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Abstract

Safe operation of autonomous system in environments where
system dynamics are partially unmodelled and potentially
time-varying remains an open challenge. We present an ap-
proach that works alongside a data-driven predictive algo-
rithm to control a system subject to such dynamics. The pro-
posed approach bootstraps from prior estimates of these dy-
namics learnt from previously seen data, while also incorpo-
rating likelihood estimates from newly obtained information.
We demonstrate an experiment where performance improves
by a factor of over 80% on a repetitive control task when these
unmodelled dynamics terms are iteratively learned over time.

1 Introduction
A dominant subset of data-driven control research involves
learning unmodelled (or residual) dynamics, uncaptured by
low-fidelity first principles models, to obtain improved con-
trol performance (D’Souza and Pant 2023; Hewing, Kabzan,
and Zeilinger 2020; Calandra et al. 2015). Recent work has
also started to address this problem in light of systems sub-
ject to hybrid residual dynamics. In this paper, we consider
a more realistic setting of the problem where, provided with
a hybrid bayesian residual model, the system must operate
(using a Model Predictive Controller (MPC)) in an environ-
ment where the active mode of the hybrid model in effect at
different points of the workspace is apriori unknown. More-
over, we consider that this distribution can change over time
resulting in a “dynamic” environment.
Motivating example (EX-M) Consider an autonomous robot
performing a repetitive task in an outdoor environment con-
sisting of different terrains, viz. mud, snow, ice etc., with
each terrain having a corresponding residual dynamics mode
in the provided hybrid model. With no apriori information
about the terrain (equivalently mode) distribution, the mode
of the hybrid model to be used at each timestep in the MPC
dynamics prediction is unknown, which can lead to poor
tracking performance. This necessitates the use of a map-
ping algorithm to identify the mode distribution from data.

Furthermore, the terrain distribution can shift over time
due to natural causes e.g., additional snowfall or due to robot
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motion e.g., snow potentially melts when repeatedly trav-
elled on causing the terrain to change to wet mud. As a re-
sult, the mapping algorithm alluded to previously must be
capable of adapting to samples generated by time-varying
terrain distributions in a streaming fashion.
Related Work. There has been work that addresses similar
problem statements. Lew et al. (2022) uses online bayesian
meta-learning to learn true residual dynamics with guaran-
tees via adaptive confidence sets but does not address the
problem of hybrid residual dynamics and mode estimation.
Nagy et al. (2023) is capable of dealing with unseen hy-
brid modes by trying to weight existing modes of the hybrid
model. However, it does not build a mode map for better in-
formation retention on repetitive tasks and cannot deal with
varying modes across the MPC horizon. D’Souza and Pant
(2023) constructs a hybrid MPC formulation but assumes
full information of the ground truth mode distribution.
Contributions. In this work, we propose an adaptive mode-
mapping algorithm that: 1) uses a likelihood-prior trade-
off scheme, conditioned on data density estimates, to con-
trol rate of adaptation depending on previously seen data,
and 2) uses of a density-based sample retainment scheme
to prevent information forgetting. We then utilize the out-
put of this algorithm in a hybrid MPC controller (D’Souza
and Pant 2023) and show that it improves performance iter-
atively over a repetitive control task when subject to time-
varying dynamics terms.

2 Problem Setup
We first define the dynamics for the system under consider-
ation with xk, uk denoting the state of the system and the
input applied to it at timestep k respectively.

xk+1 = f(xk, uk) + gk(xk, uk) + wk (1)
f(xk, uk) denotes the known dynamics in (1). The residual
dynamics, g, are hybrid with M number of modes defined
as gset = {gm | m ∈ {1, . . . ,M}}. For example, M = 3 in
EX −M i.e., one mode for each terrain.

We introduce a set of discrete variables, δm,k, to select be-
tween the elements of gset for the prediction in (1) yielding,

gk(xk, uk) =

M∑
m=1

δm,kgm(xk, uk) (2)

Let ice correspond to mode 1 in EX-M. For any point in the



workspace, xws
k , containing ice, δ1,k = 1 and δ2,k = δ3,k =

0 with (2) reducing to gk(xk, uk) = g1(xk, uk).
The above description applies similarly to the noise term,
wk, with each mode corresponding to different noise param-
eters that we assume to describe a zero-mean Gaussian.

For our problem, we assume we are given a hybrid
Bayesian approximation, ĝ, of the true residual dynamics
in (1). However, we do not know the dynamic function that
generates the above described δm,k’s. We aim to learn an
approximation, δ̂(xws

k ,m), of this function that maps xws
k to

δm,k ∀m ∈ {1, . . . ,M} from observed data collected dur-
ing iterative runs of the system in the environment.

3 Methodology
Our approach uses a neural network (Sitzmann et al. 2020)
parametrized by weights θ to model δ̂. To learn δ̂, we must
compute the likelihood that a particular mode, m, is active
at a point xws

k . From (1), this can be done using mismatches,
dk, between the predicted state, x̂k+1 (obtained using ĝ),
and true measured state, xk+1, collected over the course of
a trajectory with dk = x̂k+1 − xk+1. That is, we obtain the
likelihoods lm,k ∝ P (δm,k = 1 | ĝ, x̂k+1 − xk+1).

Since δ̂ is learnt iteratively, it is used to generate prior pre-
dictions, ϕm,k = ϕm(xws

k ), as it is implicitly conditioned on
previously seen data via the gradient descent training loop.

The prior and likelihood can then be traded off to ulti-
mately obtain posteriors used as training labels, yk.

yk ∝ (lm,k
αk)ϕm(xws

k ) (3)
αk is the trade-off term derived using the density of previ-
ously collected samples which can be interpreted as follows,
• A higher αk boosts trust in the likelihood compared to the

prior and can be used to prevent trusting overconfident
but inaccurate prior predictions.

• A lower αk places more trust in the prior and can be used
to implicitly specify the rate at which the posterior yk
should adapt to shifts in the mode distribution over time.

This results in a dataset DC = (xws
k , yk) containing samples

from the current trajectory. In order to prevent information
forgetting, we keep track of previous data samples, DP , and
retain a subset of those samples, DR, that fall below a den-
sity threshold, cR for a kernel density estimator (Silverman
2018) computed on DC .

The weights θ are then updated using Adam (Kingma and
Ba 2017) on DC∪DR at the end of every run so that δ̂ better
estimates the dynamic ground truth function.

Finally we use a hybrid MPC controller in order to control
the system given δ̂ and a reference trajectory, xref

k , to be
tracked (D’Souza and Pant 2023).1

4 Results
We demonstrate the proposed algorithm on a 2-D quadro-
tor system (Yuan et al. 2022) with each residual mode of
ĝ subject to wind dynamics as a function of velocity along
the z-axis. Control performance is measured by Cost =

1A summary of the entire algorithm with visualizations of com-
ponent outputs can be found at Mode-mapping HGPMPC Results

Figure 1: A visualization of predictions from δ̂ over successive
runs of a repetitive task. (Top) Ground truth mode distribution +
reference, true trajectories. (Bottom) NN predictions after each
run’s training step. Lack of prior data density in the blue region
allows quick convergence of the posterior to obtained likelihood
samples (circled in gold) as compared to cautious adaptation to pre-
viously green mode changing to red. Change in ground truth mode
distribution affects performance (circled in green). Some measured
residuals lead to inaccurate label generation (circled in pink). Sam-
ples retained in DR from initial trajectory are circled in grey.

Run # Avg. Cost (Variance) Improvement NN Acc. (%)

2 242.04 (104.62) - 58.22
3 84.50 (22.74) 65.1% 63.56
4 42.69 (4.86) 82.4% 67.06

Table 1: Cost and mapping prediction accuracy (computed on 10K
samples) trends over successive iterations of a repetitive task (over
30 simulation runs). Improvement is when compared to avg. cost
in Run 2. Penalty weight for workspace variables was 20 to enforce
tracking accuracy as compared to 1 for other variables.

∑T−1
k=0 (||xk − xref

k ||2Q + ||uk||2R) with Q and R denoting
penalty matrices. The accuracy metric for δ̂ converts soft
label vectors to one-hot (as required by the controller) for
comparison against the ground truth.

As shown in Figure 1, Run 1 executes a trajectory for ini-
tial sample collection and hence is not included in Table 1.
At deployment time for the repetitive task, the environment
has changed as seen in the ground truth mode distribution
from Run 2 onwards. Over iterative runs, the posteriors con-
verge to the shifted ground truth and the tracking accuracy
visibly improves by Run 4 as further seen by the cost metric
in Table 1. The mapping accuracy does not increase signif-
icantly with runs as the samples only occupy a small por-
tion of the environment. However, the accuracy in a region
around the repetitive task is sufficiently high to generate sig-
nificant improvements in control performance.

5 Conclusions and Future Directions
The proposed algorithm demonstrates improved perfor-
mance over successive iterations of a repetitive task for
a system subject to time-varying dynamics. Future work
would involve a) providing safety guarantees under high
mode uncertainty, b) being able to handle for previously un-
seen modes in the environment, c) biasing cost to prioritize
collecting residuals that better identify the active mode.

https://docs.google.com/presentation/d/e/2PACX-1vRzmtUVUD-z_g38zW2F4-BnyV1B1fEbZADmtxYiEDCa13_QFxTMs2gS28iGDKm8DBMwXRj1S_Rr2SP7/pub?start=false&loop=false&delayms=60000
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