
Deploying and Evaluating LLMs to Program Service Mobile Robots

Zichao Hu1, Francesca Lucchetti2, Claire Schlesinger2, Yash Saxena1, Anders Freeman3,
Sadanand Modak1, Arjun Guha2, Joydeep Biswas1

1Department of Computer Science, University of Texas at Austin
2Khoury College of Computer Sciences, Northeastern University

3Department of Computer Science, Wellesley College

Introduction
We are interested in deploying service mobile robots to per-
form arbitrary user tasks from natural language descriptions.
Recent advancements in large language models (LLMs)
have shown promise in related applications involving visuo-
motor tasks (Liang et al. 2022; Singh et al. 2023; Huang
et al. 2023), planning (Ahn et al. 2022; Huang et al. 2022;
Driess et al. 2023; Liu et al. 2023), and in this work, we in-
vestigate the use of LLMs to generate programs for service
mobile robots leveraging mobility, perception, and human
interaction skills, where accurate sequencing and ordering
of actions is crucial for success. We present CODEBOTLER
and ROBOEVAL (Hu et al. 2023): CODEBOTLER is an open-
source robot-agnostic tool to generate general-purpose ser-
vice robot programs from natural language, and ROBOEVAL
is a benchmark for evaluating LLMs’ capabilities of gener-
ating programs to complete service robot tasks.

While the capabilities of LLMs at producing robot pro-
grams are impressive, they are still susceptible to a variety
of failures. To understand the nature of the failures, we need
an effective method to evaluate these programs. Existing
benchmarks typically rely on either simple input-output unit
test functions (Chen et al. 2021; Liang et al. 2022), or they
utilize complex high-fidelity 3D simulations (Singh et al.
2023). However, checking for input-output pairs is insuffi-
cient when it comes to evaluating service robot programs.
Consider the task “Check how many conference rooms have
no markers”. It is insufficient to just check for the number of
conference rooms stated by the LLM-generated programs.
Rather, the correctness of the program depends on the se-
quence of robot actions taken. In this example, the robot
must visit each conference room and check for markers, be-
fore arriving at the final answer. Furthermore, the correct
sequence of actions may depend on the specific world state.
Finally, we observe that there are significant variations in the
correctness of generated programs with small variations in
the phrasing of the natural language task descriptions (Babe
et al. 2023).

We thus introduce the ROBOEVAL benchmark to address
these challenges in evaluating LLM-generated programs for
service mobile robots. This benchmark integrates three key

AAAI 2024 Spring Symposium on User-Aligned Assessment of
Adaptive AI Systems. Stanford University, Stanford, CA, USA.

 CodeBotler

RoboEval

Symbolic Simulator Temporal Trace Evaluator

Python Error /
Robot Execution Error SAT/UNSAT

…

Trace

k
…

2

Initial World State

1

locations

interactive
agents

objects

say(enjoy)

…

Evaluate

×k

goto(elevator)

check(person)

k…2

 RoboEval Temporal Logic Constraints
Constraint 1:
Tc1 = AfterFirst goto(elevator)
 .BeforeFirst ask(...)
 .Exist check(person)

Constraint ...

RTL Specification:
 Tc1 and Tc2 and ... 1

Large Language Model

Language Model Generated Programs (LMPs)

RoboEval Benchmark Task Prompts

Figure 1: The system diagram of CODEBOTLER and
ROBOEVAL. CODEBOTLER receives a task prompt and
queries a large language model (LLM) to generate a robot
program. Then ROBOEVAL evaluates the generated pro-
grams using a symbolic simulator and a temporal trace eval-
uator to determine whether each program satisfies the task
constraints or not.

components: a symbolic simulator, a trace evaluator, and
a comprehensive suite of 16 tasks. Fig. 1 shows the sys-
tem diagram of CODEBOTLER and ROBOEVAL. When a
program created by CODEBOTLER is passed into ROBOE-
VAL, it undergoes a two-step evaluation process. First, the
program is executed within the symbolic simulator, which
produces multiple program traces corresponding to different
initial world states. Next, these traces are evaluated against
a set of temporal specifications. These specifications are de-
signed to define and affirm the correct behavior for the given
task, tailored to each specific initial world state.

The use of the symbolic simulator and trace evaluator in
ROBOEVAL makes the evaluation both efficient and precise.
This approach not only reduces the computational load but
also accurately captures the necessary sequence of robot ac-
tions. This method provides a more realistic and practical
assessment of LLM-generated robot programs, particularly
in validating their sequence logic and operational viability.

We used the ROBOEVAL benchmark to evaluate and
analyze the performance of five state-of-the-art Large
Language Models (LLMs). The models tested include:
1. GPT-4 (OpenAI 2023), 2. GPT-3.5 (Brown et al. 2020)
(text-davinci-003), and 3. PaLM2 (Anil et al. 2023)
(text-bison-001) as state-of-the-art API-only propri-
etary models; and 4. CodeLlama (Rozière et al. 2023)
(Python-34b-hf) and 5. StarCoder (Li et al. 2023) as
open-access models. Our analysis categorizes the types of
failures exhibited by these different LLMs when bench-
marked against ROBOEVAL. Common failure categories
identified include Python runtime errors, errors in execut-
ing infeasible robot actions, and failures in meeting specific
task requirements.

For additional information and detailed insights into
our study, we refer the reader to our project website:
https://amrl.cs.utexas.edu/codebotler/.

ROBOEVAL Results
To gain insights into the capabilities and limitations of dif-
ferent state-of-the-art LLMs for generating service mobile
robot LMPs, we use the ROBOEVAL benchmark to empiri-
cally answer the following questions:

1. First, how do different LLMs perform in generating pro-
grams for tasks in the RoboEval benchmark?

2. Second, when a generated service robot LMP fails, what
are the causes?

Performance Of LLMs On The RoboEval
Benchmark
The ROBOEVAL benchmark consists of 16 tasks, each with 5
prompt paraphrases, totaling 80 different prompts. For each
prompt, we generate 50 program completions and calculate
the pass@1 score (Chen et al. 2021), a common metric for
LMP evaluation. This score indicates the probability of an
LMP being correct if an LLM generates only one LMP for a
given prompt.

We compute the percentage of prompts that have a
pass@1 score greater than or equal to a threshold value,
which ranges from 1 to 0. We present this information in
Fig. 2 as a Cumulative Distribution Function (CDF). Al-
though relaxing the pass@1 score threshold for each LLM
increases prompt coverage, there are still certain prompts
(ranging from 48.75% for StarCoder to 1.25% for GPT-4)
where LLMs consistently fail to generate correct LMPs.

Causes of Failures of LMPs
We evaluate the failure modes of the LMPs and classify
these failures into three categories: 1. Python Errors, includ-
ing syntax, runtime, and timeout errors; 2. Robot Execution
Errors, that occurs when a program attempts to execute an
infeasible action, such as navigating to a non-existent (hallu-
cinated) location; and 3. Task Completion Errors, where the
program runs correctly in the simulator but fails RTL checks
for task completion. We use ROBOEVAL’s symbolic simula-
tor to detect and classify Python Errors and Robot Execu-
tion Errors, and we use ROBOEVAL’s evaluator to capture

1.0 0.8 0.6 0.4 0.2 0.001
pass@1

0

20

40

60

80

100

Fr
ac

tio
n

of
P

ro
m

pt
s

(%
)

67.50

98.75

43.75

77.50

28.75

60.00

26.25

63.75

20.00

51.25

GPT-4
GPT-3.5
PaLM2
CodeLLama
StarCoder

Figure 2: Cumulative Distribution Function (CDF) curves
depict the percentage of prompts for which each LLM can
generate correct LMPs at various pass@1 score thresholds.
A perfect LLM would show a horizontal line at 100%, indi-
cating it can generate correct LMPs for all prompts with a
pass@1 score of 1. To maintain visual clarity, we limit the
x-axis to 10−3 since all CDF plots eventually reach 100%.

GPT-4 GPT-3.5 PaLM2 CodeLlama StarCoder
0

20

40

60

80

100

Pe
rc

en
ta

ge
of

To
ta

lP
ro

gr
am

C
om

pl
et

io
ns

(%
)

85.5%

11.7%

66.0%

11.9%

4.1%

18.0%

44.8%

9.7%

22.0%

23.5%

45.7%

3.4%

30.3%

20.6%

31.2%

3.7%

29.3%

35.8%

Successful Program
Python Error
Robot Execution Error
Task Completion Error

Figure 3: Causes of failures for LMPs on the ROBOEVAL
benchmark.

the Task Completion Errors. Fig. 3shows the breakdown of
these failure categories for each LLM.

We observe that despite having fewer parameters, the
CodeLLMs (CodeLlama and StarCoder) generally make
fewer Python errors. This suggests that LLMs trained on a
larger proportion of code may be more adept at generating
successful completions in the DSL defined in the prompt.

For a detailed analysis of our study, please
refer to our paper available on arXiv at
https://arxiv.org/pdf/2311.11183.pdf. This paper offers
an in-depth look at our methodologies, findings, and their
implications in the field of LLM-guided robot program
generation.

References
Ahn, M.; Brohan, A.; Brown, N.; et al. 2022. Do As I Can,
Not As I Say: Grounding Language in Robotic Affordances.
arXiv:2204.01691.

https://amrl.cs.utexas.edu/codebotler/

Anil, R.; Dai, A. M.; Firat, O.; et al. 2023. PaLM 2 Technical
Report. arXiv:2305.10403.
Babe, H. M.; Nguyen, S.; Zi, Y.; Guha, A.; Feldman, M. Q.;
and Anderson, C. J. 2023. StudentEval: A Benchmark of
Student-Written Prompts for Large Language Models of
Code. arXiv:2306.04556.
Brown, T. B.; Mann, B.; Ryder, N.; et al. 2020. Language
Models are Few-Shot Learners. arXiv:2005.14165.
Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; et al.
2021. Evaluating large language models trained on code.
arXiv:2107.03374.
Driess, D.; Xia, F.; Sajjadi, M. S. M.; et al. 2023.
PaLM-E: An Embodied Multimodal Language Model.
arXiv:2303.03378.
Hu, Z.; Lucchetti, F.; Schlesinger, C.; Saxena, Y.; Freeman,
A.; Modak, S.; Guha, A.; and Biswas, J. 2023. Deploying
and Evaluating LLMs to Program Service Mobile Robots.
arXiv:2311.11183.
Huang, W.; Abbeel, P.; Pathak, D.; and Mordatch, I. 2022.
Language Models as Zero-Shot Planners: Extracting Action-
able Knowledge for Embodied Agents. arXiv:2201.07207.
Huang, W.; Wang, C.; Zhang, R.; Li, Y.; Wu, J.; and Fei-Fei,
L. 2023. VoxPoser: Composable 3D Value Maps for Robotic
Manipulation with Language Models. arXiv:2307.05973.
Li, R.; Allal, L. B.; Zi, Y.; et al. 2023. StarCoder: may the
source be with you! arXiv:2305.06161.
Liang, J.; Huang, W.; Xia, F.; Xu, P.; Hausman, K.; Ichter,
B.; Florence, P.; and Zeng, A. 2022. Code as Policies:
Language Model Programs for Embodied Control. In
arXiv:2209.07753.
Liu, B.; Jiang, Y.; Zhang, X.; Liu, Q.; Zhang, S.; Biswas,
J.; and Stone, P. 2023. LLM+P: Empowering Large
Language Models with Optimal Planning Proficiency.
arXiv:2304.11477.
OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774.
Rozière, B.; Gehring, J.; Gloeckle, F.; et al. 2023.
Code Llama: Open Foundation Models for Code.
arXiv:2308.12950.
Singh, I.; Blukis, V.; Mousavian, A.; Goyal, A.; Xu, D.;
Tremblay, J.; Fox, D.; Thomason, J.; and Garg, A. 2023.
ProgPrompt: Generating Situated Robot Task Plans using
Large Language Models. In ICRA 2023.

