Adapting to Ethical and Social Norms in Reinforcement Learning Agents

Houssam Abbas Colin Shea-Blymyer Aayam Shrestha

Oregon State University, Corvallis, OR
{abbasho,sheablyc,shrestaa} @oregonstate.edu

1 Introduction: Ethical Obligations in the
Face of Uncertainty

The use of Reinforcement Learning (RL) agents in real-
world scenarios — from finance to health care to transporta-
tion — makes it essential to establish mechanisms that en-
sure their actions do not merely optimize for a given utility
but also adhere to a broader spectrum of ethical norms and
societal standards. For brevity, we refer to these ethical and
social standards as obligations. This critical dimension of
RL agents’ design remains under-explored.

Traditional specification] a nguages,1 i ke Probabilistic
Computation Tree Logic (PCTL), are inadequate at draw-
ing a distinction between what should be the case (how
the agent’s obligations constrain its behavior) and what is
the case (how the agent actually behaves). It has long been
recognized that a deontic logic is needed for this distinc-
tion (Gabbay, Horty, and Parent 2013), but design tools for
deontic logic have largely been lacking. Given the logic, de-
signers need algorithms that can verify if a given agent’s
policy meets the specified obligations and guide modifica-
tions to the agent’s policy if it doesn’t. Policy modifications
might also be needed if the obligations themselves change at
runtime, e.g. as a result of discovering something new in the
environment. This abstract demonstrates the use of Expected
Act Utilitarianism (EAU), a deontic logic we introduced in
(Shea-Blymyer and Abbas 2022) to reason about the obli-
gations of utility maximizing systems. We demonstrate two
algorithms: the first m odel-checks an RL a gent’s behaviors
against the obligations expressed in EAU, and the second
employs policy gradient to refine the a gent’s p olicy until it
aligns with the given obligations.

Running example. Figure 1 shows a problem where a
drone must carry biohazardous material across a city to a
hospital. The hospital rewards the drone with 10 points, but
every other cell gives the drone a penalty of -1. The RL prob-
lem is to maximize the drone’s expected cumulative rewards,
which leads to a policy that takes the shortest route between
the starting position and the hospital.

However, we also want the drone to avoid locations where
accidental contamination is especially problematic - in this
example, a children’s playground. This indicates a moral

AAAI 2024 Spring Symposium on User-Aligned Assessment of
Adaptive Al Systems. Stanford University, Stanford, CA, USA.

Figure 1: The “windy-drone” MDP. An agent in this MDP
has 4 actions in every state: up, down, left, and right. A cho-
sen action has a 70% chance of success, and each of the other
3 can occur with 10% chance. Darkened cells are inaccessi-
ble states, and the “goal” state is absorbing.

conflict between delivering the material to hospital patients
quickly, and avoiding contamination to third parties. But
how to characterize the balance numerically, and juggle
penalties and rewards to achieve it? Instead of modifying
the reward, we assign the drone a formal, high-level obli-
gation to avoid the playground with a high probability. The
requirement is probabilistic to account for the uncertainty
in the environment, which could make a non-probabilistic
obligation unachievable in every case.

2 Experiments

The problem is this: the design team has come up with a re-
ward for the MDP and computed/approximated the optimal
policy 7*, which maximizes the corresponding utility. The
design team is also given an EAU obligation ®|a s-stit :
P>]t it expresses that agent o ought to ensure that ¢ is
true with probability at least p (P>, is in PCTL. See (Shea-
Blymyer and Abbas 2022) for details). In general, 7* will
not satisfy this obligation since the reward might be balanc-
ing several requirements, and reward shaping is notoriously
difficult. But the ethical obligations are non-negotiable. We
therefore ask: how can we modify 7* to obtain a policy 7%
such that the controlled system satisfies P~ ,¢?

We do this by leveraging gradient computation for para-
metric Markov Chains (MCs) (Badings et al. 2023). In our
case, the parametric MC is the MDP controlled by 7*. The
parameters of the MC are the probabilities of taking a given
action in a given state, i.e. w(al|s). The function f to be op-

timized is the probability of the parametric MC satisfying
. The gradient of f relative to the policy parameters is the
probability gradient V. f. The algorithm also uses V.V,
the gradient of the value function relative to the policy. We
experiment with two approaches: starting from 7*,

1. average gradient: move along the average gradient
(Vaf+V.V)/2,

2. alternating gradient: or move first along V. f until
the probability threshold is satisfied, possibly decreasing
utility V; then move along V. V'; and keep alternating.

The obligation ®[a s-stit : Ps,[-< playground]] is
used in the experiments: the agent o ought to ensure a prob-
ability of at least p that it never enters the playground. We
set p = 0.75. The dynamics of this obligation are interesting
as fulfilling it pushes the agent away from its optimal policy
— encouraging it to take a path that is almost twice as long
in the best case.

Average Gradient experiment. When moving along the
average gradient, the probability f of satisfaction rises to al-
most 1.0, while pulling the expected utility below 110 from
its maximum of 142. This suggests that there is room to in-
crease utility again at the cost of some lowering of f. Fur-
ther, this approach gives no guarantee that f will be raised
above p. See Figure 2.

=
S

I

S

0.8

~
S

0.6

)

1001
0.4

Expected Utility
Probability of Satisfaction

801 0.2

L

0 200 400 600 800 1000
Updates

0.0

Figure 2: Average gradient experiment.

Alternating gradient experiment. The performance of
this method is shown in Figure 3. Here, the probability f of
satisfaction comes to oscillate around the threshold, allow-
ing the expected utility of the policy to rise to almost 120 —
an increase of almost 10% over the average gradient method
while maintaining satisfaction. This method ensures that f
is near the set threshold, or is otherwise as high as possible.
The alternating gradient method is also less computationally
demanding than the average gradient method, as each itera-
tion only requires the calculation of one set of gradients.

Large MDP Experiment: Cartpole We illustrate our
EAU model-checker on a large DAC-MDP (Shrestha et al.
2020) modeling the cartpole system. The MDP has 50,000
states and over 3,000,000 transitions. We formulated 20
PCTL formulas 1, . . . , ¢20 to check as strategic obligations
®[a s-stit: pg]. The time it took to check a subset of these

Expected Utility
S
8
°
IS
Probability of Satisfaction

0 200 400 600 800 1000
Updates

Figure 3: Alternating gradient experiment.

Table 1: Seven of the 20 formulas tested on the DAC-MDP,
and the time to model-check M = ®[a s-stit: oy].

formula ought (s)
01 | P>—0.2[C (ag0]agd)] 21.03
@2 | Ps—0.00001[C (aq0]ag4)] | 20.73
©3 P>:0_1 [D aq2] 2463
(‘04 P<0.7[|:| aq2] 2080
Y5 P<0_7[<> qu] 2092
w6 | P>=0.7[xq0] 24.97
©7 P>0,7[<> qu] 2494

formulas is given in Table 1. All times were measured on a
system with 16 GiB of RAM and an Intel i7-2620M CPU at
2.7 GHz.

Contrary-to-Duty Obligation A contrary-to-duty (CTD)
obligation is an obligation that enters into force in case a
primary obligation (the duty) is violated: e.g. if the agent
ought to ensure that the medicine cabinet is full (the primary
obligation), but it isn’t (the violation), then the agent ought
to ensure that next an order is placed (the CTD). As a mat-
ter of logic, such reasoning is not supported by implications
in, say, LTL (Gabbay, Horty, and Parent 2013). We model-
check such a formula on the “windy-drone” system, namely:

®las-stit: O P>g.7[checkpoint]] AOnorth

= ®[as-stit: OO P> ¢[start]] M

We successfully checked this formula by forcing the agent
to move north, and then verifying the truth of the CTD obli-
gation from that state. More generally, we check CTD obli-
gations by looking at the successor states that would indicate
a violation of the primary obligation and then verify the truth
of the CTD obligations from those states.

Runtime adaptation. One gradient computation takes an
average of 0.3sec on our machine. So in the above examples,
roughly 300 x 0.3 = 90 seconds are needed for conver-
gence. Since obligation updates should be infrequent (oth-
erwise, obligations don’t really constrain much at all), this
suggests that adapting a policy to emerging obligations at
runtime is feasible. Of course, a more comprehensive set of
experiments is needed for a proper assessment.

References

Badings, T.; Junges, S.; Marandi, A.; Topcu, U.; and Jansen,
N. 2023. Efficient Sensitivity Analysis for Parametric Ro-
bust Markov Chains. In Enea, C.; and Lal, A., eds., Com-
puter Aided Verification, 62-85. Cham: Springer Nature
Switzerland. ISBN 978-3-031-37709-9.

Gabbay, D.; Horty, J.; and Parent, X., eds. 2013. Handbook
of deontic logic and normative systems. College Publica-
tions.

Shea-Blymyer, C.; and Abbas, H. 2022. Generating Deontic
Obligations From Utility-Maximizing Systems. In Proceed-
ings of the 2022 AAAI/ACM Conference on Al, Ethics, and
Society, 653-663.

Shrestha, A.; Lee, S.; Tadepalli, P.; and Fern, A. 2020. Deep-
averagers: Offline reinforcement learning by solving derived
non-parametric mdps. arXiv preprint arXiv:2010.08891.

