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Introduction
Human operators are increasingly working with robots
in domains such as nuclear decommissioning (Nagatani
et al. 2013; Budd et al. 2020; Chiou et al. 2022), inspec-
tion (Hawes et al. 2017; Chiou, Hawes, and Stolkin 2021;
Budd et al. 2023), and search and rescue (Casper and Mur-
phy 2003; Dole et al. 2015). Operators in such domains work
under time pressure, with incomplete information and com-
munication latencies, such that they often have to make de-
cisions under uncertainty.

An important type of such decision making under uncer-
tainty is choosing between options. For example, a human
operator may choose between direct teleoperation or au-
tonomous robot operation (Lee, Mehmood, and Ryu 2016),
or may have to select which out of a fleet of robots to
assist in the case of robot failure (Ji, Dong, and Driggs-
Campbell 2022). Automated agents can also be tasked with
making choices. For example, an automated agent may have
to decide between operating autonomously or querying the
human operator for a demonstration (Rigter, Lacerda, and
Hawes 2020), or a decision making agent may select be-
tween giving control to the human operator or an automated
controller (Costen et al. 2022).

While such implementations often involve decision-
making by a single agent (usually the human operator), an
open question is whether two decision-makers instead of one
may yield better decisions than either individual decision-
maker alone. The two decision makers could be both hu-
man (Boschetti et al. 2021; Szczurek et al. 2023), or a human
with an automated decision-support system (which may be
embedded in the robotic platform). Intelligent decision sup-
port (IDS) systems are increasingly being used in domains
including agriculture (Zhai et al. 2020), maritime transporta-
tion systems (Gil et al. 2020), medical diagnosis (Braun
et al. 2021), and manufacturing (Turner et al. 2019). The
human operator decides whether to accept/reject the IDS in-
put. Given that human operators work under severe cognitive
and attentional demands (Norton et al. 2017), this can lead
to suboptimal decision making. An open problem therefore
is to find a principled method of joint decision making be-
tween the human operator and the IDS system.
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We study joint decision making in human dyads with the
goal of informing future research on joint decision mak-
ing in a human-IDS system dyad. Work in human-human
dyad joint decision-making in visual-perception tasks has
shown that team performance was better than either individ-
ual, provided the participants were allowed to exchange con-
fidence estimates in their decisions (Bahrami et al. 2010; Ko-
riat 2012). This is called the Maximum Confidence Slating
(MCS) algorithm. This raises the question whether the ex-
change of confidence estimates between two decision mak-
ers can also elevate team performance beyond either indi-
vidual decision maker alone, in tasks involving human op-
erators controlling robots. Specifically, we focus on the fol-
lowing questions:
1. Is there a benefit of MCS for joint decision making in

human-human dyads on a spatial temporal task involving
a robot?

2. How well calibrated is the confidence of humans on this
task?

3. What is the impact of confidence calibration on the im-
pact of MCS on dyad performance?

We conducted user studies on an online robot navigation
experiment with 100 participants. Participants drove two dif-
ferent robots in an online simulation environment. Two dif-
ferent time delays were used to corrupt the control of both
robots. The participants had to choose the robot which had
the lesser time delay (and therefore was more reliable to be
driven) based on their driving experience. They had to also
provide their confidence estimate in their choice.

To the best of our knowledge, this is the first experiment
where the MCS algorithm for joint decision making has been
studied in a dynamic spatio-temporal dynamic task as op-
posed to a static task. Our results show that:
1. The joint decision is more accurate than either individ-

ual’s decision when the choice made with higher confi-
dence is selected.

2. The extent of this benefit is regulated by how well cali-
brated the individuals’ confidence is. Pairing poorly cali-
brated individuals leads to worse performance.

Experiment
We conducted an online study, approved by the Univer-
sity Research Ethics Committee, to investigate joint decision



making on a robot controller selection task by a human dyad.
Our study, conducted using Prolific, tasked participants to
drive two different robots in a given environment, and select
the one with lesser delay in controller commands.

A participant was teamed with a pair of simulated robots
and tasked with navigating them one by one from a start
location to a goal location through a narrow gap. The robot
could start at 6 possible initial poses and the doorway could
be in 4 different gap configurations, leading to 24 different
conditions. The goal was the construction cone.

The participant drove the robot using the W (move for-
ward), A (rotate anticlockwise), S (move back), and D (ro-
tate clockwise) keyboard keys, and was asked to navigate
each robot for 6 seconds. The trial number and the elapsed
time was displayed to the participant. Each robot had a dif-
ferent amount of delay corrupting the control commands. At
the end of the trial, the participant was asked to select which
of the two robots they thought had the lower delay. Follow-
ing this, they were asked to indicate the level of their con-
fidence in the choice by selecting one out of four possible
options: lowest, low, high, and highest confidence.

The initial pose of the robot as well as the door configu-
ration was sampled randomly at the beginning of every trial.
One of the robots was randomly assigned a delay of 50 ms
whereas the delay assigned to the other robot varied based
on the result of the previous trials. We imposed a staircase
procedure where the task was made harder after 2 consecu-
tive successful choices by decreasing the delay on the robot
by 20 ms (thus making the difference in behavior more dif-
ficult to distinguish), and the task was made easier after 1
failure by increasing the delay by 20 ms.

Procedure
Participants were prefiltered on Prolific such that they were
not allowed to participate if they were under 18 years of age.
Each Prolific participant was given a link which took them
to our web page. The web page contained an overview of
the study, ethics approval information, and the option to par-
ticipate. If they accepted to participate, they were taken to a
more detailed overview of the study. Here, they were shown
a video which contained descriptions of various components
on the interface, and an example runthrough of two trials.
Following the video, they were given 5 practice trials to fa-
miliarize themselves with driving the robot.

After the practice round, each participant went through
100 trials. Each trial began with a prompt box. On clicking
OK, the timer began and the participant was able to con-
trol the robot using the keyboard keys. After 6 seconds had
elapsed, the robot was reset to the same initial pose and an-
other prompt box appeared asking whether the participant
was ready to drive the other robot. On clicking the button,
the participant was able to drive. At the end of the trial,
a box appeared which asked the participant to choose the
robot with lesser delay. Two radio buttons were provided
with robot 1 and robot 2. Following this, another box ap-
peared which asked the participant to select their confidence
level in the task. 4 radio buttons appeared with the options
as: Lowest confidence, Low confidence, High confidence
and Highest confidence. After this submission, a new ini-

tial robot pose and door configuration was sampled and the
next trial began.

Results
The maximum confidence slating algorithm for joint deci-
sion making shows significantly higher accuracy than the
higher performing individual. To the best of our knowledge,
this is the first study to have shown this on a spatio-temporal
dynamic task as opposed to static tasks. This provides a prin-
cipled way to select between choices made by a dyad: select
the choice made with higher confidence.

How well the two individuals’ confidence is calibrated has
a significant impact on the benefit of maximum confidence
selection. We found that the effect does not hold when both
participants had poor confidence calibration. These results
provide an addition to the existing literature on the bene-
fit of MCS on joint decision making that found that partici-
pants need to be of similar skill level (Bahrami et al. 2010;
Koriat 2012). We found that pairing dyads according to how
well their confidence is calibrated also impacts the benefit
obtained by doing MCS on the dyad.

These results supplement the existing research on human-
IDS joint decision making. One desideratum for human-IDS
pairs is that humans are well calibrated to both their own
as well as the IDS decisions (Green and Chen 2019). On
a collaborative truss design task, it was shown that good
human decision makers were those who varied their prob-
ability of accepting the IDS recommendation according to
their self-confidence and their confidence in the IDS sys-
tem (Chong et al. 2023). On a recidivism risk prediction
task, it has been shown that humans show well calibrated
confidence in their decision making (Alufaisan et al. 2021).
The role of confidence estimates provided by IDS systems
has also been studied in the explanations and trust space. It
was found that confidence estimates provided by IDS sys-
tems improved people’s trust calibration (Zhang, Liao, and
Bellamy 2020). However, they found that there was no sig-
nificant benefit to joint decision making when the human
operators were provided with IDS system confidence esti-
mates. We conjecture that this may be because the human
operator was still in charge of the final decision and the
higher-confidence decision was not taken.

Conclusion
We studied human-human joint decision making in dyads on
a robotics task. We investigated the impact of maximum con-
fidence choice selection on the accuracy of a two alternative
forced choice task where the task was to select between two
robots, which had different control delays. We found that the
accuracy of the dyad joint decision was significantly higher
than the higher performing individual. However, when both
dyad members had poorly calibrated confidence in their de-
cisions, this benefit was no longer observed. To the best
of our knowledge, this is the first study on joint decision
making for a spatio-temporal dynamic task involving ac-
tively controlling robots. The results suggest that IDS sys-
tems should provide confidence estimates along with their
decisions, as well as adaptively calibrate confidence accord-



ing to the human partner. These considerations are important
as human-IDS systems become increasingly prevalent to en-
able seamless autonomy.
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