the learned model
M̂ may be passed to any domain-independent planner of the
appropriate kind (i.e., lifted, stochastic, contingent, etc.) to
solve most future problems that are drawn from the same
distribution P as solved by the agent that provided the train-
ing trajectories. This framework was proposed as a “safe”
approach to learning action models for two reasons. First,
much as in the analogous approach to reinforcement learn-
ing known as “Offline” Reinforcement Learning (Kidambi
et al. 2020; Yu et al. 2020; Levine et al. 2020), the method
utilizes training trajectories that were provided by another
agent, and does not rely on blind exploration of the environ-
ment. Here we envision a setting where a human operator
provides demonstrations of how to achieve goals in the en-
vironment. Second, in most versions of the first guarantee,
correct execution means that the sequence of states encoun-
tered while executing the plan π in the real environment M∗

is identical to the sequence encountered during execution in
the learned model M̂ . Therefore any additional safety prop-
erties may be enforced by imposing additional constraints
during planning; if the plan has no violations of these con-
straints in the learned model, it also does not suffer them
during execution in the real environment. While this does
not solve the corresponding planning problem, it at least en-
sures that plans that are predicted to be safe solutions to the
given problem are indeed safe when executed in practice. In
this sense, it is a satisfactory solution to the learning compo-
nent of safe execution.

pending on the model.



Relationship to Assessment
The SAM learning family was indeed not originally con-
ceived of as a means to solve agent capability assessment.
Nevertheless, it can be used for this task with one significant
caveat: the algorithms require that the trajectories are anno-
tated with action names and parameters (for lifted models).
It turns out that under the “injective binding assumption”
that is usually satisfied, the identities of the action param-
eters do not present a major challenge, but the identifica-
tion of which actions are instances of the same operator and
which are different operators is a significant assumption.

In more detail, we first recall the injective binding as-
sumption for lifted domains. We must first recall the set-
ting of lifted domains. For a set of objects O and a set of
types T , we suppose every object o ∈ O is associated with
a type t ∈ T denoted type(o). For example, in the logistics
domain from the International Planning Competition (Mc-
Dermott 2000) there are types truck and location and there
may be objects t1 and t2 that represent two different trucks
and two objects l1 and l2 that represent two different loca-
tions. A lifted fluent F is a pair ⟨name, params⟩ represent-
ing a relation over typed objects, where name is a symbol
and params is a list of types. We denote the name of F
and its parameters by name(F ) and params(F ) respectively,
and arity(F, t) denotes the number of type-t parameters.
For example, in the logistics domain at(?truck, ?location)
is a lifted fluent that represents some truck (?truck) is at
some location (?location). A binding of a lifted fluent F
is a function b : params(F ) → O mapping every pa-
rameter of F to an object in O of the indicated type. A
grounded fluent f is a pair ⟨F, b⟩ where F is a lifted flu-
ent and b is a binding for F. To ground a lifted fluent F with
a binding b means to create a (Boolean-valued) fluent with
a value determined by whether or not the objects in the im-
age of b satisfy the relation associated with the lifted fluent.
In our logistics example, for F = at(?truck, ?location)
and b = {?truck : truck1, ?location : loc1} the corre-
sponding grounded fluent f is at(truck1, loc1), indicating
whether truck1 is at loc1. The term literal refers to either
a fluent or its negation. The definitions of binding, lifted,
and grounded fluents transfer naturally to literals. Similarly,
a lifted action A ∈ A is a pair ⟨name, params⟩ where
name is a symbol and params is a list of types, denoted
name(A) and params(A), respectively, and arity(A, t) de-
notes the number of type-t parameters. Now, a parameter
binding of a lifted literal L and an action A is a function
bL,A : params(L) → params(A) that maps every parameter
of L to a parameter in A. A parameter-bound literal l for
the lifted action A is a pair of the form ⟨L, bL,A⟩ where bL,A

is a parameter binding of L and A. In a lifted environment
representation, we assume that the preconditions and effects
of the action are given in terms of such parameter-bound lit-
erals. A binding of a lifted action A is defined like a binding
of a lifted fluent, i.e., a function b : params(A) → O. A
grounded action a is a tuple ⟨A, bA⟩ where A is a lifted ac-
tion and bA is a binding of A. For a binding of the action
parameters of a lifted action A to objects in O, bA, we then
may obtain a set of ground literals ⟨L, bA ◦ bL,A⟩ that cor-
respond to the ground action ⟨A, bA⟩. The injective binding

assumption allows this map to be inverted. Precisely,
Definition 1 (Injective Binding) In every grounded action
⟨A, bA⟩, the binding bA is an injective function, i.e., every
parameter of A is mapped to a different object.
If the binding is injective, there is a unique parameter bind-
ing bL,A satisfying bA ◦ bL,A = bL. Then since the effects
may only include ground literals obtained through the pa-
rameter binding, the set of parameter-bound effects may be
recovered from the ground effects: we simply substitute each
o ∈ O in the binding with an abstract action parameter. For
example, if the actions have arity-1 of each type, this as-
sumption is trivially satisfied. We will also need to assume
that each action parameter appears in some effect fluent.

As alluded to above, the assumption that the transitions
are labeled with action names is a more severe restriction.
Nevertheless, given such a set of labelled trajectories corre-
sponding to observations of an agent in some environment,
we can obtain a model of the agent’s capabilities as follows.
The injective binding allows us to recover parameters corre-
sponding to the bindings. We can then run a SAM algorithm
on this set of trajectories to obtain a learned action model
M̂ with the guarantee that, assuming that the agent indeed
can be faithfully described by some action model M∗ in the
corresponding class, soundness ensures that every plan M̂
predicts is a capability of the agent is indeed a plan that the
agent can execute (with the corresponding effect) and com-
pleteness ensures that with probability 1−δ over the training
examples, the probability that the agent exhibits a trajectory
in any future episode that is not represented in M̂ is bounded
by ϵ on each episode. So, with probability 1 − ϵ we could
have anticipated that the exhibited trajectory is within the
agent’s repertoire. We note that this approach only relies on
passive observations if we have the actions labelled.

The main limitation here is that the association of transi-
tions to actions is essential to ensuring the soundness prop-
erty of SAM learning. The problem is that we are learning
preconditions from positive examples only (established for-
mally in Mordoch, Juba, and Stern (2023)), so the optimal
safe precondition is the set of states that satisfy all of the pre-
conditions consistent with the states in which the action was
taken in the examples. If we cannot identify more than one
state as an instance of the same action, then for most rep-
resentations, we obtain a precondition that only permits the
action to be taken in the exact same state as presented dur-
ing training, obtaining the memorized successor state. Such
an algorithm does not generalize, and clearly requires a pro-
hibitive number of examples to cover most of the agent’s
capabilities. But, indeed such an action model, that takes a
distinct action in each transition, is consistent with the obser-
vations. So, without a further assumption we cannot gener-
alize. It may be possible to do this by assuming for example
that there is a bounded number of actions and each has some
“anchoring” effect literal that distinguishes it from the rest.
But, the guarantees are only as good as the assumptions.

Acknowledgements
The author was partially supported by NSF awards IIS-
1908287, IIS-1939677, and IIS-1942336.



References
Aeronautiques, C.; Howe, A.; Knoblock, C.; McDermott,
I. D.; Ram, A.; Veloso, M.; Weld, D.; SRI, D. W.; Barrett,
A.; Christianson, D.; et al. 1998. Pddl— the planning do-
main definition language. Technical Report, Tech. Rep.
Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence, 275: 104–137.
Cresswell, S.; and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In International Con-
ference on Automated Planning and Scheduling (ICAPS),
42–49.
Deng, Z.; and Juba, B. 2023. Stochastic Safe Action Model
Learning. In Seventh workshop on Generalization in Plan-
ning (GenPlan’23) at NeurIPS 2023.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence, 2(3-4): 189–208.
Fox, M.; and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research, 20: 61–124.
Juba, B.; Le, H. S.; and Stern, R. 2021. Safe Learning of
Lifted Action Models. In International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR),
379–389.
Juba, B.; Le, H. S.; and Stern, R. 2024. Learning Safe Action
Models with Partial Observability. To appear in AAAI.
Juba, B.; and Stern, R. 2022. Learning Probably Approx-
imately Complete and Safe Action Models for Stochastic
Worlds. In AAAI Conference on Artificial Intelligence.
Kidambi, R.; Rajeswaran, A.; Netrapalli, P.; and Joachims,
T. 2020. MOReL: Model-Based Offline Reinforcement
Learning. In Advances in Neural Information Processing
Systems (NeurIPS).
Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020. Offline
reinforcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643.
McDermott, D. 2000. The 1998 AI Planning Systems Com-
petition. AI Magazine, 21(2): 13.
Mordoch, A.; Juba, B.; and Stern, R. 2023. Learning Safe
Numeric Action Models. In AAAI, 12079–12086. AAAI
Press.
Mordoch, A.; Stern, R.; Scala, E.; and Juba, B. 2023. Safe
learning of PDDL domains with conditional effects. In
ICAPS’23 Workshop on Reliable Data-Driven Planning and
Scheduling (RDDPS).
Sanner, S. 2010. Relational dynamic influence diagram lan-
guage (RDDL): Language description. Unpublished ms.
Australian National University.
Stern, R.; and Juba, B. 2017. Efficient, Safe, and Probably
Approximately Complete Learning of Action Models. In
International Joint Conference on Artificial Intelligence (IJ-
CAI), 4405–4411.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artificial
Intelligence, 171(2-3): 107–143.

Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J. Y.; Levine,
S.; Finn, C.; and Ma, T. 2020. MOPO: Model-based Of-
fline Policy Optimization. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 14129–14142.


