
Learning Causally Accurate Models for Autonomous
Assessment of Deterministic Black-Box Agents

Pulkit Verma verma.pulkit@asu.edu

Siddharth Srivastava siddharths@asu.edu

Autonomous Agents and Intelligent Robots Lab,

School of Computing and Augmented Intelligence,

Arizona State University, Tempe, AZ 85281, USA

Abstract

This paper develops a new approach for estimating an interpretable, relational, and
causally accurate model of a black-box autonomous agent that can plan and act in fully
observable deterministic settings. Our main contributions are a new paradigm for esti-
mating such models using a rudimentary query-response interface with the agent and a
hierarchical querying algorithm that generates an interrogation policy. We also introduce
dynamic causal decision networks (DCDNs) that capture the causal structure of planning
models expressed in STRIPS-like languages. We show that the models we learn can be
represented in the form of these DCDNs, and are causally accurate. Empirical evaluation
of our approach shows that despite the exponential number of possible agent models in
terms of the number of predicates and agent capabilities, our approach results in the cor-
rect and scalable estimation of interpretable agent models for a wide class of black-box
autonomous agents. Our results also show that this approach can use predicate classifiers
to learn interpretable models of planning agents that represent states as images.

1. Introduction

AI systems are being deployed at a faster rate than ever before. Many of these systems
are intended to perform tasks specified by users who are not experts in AI. This leads
to a pervasive problem for these users: how would they ascertain whether an AI system
can perform a task safely in their home? Furthermore, most non-experts hesitate to ask
questions about new AI tools (Mou & Xu, 2017) and often do not know which questions
to ask for assessing the safe limits and capabilities of an AI system. This problem becomes
even more challenging when we consider the fact that many of these AI systems have become
so complex that even AI experts don’t know how these systems work internally, and resort
to post-hoc explanations of their decisions.

In this paper, we present an approach for addressing these issues. We propose a per-
sonalized agent-assessment module (AAM), shown in Fig. 1, which can be connected with
an arbitrary AI agent using a simple interface. The desiderata for such an interface for
third-party assessment of AI systems should be: (1) interpretability, the assessment system
should be able to compute a user-interpretable model of the black-box AI system’s capabil-
ities; (2) correctness, the model computed by the assessment system should be accurate; (3)
generalizability, the assessment system should be independent of the internals of the black-
box AI system and hence should be able to work with a wide variety of AI systems; and
(4) minimal requirements, as the assessment system is intended to be used by people who

1

Technical Report TR-ASUSCAI-2024-001, SCAI, Arizona State University, 2024

Interpretable model of

robot’s capabilities
Agent-Assessment

Module
Interpretable model

of AI system’s

capabilities

Response

Query

Preferences on

interpretability

Black-Box

AI System
User

Figure 1: The agent-assessment module uses its user’s preferred vocabulary, queries the AI system,
and delivers a user-interpretable correct causal model of the AI system’s capabilities. The AI system
does not need to know the user’s vocabulary or modeling language.

have not developed the AI systems being assessed, it should not place strong requirements
on the design or implementation of the black-box AI systems to carry out the assessment.

To support these desiderata we leverage the framework of planning domain descrip-
tions to learn and express symbolic models of the AI system in a relational STRIPS-like
language (Fikes & Nilsson, 1971; Fox & Long, 2003). This representation feature conjunc-
tive preconditions, add lists, and delete lists for each of the agent’s capability, and can be
easily translated into interpretable descriptions such as “in situations where X holds, if
the agent executes capabilities c1, . . . , ck it would result in Y ”, where X and Y are in the
user’s vocabulary (Camacho & McIlraith, 2019). Such representations have been shown
to be intuitive for humans in understanding deliberative behaviors of other agents (Malle,
2004; Miller, 2019). Furthermore, such models can be used to investigate interventions and
support assessments of causality (Halpern, 2016).

We require the AI system to have only a rudimentary query-response interface using
which it can answer simple queries. Consider a situation where a H(uman) (H) wants a
grocery-delivery robot (A) to bring some groceries, but s/he is unsure whether it is up to
the task and wishes to estimate A’s internal model in an interpretable representation that
s/he is comfortable with. If H was dealing with a delivery person, s/he might ask them
questions such as “would you pick up orders from multiple persons?” and “do you think
it would be alright to bring refrigerated items in a regular bag?” If the answers are “yes”
during summer, it would be a cause for concern. Näıve approaches for generating such
questions to ascertain the limits and capabilities of an agent are infeasible.1

The assessment module connects A with a simulator and provides a sequence of in-
structions, or a plan as a query. A’s plan is executed in the simulator and the assessment
module uses the simulated outcome as the response to the query. Thus, given an agent,
the assessment module uses as input: a user-defined vocabulary, the agent’s instruction set,
and a compatible simulator. These inputs reflect natural requirements of the task and are
already commonly supported: AI systems are already designed and tested using compatible
simulators, and they need to specify their instruction sets in order to be usable. The user
provides the predicates or concepts that they can understand and these concepts can be
defined as functions on simulator states. Such concepts can be acquired through orthog-

1. Just 2 capabilities and 5 grounded propositions would yield 72×5 ∼ 108 possible STRIPS-like models –
each proposition could be absent, positive or negative in the precondition and effects of each capability,
and cannot be positive (or negative) in both preconditions and effect simultaneously. A query strategy
that inquires about each occurrence of each proposition would be not only unscalable but also inapplicable
to simulator-based agents that do not know their capabilities’ preconditions and effects.

2

onal research on interactive concept acquisition (Kim, Shah, & Doshi-Velez, 2015; Lage
& Doshi-Velez, 2020) or explained to users through demonstrations and training (Schulze
et al., 2000). These concepts can be modeled as binary-valued predicates that have their
associated evaluation functions (Mao et al., 2022).

This fundamental framework (Sec. 4) can be developed to support different types of
agents as well as various query and response modalities. E.g., queries and responses could
use a speech interface for greater accessibility, and agents with reliable inbuilt simulators/look-
ahead models may not need external simulators. This would allow the assessment module
to pose queries such as “what do you think would happen if you did ⟨query plan⟩”, and the
learned model would reflect A’s self-assessment. The “agent” could be an arbitrary entity,
although the expressiveness of the user-interpretable vocabulary would govern the scope of
the learned models and their accuracy.

We have addressed this issue in the past using active interrogation based assessment of
black-box AI systems (Verma, Marpally, & Srivastava, 2021; Nayyar, Verma, & Srivastava,
2022; Verma, Marpally, & Srivastava, 2022; Verma, Karia, & Srivastava, 2023) in a variety of
settings. In contrast to these works, this paper (i) formally defines the interface requirements
for a third-party assessment, (ii) performs an extensive complexity analysis, (iii) defines
causal accuracy for planning models, and (iv) shows that the models learned using our
approach are causally accurate.

Main contributions The main contributions of this work are: (i) first approach to for-
mally define interface requirements for third-party assessment; (ii) formally define the agent
assessment task; (iii) formally define causal soundness and completeness of planning models;
(iv) propose an algorithm to solve the agent assessment task; and (v) show empirically that
our algorithm learns causally accurate models, more efficiently than the baseline.

Our empirical evaluation (Sec. 6) shows that this method can efficiently learn correct
models for black-box versions of agents using hidden models from the International Planning
Competition (IPC)2. It also shows that the agent assessment module can use image-based
predicate classifiers to infer correct models for simulator-based agents that respond with an
image representing the result of query plan’s execution.

2. Background

Models learned by the agent assessment module are in the form of planning models and we
show in this work that these models are causally accurate (Sec. 5.2). In this section, we
briefly discuss the formalism of the planning models, and outline the relevant background
concepts for modeling causal relationships.

2.1 Planning Models

The agent assessment module assumes that the user needs to estimate the agent’s model as
a STRIPS-like planning model. Such models express the description of agent’s high-level
capabilities. In the literature (Verma et al., 2022, 2023), “actions” are used to refer to the
core functionality of the agent, denoting the agent’s decision choices, or primitive actions
or controls that the agent could execute. In contrast, “capabilities” are used to refer to

2. https://www.icaps-conference.org/competitions

3

https://www.icaps-conference.org/competitions

the high-level behaviors that the agent can perform using its AI algorithms for behavior
synthesis, including planning and learning.

In this work, we assume that the agent provides its list of capabilities as input, and
hence, in the rest of the paper, we use the term actions and capabilities interchangeably.
Now, STRIPS-like planning models are formally defined as:

Definition 1. A planning model is a tuple M = ⟨P,C⟩, where P = {pr11 , . . . , prnn }
is a finite set of predicates with arities ri, i ∈ [1, n]; A = {a1, . . . , ak} is a finite set
of parameterized actions (capabilities). Each action aj ∈ A is represented as a 3-tuple
⟨header(aj), pre(aj), eff(aj)⟩, where header(aj) is the action header consisting of actions
name and action parameters, pre(aj) represents the set of positive and negative predicate
atoms that must be true or false, respectively in a state where aj can be applied, eff(aj) is
the set of positive or negative predicate atoms that will change to true or false, respectively
as a result of execution of aj.

In the rest of the paper, we use the term “model” to refer to planning models. Given a
model M and a set of objects O, let SM,O be the space of all states defined as maximally
consistent sets of literals over the predicate vocabulary of M with O as the set of objects.
We omit the subscript when it is clear from the context. An action a ∈ A is applicable
in a state s ∈ S if s |= pre(a). The result of executing s is a state a(s) = s′ ∈ S such
that s′ |= eff(a), and all atoms not in eff(a) have literal forms as in s. We extend this
notation to express the result of executing a plan π = ⟨a1, a2, . . . , an⟩ in a state s, i.e.,
an(. . . a2(a1(s)) . . .) = sn as π(s) = sn.

Lifted instantiated predicate Each predicate can be instantiated using the param-
eters of an action. The number of action parameters is bounded by the maximum ar-
ity of the action. E.g., consider the action load_truck(?v1, ?v2, ?v3) and predicate
(at ?x ?y) in the IPC Logistics domain. The predicate (at ?x ?y) can be instantiated us-
ing action parameters ?v1, ?v2, and ?v3 as (at ?v1 ?v1), (at ?v1 ?v2), (at ?v1 ?v3),
(at ?v2 ?v2), (at ?v2 ?v1), (at ?v2 ?v3), (at ?v3 ?v3), (at ?v3

?v1), and (at ?v3 ?v2). We represent the set of all such possible predicates instanti-
ated with action parameters as lifted instantiated predicates P ∗.

2.2 Observations

We compare our approach to the class of model learners that use the observations generated
by the agent to learn the agent model. Such observations are defined as:

Definition 2. Given a state space S, and a set of actions A, an observation trace o
is an alternating sequence of states and actions of the form ⟨s0, a1, s1, a2, . . . , sn−1, an, sn⟩
such that si ∈ S, ai ∈ A, and ∀i ∈ [1, n] ai(si−1) = si.

The states si−1 and si are called pre- and post-states of action ai, respectively.

3. Formal Framework

As noted in introduction, the agent assessment module uses the following information as
input: (i) the instruction set from the agent in the form of header(a) for each a ∈ A; and

4

(ii) a predicate vocabulary P from the user with functional definitions of each predicate.
This gives the assessment module sufficient information to perform a dialog with A about
the outcomes of hypothetical action sequences. This dialog is performed in terms of queries
and responses.

3.1 Form of Agent Queries

As mentioned earlier, the assessment module poses queries to the agent and based on A’s
responses θ it infers A’s agent model. We express queries as functions that map models to
answers.

Definition 3. Given a set of predicates P and a set A of actions, let U be the set of all
possible planning models (ref. Def. 1) expressible using P and A. Let Θ be the set of possible
responses. A query q is a function q : U → Θ.

In this paper, we utilize only one class of queries: plan outcome queries (QPO), which
are parameterized by a state sI and a plan π. Let P ∗ be the set of predicates P instantiated
with objects O in an environment. QPO queries ask A the length of the longest prefix of the
plan π that it can execute successfully when starting in the state sI ⊆ P ∗ as well as the final
state sF ⊆ P ∗ that this execution leads to. E.g., “Given that the truck t1 and package p1

are at location l1, what would happen if you executed the plan ⟨load_truck(p1,t1,l1),
drive(t1,l1,l2), unload_truck(p1,t1,l2)⟩?”

A response to such queries can be of the form “I can execute the plan till step ℓ and at
the end of it p1 is in truck t1 which is at location l1”. Formally, the response θPO for plan
outcome queries is a tuple ⟨ℓ, sF ⟩, where ℓ is the number of steps for which the plan π could
be executed, and sF ⊆ P ∗ is the final state after executing ℓ steps of the plan. If the plan
π cannot be executed fully according to the agent model MA then ℓ < len(π), otherwise
ℓ = len(π). The final state sF ⊆ P ∗ is such that MA |= π[1 : ℓ](sI) = sF , i.e., starting with
a state sI , M

A successfully executed first ℓ steps of the plan π. Thus, QPO : U → N× 2P ,
where N is the set of natural numbers.

3.2 Requirements for Independent Assessment

The requirements in an AI agent might change depending on the type of queries the agent
is capable of answering. This is because we define the set of requirements as a function of
the agent. Formally, we define the requirements on an agent as:

Definition 4. Given a query class Q, with an associated response set Θ, the assessment
requirement ρA on an autonomous agent A is a relation between Q and Θ, and is repre-
sented as ρA⟨Q,Θ⟩.

Given a plan-outcome query q = ⟨s0, π⟩, where π = ⟨a1, . . . , an⟩, an autonomous agent
A is said to support the set of requirements ρA if its response θ = ⟨ℓ, sℓ⟩ satisfies:

ρA(⟨s0, ⟨a1, . . . , an⟩⟩, ⟨ℓ, sℓ⟩) ≜ ℓ < n∧
∀i ∈ 1, . . . , ℓ− 1, ∃si A |= ai(si−1) = si ∧ A |= ¬(pre(aℓ+1) ∧ sℓ)

(1)

5

We now define the overall problem of agent interrogation as follows. Given a class of
queries and an agent with an unknown model supports the plan outcome query requirement
above (1), determine the model of the agent. This can be formally defined as:

Definition 5. An agent assessment task is defined as a quadruple ⟨A, P, CH , ρA⟩, where
C is the agent being assessed, Q is the class of queries that can be posed to the agent
by the assessment module, P and AH are the sets of predicates and action headers that
the assessment module uses based on inputs from H and A, and ρA is the assessment
requirement that A must satisfy.

The objective of our solution to the the agent interrogation task is to derive A’s agent
model MA using Q, P , and AH . We now introduce a running example which we’ll use
throughout the paper.

Running Example Consider a driving robot with a single action drive(?t ?s ?d),
parameterized by the truck it drives, source location, and destination location. Assume
that all locations are connected, hence the robot can drive between any two locations.
The predicates available are (at ?t ?loc), representing the location of a truck; and
(src_blue ?loc), representing the color of the source location. Instantiating at and
src_blue with parameters of the action drive gives four instantiated predicates (at ?t ?s),
(at ?t ?d), (src_blue ?s), and (src_blue ?d).

3.3 Distinguishability and Prunability

Not all queries are useful, as some of them might not increase our knowledge of the agent
model at all. Hence, we define some properties associated with each query to ascertain its
usability. A query is useful only if it can distinguish between two models. More precisely,
a query q is said to distinguish a pair of models Mi and Mj , denoted as Mi

qMj , iff
q(Mi) ̸= q(Mj).

Definition 6. Two models Mi and Mj are said to be distinguishable, denoted as Mi Mj,
iff there exists a query q that can distinguish between them, i.e., ∃q Mi

qMj.

Given a pair of abstract models, we wish to determine whether one of them can be
pruned, i.e., whether there is a query for which at least one of their answers is inconsistent
with the agent’s answer. Since this is computationally expensive to determine, and we wish
to reduce the number of queries made to the agent, we first evaluate whether the two models
can be distinguished by any query, independent of consistency of their response with that
of the agent. If the models are not distinguishable, it won’t be possible to try to prune one
of them under the given query class.

Next, we determine if at least one of the two distinguishable models is consistent with
the agent. When comparing the responses of two models at different levels of abstraction,
we must consider the fact that the agent’s response may be at a different level of abstraction
if the given pair of models is abstract. Taking this into account, we formally define what it
means for an abstract model Mi’s response to be consistent with that of agent model MA:

Definition 7. Let q be a query such that Mi
qMj; q(Mi) = ⟨ℓi, si⟩, q(Mj) = ⟨ℓj , sj⟩, and

q(MA) = ⟨ℓA, sA⟩. Mi’s response to q is said to be consistent with that of MA, i.e.,
q(MA) |= q(Mi) iff ℓA = len(πq), len(πq) = ℓi and si ⊆ sA.

6

Using this notion of consistency, we can now reason that given a set of distinguishable
models Mi and Mj , and their responses in addition to the agent’s response to the distin-
guishing query, the models are prunable if and only if exactly one of their responses is
consistent with that of the agent. Formally, we define prunability as:

Definition 8. Given an agent-interrogation task ⟨MA, Q, P,AH⟩, two models Mi and Mj

are prunable, denoted as Mi♢Mj, iff ∃q ∈ Q : Mi
qMj ∧ (q(MA) |= q(Mi) ∧ q(MA) ̸|=

q(Mj)) ∨ (q(MA) ̸|= q(Mi) ∧ q(MA) |= q(Mj)).

3.4 Components of Agent Models

In order to formulate our solution approach, we consider a model M to be comprised of
components called palm tuples of the form λ = ⟨p, a, l,m⟩, where p is an instantiated
predicate from the vocabulary P ∗; a is an action from the set of parameterized actions A,
l ∈ {pre, eff}, and m ∈ {+,−, ∅}. For convenience, we use the subscripts p, a, l, or m to
denote the corresponding component in a palm tuple. The presence of a palm tuple λ in a
model denotes the fact that in that model, the predicate λp appears in an action λa at a
location λl as a true (false) literal when mode λm is positive (negative), and is absent when
λm = ∅. This allows us to define the set-minus operation M \ λ on this model as removing
the palm tuple λ from the model. We consider two palm tuples λ1 = ⟨p1, a1, l1,m1⟩ and
λ2 = ⟨p2, a2, l2,m2⟩ to be variants of each other (λ1 ∼ λ2) iff they differ only on mode m,
i.e., λ1 ∼ λ2 ⇔ (λ1p = λ2p) ∧ (λ1a = λ2a) ∧ (λ1l = λ2l) ∧ (λ1m ̸= λ2m).

We also define the notion of pal tuples which are represented a 3-tuple ⟨p, a, l⟩. Each pal
tuple γ = ⟨p, a, l⟩ corresponds to three pal tuples λm, m ∈ {+,−, ∅}, such that γp = λmp ,
γa = λma , and γl = λml

. A mode assignment to a pal tuple γ = ⟨p, a, l⟩ can result in 3
palm tuple variants γ+ = ⟨p, a, l,+⟩, γ− = ⟨p, a, l,−⟩, and γ∅ = ⟨p, a, l, ∅⟩.

For a model M = ⟨P,A⟩, the set of all possible palm tuples and pal tuples that can be
generates using p ∈ P and a ∈ A are represented as Λ and Γ, respectively.

Example 1. Based on the running example, possible pal tuples are:

• ⟨(at ?t ?s), drive(?t ?s ?d), pre⟩

• ⟨(at ?t ?s), drive(?t ?s ?d), eff⟩

• ⟨(at ?t ?d), drive(?t ?s ?d), pre⟩

• ⟨(at ?t ?d), drive(?t ?s ?d), eff⟩

• ⟨(src_blue ?s), drive(?t ?s ?d), pre⟩

• ⟨(src_blue ?s), drive(?t ?s ?d), eff⟩

• ⟨(src_blue ?d), drive(?t ?s ?d), pre⟩

• ⟨(src_blue ?d), drive(?t ?s ?d), eff⟩

7

. . .

. . .

...

(a) (b) (c)

Figure 2: (b) Lattice segment explored in random order of γi ∈ Γ; (a) At each node, 3 abstract
models are generated and 2 of them are discarded based on query responses; (c) An abstract model
rejected at any level is equivalent to rejecting 3 models at the level below, 9 models two levels down,
and so on.

3.5 Model Abstraction

We now define the notion of abstraction used in our solution approach. Several approaches
have explored the use of abstraction in planning (Sacerdoti, 1974; Helmert, Haslum, &
Hoffmann, 2007; Bäckström & Jonsson, 2013; Srivastava, Russell, & Pinto, 2016). The
definition of abstraction used in this work extends the concept of predicate and propositional
domain abstractions (Srivastava et al., 2016) to allow for the projection of a single palm
tuple λ. An abstract model is one in which all variants of at least one pal tuple are absent.
We define abstraction of a model as:

Definition 9. Let Λ be the set of all possible palm tuples which can be generated using a
predicate vocabulary P ∗ and an action header set AH . Let U be the set of all consistent
(abstract and concrete) models that can be expressed as subsets of Λ, such that no model has
multiple variants of the same palm tuple. The abstraction of a model M with respect to
a palm tuple λ ∈ Λ, is defined by fλ : U → U as fλ(M) = M \ λ.

We extend this notation to define the abstraction of a set of models M with respect
to a palm tuple λ as X = {fλ(m) : m ∈ M}. We use this abstraction framework to
define a subset-lattice over abstract models (Fig. 2(b)). Each node in the lattice represents
a collection of possible abstract models which are possible variants of a pal tuple γ. E.g.,
in the node labeled 1 in Fig. 2(b), we have models corresponding to γ+1 , γ

−
1 , and γ∅1 . Two

nodes in the lattice are at the same level of abstraction if they contain the same number of
pal tuples. Two nodes ni and nj in the lattice are connected if all the models at ni differ
with all the models in nj by a single palm tuple. As we move up in the lattice following
these edges, we get more abstracted versions of the models, i.e., containing less number of
pal tuples; and we get more concretized models, i.e., containing more number of pal tuples,
as we move downward. We now define this model lattice:

8

Definition 10. Let Λ = Γ×{+,−, ∅} be the set of all palm tuples. A model lattice L is a
5-tuple L = ⟨N,E,Γ, ℓN , ℓE⟩, where N is a set of lattice nodes, Γ is the set of all pal tuples

⟨p, a, l⟩, ℓN : N → 22
Λ
is a node label function mapping nodes to sets of abstract models, E is

the set of lattice edges, and ℓE : E → Γ is a labeling function mapping edges to pal tuples such
that for each edge ni → nj , ℓN (nj) = {ξ∪{γk}| ξ ∈ ℓN (ni), γ = ℓE(ni → nj), k ∈ {+,−, ∅}},
and ℓN (⊤) = {ϕ} where ⊤ is the supremum containing the empty model ϕ.

A node n ∈ N in this lattice L can be uniquely identified by the sequence of pal tuples
that label the edges leading to it from the supremum. As shown in Fig. 2(a), even though

theoretically ℓN : N → 22
Λ
, only three requirements of parent abstract models are stored.

Additionally, in these model lattices, every node has an edge going out from it corresponding
to each pal tuple that is not present in the paths leading to it from the most abstracted
node. At any stage during the interrogation, nodes in such a lattice are used to represent
the set of models consistent with the agent’s responses up to that point. At every step, our
algorithm creates queries that help us determine the next descending edge to take from a
lattice node; corresponding to the path 0, 1, 2, . . . , i in Fig. 2(b). This also avoids generating
and storing the complete lattice, which can be doubly exponential in number of predicates
and actions.

4. Solving the Agent Interrogation Task

Let Θ be the set of possible answers to queries. Thus, strings θ∗ ∈ Θ∗ denote the information
received by the assessment module at any point in the query process. Query policies for
the agent interrogation task are functions Θ∗ → Q∪ {Stop} that map sequences of answers
to the next query that the interrogator should ask. The process stops with the Stop query.
In other words, for all answers θ ∈ Θ, all valid query policies map all sequences xθ to Stop
whenever x ∈ Θ∗ is mapped to Stop. This policy is computed and executed online.

We now discuss how we solve the agent interrogation task by incrementally adding palm
variants to the class of abstract models and pruning out inconsistent models by generating
distinguishing queries.

Example 2. Consider the case of a delivery agent. Assume that AAM is considering two
abstract models M1 and M2 having only one action load_truck(?package ?truck ?loc)

and the predicates (at ?package ?loc), (at ?truck ?loc), (in ?package ?truck), and
that the agent’s model is MA (Fig. 1). AAM can ask the agent what will happen if A loads
package p1 into truck t1 at location l1 twice. The agent would respond that it could execute
the plan only till length 1, and the state at the time of this failure would be (at t1 l1) ∧
(in p1 t1).

4.1 Agent Interrogation Algorithm

Algorithm 1 shows AAM’s overall algorithm. It takes the agent A, the set of instantiated
predicates P ∗, the set of all action headers AH , and a set of random states S as input, and
gives the set of functionally equivalent estimated models represented by poss models as
output. S can be generated in a preprocessing step given P ∗. AIA initializes poss models
as a set consisting of the empty model ϕ (line 3) representing that AAM is starting at the
supremum ⊤ of the model lattice.

9

Model Precondition Effect

MA (at ?truck ?loc) ∧ (at ?package ?loc) → (in ?package ?truck) ∧¬(at ?package ?loc)

M1 (at ?truck ?loc) ∧ (at ?package ?loc) → (in ?package ?truck)

M2 (at ?truck ?loc) → (in ?package ?truck)

M3 (at ?truck ?loc) → ()

Table 1: load truck(?package ?truck ?loc) actions of the agent model MA (unknown to H) and
three abstracted models M1, M2, and M3.

In each iteration of the main loop (line 4), AIA maintains an abstraction lattice and
keeps track of the current node in the lattice. It picks a pal tuple γ corresponding to one
of the descending edges in the lattice from a node given by some input ordering of Γ. The
correctness of the algorithm does not depend on this ordering. It then stores a temporary
copy of poss models as new models (line 5) and initializes an empty set at each node to
store the pruned models (line 6).

The inner loop (line 7) iterates over the set of all possible abstract models that AIA
has not rejected yet, stored as new models. It then loops over pairs of modes (line 8),
which are later used to generate queries and refine models. For the chosen pair of modes,
generate query() is called (line 9) which returns two models concretized with the chosen
modes and a query q which can distinguish between them based on their responses. Sec. 4.1.1
describes this process in detail.

AIA then calls filter models() which poses the query q to the agent and the two models.
Based on their responses, AIA prunes the models whose responses are not consistent with
that of the agent (line 11). Then it updates the estimated set of possible models represented
by poss models (line 18). This process is explained in Sec. 4.1.2 in detail.

If AIA is unable to prune any model at a node (line 14), it modifies the pal tuple ordering
(line 15). Sec. 4.1.3 explains this modification in detail. AIA continues this process until it
reaches the most concretized node of the lattice (meaning all possible palm tuples λ ∈ Λ are
refined at this node). The remaining set of models represents the estimated set of models for
A. The number of resolved palm tuples can be used as a running estimate of the accuracy
of the derived models. AIA requires O(|P ∗| × |A|) queries as there are 2 × |P ∗| × |A| pal
tuples. However, our empirical studies show that we never generate so many queries. The
rest of the section describes each of the submodules used in AIA.

4.1.1 Query Generation

The query generation process corresponds to the generate query() module in AIA which
takes a model M ′, the pal tuple γ, and 2 modes i, j ∈ {+,−, ∅} as input; and returns the
models Mi = M ′ ∪ {γi} and Mj = M ′ ∪ {γj}, and a plan-outcome query q distinguishing
them, i.e., Mi

qMj .

Plan-outcome queries have two components, an initial state sI , and a plan π. AIA gets
sI from the input set of random states S ∈ S (line 4). Using sI as the initial state, the
idea is to find a plan, which when executed by Mi and Mj will lead them either to different
states or to a state where only one of them can execute the plan further. Later we pose the
same query to A and prune at least one of Mi and Mj .

10

Algorithm 1 Agent Interrogation Algorithm (AIA)

1: Input: A, AH , P ∗, S
2: Output: poss models
3: Initialize poss models = {ϕ}
4: for γ in some input pal ordering Γ do
5: new models ← poss models
6: pruned models = {}
7: for each M ′ in new models do
8: for each pair {i, j} in {+,−, ∅} do
9: q, Mi, Mj ← generate query(M ′, i, j, γ, S)

10: Mprune ← filter models(q,MA,Mi,Mj)
11: pruned models← pruned models ∪Mprune

12: end for
13: end for
14: if pruned models is ∅ then
15: update pal ordering(Γ, S)
16: continue
17: end if
18: poss models← new models× {γ+, γ−, γ∅} \ pruned models
19: end for

Model Action Precondition Effect

MA
unload(?package ?truck ?loc)

(at ?truck ?loc) ∧ → (at ?package ?loc) ∧
(in ?package ?truck) ¬(in ?package ?truck)

(at ?truck ?loc) ∧ ¬(at ?package ?loc) ∧
load(?package ?truck ?loc)

(at ?package ?loc)
→

(in ?package ?truck)

M1
unload(?package ?truck ?loc) ¬(in ?package ?truck) → ()

load(?package ?truck ?loc) () → ()

M2
unload(?package ?truck ?loc) (in ?package ?truck) → ()

load(?package ?truck ?loc) () → ()

M1 + inu
unload(?package ?truck ?loc)

((inu ?package ?truck) ∨ → (inu ?package ?truck)¬(in ?package ?truck))

load(?package ?truck ?loc) (inu ?package ?truck) → (inu ?package ?truck)

M2 + inu
unload(?package ?truck ?loc)

((inu ?package ?truck) ∨ → (inu ?package ?truck)
(in ?package ?truck))

load(?package ?truck ?loc) (inu ?package ?truck) → (inu ?package ?truck)

Table 2: load(?package ?truck ?loc) and unload(?package ?truck ?loc) actions of the agent
model MA (unknown to H) and two abstracted models M1 and M2, with and without the dummy
predicate inu.

Since the models Mi and Mj are abstract models, we need to ensure that we make
accurate inferences based on their response to a query and compare it with A’s response.
Hence we cannot directly use Mi and Mj to ask questions. We illustrate this using the
example below:

11

Example 3. Consider an empty model ϕ with two actions unload(?package ?truck ?loc)

and load(?package ?truck ?loc). Now consider that it is being concretized with the pal
tuple γ = ⟨(in ?package ?truck), unload(?package ?truck ?loc), pre⟩. The two mod-
els possible in this case are M1 and M2 shown in Tab. 2. It can be clearly seen that the model
M2 (without pu) is an abstraction of MA. Now consider a query q = ⟨sI , π⟩ where sI =
{(at p1 loc1), (at t1 loc1)}, and π = ⟨load(p1 t1 loc1), unload(p1 t1 loc1)⟩.
Now the response to this query by the agent A with model MA in Tab. 2 will be q(MA) = ⟨2,
{(at p1 loc1), (at t1 loc1)}⟩. On the same query, the response of the abstract model
M1 will be q(M1) = ⟨2, {(at p1 loc1), (at t1 loc1)}⟩, whereas M2’s response will be
q(M2) = ⟨1, {(at p1 loc1), (at t1 loc1)}⟩. Hence according to these responses, the M2

will be discarded which is actually the correct model.

This inconsistency happens because the model ϕ is only partially concretized in terms
of the predicate (in ?package ?truck), and this information is not captured in M1 and
M2. To alleviate this issue, we add a predicate pu to the models M1 and M2 as shown in
Tab. 2. So pu in any location (precondition or effect) helps capture the information that it
is not known how a predicate p appears in that action’s precondition (or effect). Without
pu, the planning problem can generate a plan as a query such that a model’s response on it
may be consistent with the agent even though the model is not an abstraction of MA. Now
in the example above, with pu added to the models M1 and M2, the response to the query
for both the models will be q(M1) = q(M2) = ⟨1, {(at p1 loc1), (at t1 loc1)}⟩, and
hence q will no longer be a distinguishing query for these models. A possible distinguishing
query in this case will be q′ = ⟨sI , π⟩ where sI = {(in p1 t1), (at t1 loc1)}, and
π = ⟨unload(p1 t1 loc1)⟩.
Generating plan outcome queries by reduction to planning We reduce the problem
of generating a plan-outcome query from Mi and Mj to a planning problem. We add the
pal tuple γ = ⟨p, a, l⟩ in modes i and j to M ′ to get M ′

i and M ′
j , respectively. If the location

l = eff, we add the palm tuple normally to M ′, i.e., M ′
m = M ′∪⟨p, a, l,m⟩, where m ∈ {i, j}.

We modify these concretized models M ′
j and M ′

j further to reflect unknown effects on p as
follows. Intuitively, an action makes an auxiliary predicate pu (representing an unknown
effect on p) true iff it does not have p in any mode as a precondition. To achieve this, we add
the tuple ⟨pu, a, eff,+⟩ for all actions a that don’t have p in any mode as an effect, and the
tuple ⟨pu, a, eff,−⟩ for all other actions. Similarly, we further modify the model to reflect
the unknown form of the preconditions in terms of p by adding pu to the preconditions of
all actions that do not have p in any mode in their precondition.

Note that pu is added only for generating a distinguishing query and is not part of the
models Mi and Mj returned by the query generation process.

We now show how to reduce plan-outcome query generation into a planning problem
P(M ′′

i ,M
′′
j) (line 5). P(M ′′

i ,M
′′
j) uses conditional effects in its actions (in accordance with

PDDL (McDermott et al., 1998)). The model used to define P(M ′′
i ,M

′′
j) has predicates

from both models M ′′
i and M ′′

j represented as PM ′′
i and PM ′′

j respectively, in addition
to a new auxiliary 0-ary predicate pψ. The action headers are the same as AH . Each
action’s precondition is a disjunction of the preconditions of M ′′

i and M ′′
j . This makes an

action applicable in a state s if either M ′′
i or M ′′

j can execute it in s. The effect of each
action has two conditional effects; the first applies the effects of both M ′′

i and M ′′
j ’s action

12

Algorithm 2 Query Generation Algorithm

1: Input: M ′, i, j, γ, S
2: Output: q,Mi,Mj

3: Mi,Mj ← add palm(M ′, i, j, γ)
4: for sI in S do
5: dom, prob ← get planning prob (sI ,Mi,Mj)
6: π ← planner(dom, prob)
7: q ← ⟨sI , π⟩
8: if π then break end if
9: end for

10: return q, M ′ ∪ {γi}, M ′ ∪ {γj}

if preconditions of both M ′′
i and M ′′

j are true, whereas the second makes the auxiliary
predicate pψ true if precondition of only one of M ′′

i and M ′′
j is true. Note that pψ is initially

false. Adding pψ helps identify the goal state sP .

Reason for adding pψ Formally, we express the planning problem PPO(M
′′
i ,M

′′
j) as a

3-tuple ⟨MPO, sI , G⟩, where MPO is a model with predicates PPO = PM ′′
i ∪ PM

′′
j ∪ {pψ},

and actions APO where for each action a ∈ APO, pre(a) = pre(aM
′′
i) ∨ pre(aM

′′
j), and

eff(a) = (when (pre(aM
′′
i) ∧ pre(aM

′′
j))(eff (aM

′′
i) ∧ eff (aM

′′
j)))

(when ((pre(aM
′′
i) ∧ ¬pre(aM

′′
j)) ∨ (¬pre(aM ′′

i) ∧ pre(aM
′′
j))) (pψ)),

The initial state sI = s
M ′′

i
I ∧ s

M ′′
j

I , where s
M ′′

i
I and s

M ′′
j

I are copies of all predicates in sI , and

G is the goal formula expressed as ∃p (pM
′′
i ∧ ¬pM

′′
j) ∨ (¬pM ′′

i ∧ pM
′′
j) ∨ pψ.

With this formulation, the goal is reached when an action in M ′′
i and M ′′

j differs in
either a precondition (making only one of them executable in a state), or an effect (leading
to different final states on applying the action). E.g., consider the models with differences
in load_truck(p1 t1 l1) as shown in Fig. 1. From the state (at t1 l1) ∧ ¬(at p1 l1),
M2 can execute load_truck(p1 t1 l1) but M1 cannot. Similarly, in state (at t1 l1) ∧
(at p1 l1), executing load_truck(p1 t1 l1) will cause MA and M1 to end up in states
differing in predicate (at p1 l1). Hence, given the correct initial state, the solution to the
planning problem PPO will give the correct distinguishing plan.

We will formally prove in Sec. 5 that (i) this planning problem will always generate
a solution query when using two models M ′′

i and M ′′
j that differ only in one palm tuple

(Thm. 1), and (ii) any inferences about the consistency of models wrt. the agent model
MA based on responses to these queries are correct (Thm. 2).

4.1.2 Filtering Possible Models

This section describes the filter models() module in Algorithm 1 which takes as input MA,
Mi, Mj , and the query q (Sec. 4.1.1), and returns the subset Mprune which is not consistent
with MA.

13

First, AAM poses the query q to Mi, Mj , and the agent A. Based on the responses
of all three, it determines if the two models are prunable, i.e., Mi♢Mj . As mentioned in
Def. 8, checking for prunability involves checking if the response to the query q by one of
the models Mi or Mj is consistent with that of the agent or not.

If the models are prunable, then the palm tuple being added in the inconsistent model
cannot appear in any model consistent with A. As we discard such palm tuples at abstract
levels (as depicted in Fig. 2(a)), we prune out a large number of models down the lattice
(as depicted in Fig. 2(c)), hence we keep the intractability of the approach in check and end
up asking less number of queries.

4.1.3 Updating PAL ordering

This section describes the update pal ordering() module in AIA (line 15). It is called when
the query generated by generate query() module is not executable by A, i.e., len(πq) ̸= ℓA.
E.g., consider two abstract models M2 and M3 being considered by AAM (Fig. 1). At
this level of abstraction, AAM does not have knowledge of the predicate (at ?p ?l),
hence it will generate a plan-outcome query with initial state {(at ?t ?l)} and plan
⟨load_truck(p1 t1 l1)⟩ to distinguish between M2 and M3. But this cannot be exe-
cuted by the agent A as its precondition (at ?p ?l) is not satisfied, and hence we cannot
discard any of the models.

Recall that in response to the plan-outcome query we get the failed action aF = π[ℓ+1]
and the final state sF . Since the query plan π is generated using Mi and Mj (which
differ only in the newly added palm tuple), they both would reach the same state sF after
executing first ℓ steps of π. Thus, we search S for a state s ⊃ sF where A can execute
aF . Similar to Stern and Juba (2017), we infer that any predicate which is false in s will
not appear in aF ’s precondition in the positive mode. Next, we iterate through the set of
predicates p′ ⊆ s \ sF and add them to sF to check if A can still execute aF . Thus, on
adding a predicate p ∈ p′ to the state sF , if A cannot execute aF , we add p in negative
mode in aF ’s precondition, otherwise in ∅ mode. All pal tuples whose modes are correctly
inferred in this way are therefore removed from the pal ordering.

5. Formal Analysis of the AIA

In this section, we present a comprehensive theoretical analysis of AIA (Alg. 1). We show
that AIA will always terminate and that the models returned by AIA are consistent with
the agent’s model and any model that is discarded by AIA is not consistent with that of
the agent model. Then we analyse the causal accuracy of the learned model(s).

5.1 Theoretical Guarantees

In this section, we prove the main theorem of this paper (Thm. 3) which shows that the
algorithm will terminate and the models returned by the algorithm are consistent with the
agent’s model. To prove it, we will prove that the approach prunes away models that are
not consistent with the agent’s model, and that the models returned by the algorithm are
consistent with the agent’s model. We will also show that the algorithm will terminate.

14

We will first show that a model with no pal tuples is consistent with the agent model
according to Def. 7.

Lemma 1. Consider an empty model M having 0 palm tuples, and that Alg. 1 concretizes
M by adding a new pal tuple γ = ⟨p, a, l⟩ to M to generate models M ′

i and M ′
j, for i, j ∈

{+,−, ∅}. The planning problem P(M ′
i ,M

′
j) has a solution if and only if l = pre.

Proof. We prove this in two parts. First, we show that if l = pre then P(M ′
i ,M

′
j) has a

solution. Then, we show that if l ̸= pre (l = eff) then P(M ′
i ,M

′
j) does not have any solution.

We prove the first part by construction. Recall that we add the pal tuple γ = ⟨p, a, l =
pre⟩ in modes i, j ∈ {∅,−,+} to M to get Mi and Mj . Here M = {}, and pal tuple being
added is γ = ⟨p, a, l = pre⟩ (line 9 of Alg. 1). Hence in the model for P(M ′

i ,M
′
j), (i)

precondition of all actions except a will be pu; (ii) precondition of a will be p ∨ pu in M+,
¬p ∨ pu in M−, and M∅ will have empty precondition; and (iii) effects of all actions will
be pu. Now if {i, j} ∈ {{+, ∅}, {+,−}} then P(M ′

i ,M
′
j) has a solution if the initial state

does not have p. Similarly if {i, j} ∈ {{−, ∅}, {+,−}} then P(M ′
i ,M

′
j) has a solution if the

initial state has p. In both these cases, the solution plan π will be ⟨a⟩. Hence if l = pre
then P(M ′

i ,M
′
j) has a solution.

Now we show that if l ̸= pre then P(M ′
i ,M

′
j) does not have any solution. Here M = {},

and pal tuple being added is γ = ⟨p, a, l = eff⟩. Hence in the model for P(M ′
i ,M

′
j), (i) effect

of all actions except a will be pu; (ii) effect of a will be p in M+, ¬p in M−, and M∅ will
have empty effect; and (iii) precondition of all actions will be pu. Since pu is not present
in the initial state, no action is executable. So there is no plan possible; hence there is no
solution for P(M ′

i ,M
′
j) in this case.

We will now formalize and show that the solution to the planning problem PPO(Mi,Mj)
we just created is possible if the two models Mi and Mj have a distinguishing query. To for-
mulate this, we will first define some additional notation. Consider the example 3 shown ear-
lier. The initial state sI used in PPO will be (ati t1 l1) ∧ (atj t1 l1), where (atx t1 l1)

corresponds to (at t1 l1) predicate in the model Mx. We also represent the projection
of a state s in planning problem P ij

PO according to models Mi and Mj as [s]Mi and [s]Mj ,

respectively. Here projection of a state s in planning problem P ij
PO according to models

Mi is the set of predicates with the subscript i, without their subscripts. E.g., consider
if s = {(ati t1 l1), (atj p1 l1), pψ, (atu t1 l1)}, then [s]Mi = {(at t1 l1)}, and
[s]Mj = {(at p1 l1)}.

We now formalize an important property of the planning problem PPO(Mi,Mj)’s solu-
tion. For brevity, we will represent PPO(Mi,Mj) as P ij and the set of actions in P ij as
Aij . We will show that the result of executing any action according to P ij will be such
that if aij(s) = s′ for any aij ∈ Aij , then ax([s]Mx) = [s′]Mx , for all x ∈ {i, j}, where
header(aij) = header(ax). This property is important to ensure that the responses to the
queries by the models Mi and Mj are consistent with what was expected from the query
generation process. Note that this will not hold for the final action in the plan if the action
was executable according to only one of the models. This is because the final action will
make the predicate pψ true in this case, whereas the model according to which the action
was not executable will fail to execute the action, and the other model will make the correct
effects true or false. We formalize this property as follows:

15

Lemma 2. Consider a model M ′ that is an abstraction of the agent model MA, and Mi

and Mj are two models concretized from M ′ such that they differ in mode of a single pal

tuple ⟨p, a, l⟩. Consider P ij
PO(Mi,Mj) be a planning problem used to distinguish Mi and Mj

with an initial state sI , such that its solution is π, and |π| = k. If the result of executing
any action aij ∈ π according to P ij will be such that if aijb (s) = s′ for any aijb ∈ Aij and
b ∈ [1, k − 2], then ax([s]Mx) = [s′]Mx, for all x ∈ {i, j}, where header(aij) = header(ax).

Proof. Recall that the goal to the planning problem P ij
PO(Mi,Mj) contains pψ in disjunction.

So we will never execute an action in a state where pψ is true. Also recall that in the

problem P ij , pre(aij) = pre(aM
′′
i) ∨ pre(aM

′′
j), where M ′′

x , x ∈ {i, j} were the intermediate
models used to create the planning problem P ij . Now, pre(aM

′′
x) cannot be false here, as

b ∈ [1, k−2], so we are considering all the actions other than the last action. So if pre(aM
′′
x)

was false for any ab such that b < k − 1, then that would’ve been the last action, which is
not the case.

Now we will consider two cases: first, where we execute an action in a state without pu,
and second, in a state containing pu. We analyze them one by one.

Case 1 : Executing an action a in a state s, that does not have pu predicates. This is the
trivial case where the action a is executed when the precondition is satisfied according to at
least one of the two models. Now when pre(aM

′′
x) is true (the precondition corresponding to

model Mx is satisfied), then the same precondition pre(a) (projected version) is true in the
actual model Mx too. This is because by construction the precondition can only have pu
predicates in addition to the normal predicates. Since projection removes pu, if we project
pre(aM

′′
x), we’ll get pre(a) according to Mx. Hence Similar argument holds for the effect,

hence the projection of effect eff(aM
′′
x) will be same as eff(a) according to Mx. Additionally,

This implies that if ab(s) = s′ for the case where pu is false in s, the projection of states s
and s′ will be such that ax([s]Mx) = [s′]Mx .

Case 2 : Executing an action a in a state s, that has pu predicates. This condition means
that the action is being executed in the state s where it is not known if the predicate p is
true or false. Now, projecting s according to Mi (or Mj) would result in [s]Mi (or [s]Mj)
where p is not true. Similarly, p would also be absent from the precondition of ai (or aj).
Hence if a was executable in s, ai (or aj) would be executable in [s]Mi (or [s]Mj).

In both these cases, the effects of the action will change the states in an exact manner
except for the pu predicates. And since the projection of states according to a model anyway
removes the pu predicates, the resulting state s′ according to the planning problem’s action
and [s′]Mi ([s

′]Mj) according to the model Mi (or Mj) will be the same.

We will next show that the solution plan to P(M ′
i ,M

′
j) always ends up with the action

that is part of the pal tuple being concretized at that time. This will help us in limiting
our analysis to, at most, the last two actions in the plan.

Lemma 3. Let Mi,Mj ∈ {M+,M−,M∅} be the models generated by adding pal tuple γ =
⟨p, a, l⟩ to M ′. Suppose starting in a state sI , π is a solution to P(Mi,Mj). The last action
in the plan π will be a.

16

Proof. We prove this by contradiction. Consider that the last action of the solution plan π is
aF ̸= a, where a is the action in pal tuple γ = ⟨p, a, l⟩. Now, by construction, P(Mi,Mj) has

a solution if after executing aF (i) pψ is true, or (ii) ∃p (pM
′′
i ∧¬pM

′′
j)∨(¬pM ′′

i ∧pM
′′
j) is true.

Here M ′′
x are the intermediate models used in creating the planning problem P(Mi,Mj).

We will now consider both the cases.

Case 1 : pψ is true after executing aF . As mentioned earlier, pψ becomes true when

((pre(a
M ′′

i
F) ∧ ¬pre(a

M ′′
j

F)) ∨ (¬pre(aM
′′
i

F) ∧ pre(a
M ′′

j

F)). This means that when aF is exe-

cuted in a state s such that either [s′]Mi ̸|= pre(aMi
F) ∧ [s′]Mj |= pre(a

Mj

F) or [s′]Mi |=
pre(aMi

F) ∧ [s′]Mj ̸|= pre(a
Mj

F). This means that pre(aMi
F) ̸= pre(a

Mj

F). This is not possible
as Mi and Mj are constructed from same model M ′ by making changes to action a. So

pre(aMi
F) must be equal to pre(a

Mj

F). This means that our assumption that the last action
of the plan must be aF ̸= a, must be false.

Case 2 : ∃p (pM
′′
i ∧¬pM

′′
j)∨ (¬pM ′′

i ∧ pM
′′
j) is true. This means that when aF is executed in

a state s such that [s′]Mi |= pre(aMi
F)∧ [s′]Mj |= pre(a

Mj

F), their effects are not the same, i.e.,

eff(aMi
F) ̸= eff(a

Mj

F). This is not possible as Mi and Mj are constructed from same model

M ′ by making changes to action a. So eff(aMi
F) must be equal to eff(a

Mj

F). This means that
our assumption that the last action of the plan must be aF ̸= a, must be false.

Since for both the cases, aF ̸= a was false, hence aF = a, i.e., the last action of the plan
π will be a.

We will next show that if the agent can execute the query successfully, then each in-
termediate state that each of the models generate on executing the plan in the query will
be an abstraction of the states that the agent will generate as part of executing the same
query. Additionally, all the intermediate states generated by both models will be identical.

Suppose q = ⟨sqI , πq⟩ is a distinguishing query for two distinct models Mi,Mj , i.e.,
Mi

qMj . Let q1...z represent the query with same initial state sqI , and plan πq1...z, i.e., first
z (z < len(πq)) actions from plan πq.

Lemma 4. Let Mi,Mj ∈ {M+,M−,M∅} be the models generated by adding pal tuple γ
to M ′ which is an abstraction of MA. Suppose q = ⟨sqI , πq⟩ is a distinguishing query for
two distinct models Mi,Mj, i.e., Mi

qMj. Let the agent’s response to the query q(MA)
be ⟨ℓA, ⟨pA1 , . . . , pAk ⟩⟩, where ℓA = len(πq). Let the response of models Mi,Mj , and MA

to the query q1...z be: q1...z(Mi) = ⟨ℓi, ⟨pi1, . . . , pim⟩⟩, q1...z(Mj) = ⟨ℓj , ⟨pj1, . . . , p
j
n⟩⟩, and

q1...z(M
A) = ⟨ℓA, ⟨pA1 , . . . , pAh ⟩⟩. If z ≤ len(πq)−1, then m = n, {pi1, . . . , pim} = {p

j
1, . . . , p

j
n}

and {pi1, . . . , pim} \ {pu} ⊆ {pA1 , . . . , pAh }.

Proof. We first show that if the agent is able to execute the distinguishing query q success-
fully (i.e., ℓA = len(πq)), then all the intermediate states generated by both the models
while on executing the plan πq starting in the initial state sq are the same, and then show
that the projection of these states are an abstraction of the corresponding intermediate state
generated by the agent on executing the same query. Note that since q is a distinguishing
query, |ℓi − ℓj | ∈ {0, 1}, also z ≤ ℓi and z ≤ ℓj .

17

We now prove the first part by contradiction. The query q used to distinguish between
Mi and Mj is generated using the planning problem P ij . Suppose there exists z′ < len(πq)
for which the intermediate states generated after executing the plan q1...z′ are not same
according to Mi and Mj . Recall that P ij has a solution if Mi and Mj have different
preconditions or different effects for the same action (by definition of goal of P ij). According
to this, the plan πq1...z′ should also be a solution to P ij . But this is not possible as any
subsequence of πq cannot be a solution otherwise πq would never have been returned as the
solution to P ij . Hence all the intermediate states generated by both the models while on
executing the plan πq starting in the initial state sq are the same.

Now we prove the second part that the intermediate states generated by both the models
on executing the plan πq starting in the initial state sq are a subset of the corresponding
projection of the intermediate state generated by the agent on executing the same query.
Since M ′ is an abstraction of MA, all the palm tuples already present in it are also present
in MA. The only new palm tuples in Mi and Mj are the ones involving pal tuple γ or
involving predicate pu. Now, as shown above, only the last action in the plan πq will be a
(corresponding to γ), and all the actions prior to that will not be a. Now, all the actions
other than a, have the same preconditions and effects as they were in M ′ (which is an
abstraction of MA), and since those actions in M ′ were consistent with that of MA, the
effect of executing them will also be consistent with the agent A. Thus, if sq is the starting
state, z ≤ len(πq)− 1, and πq1...z(s) = s′ij according to P ij , and πq1...z(s) = s′A according to

MA, then [s′ij]Mi ⊆ s′A and [s′ij]Mj ⊆ s′A. Note that in this notation, [s′ij]Mi = {pi1, . . . , pim},
[s′ij]Mj = {pj1, . . . , p

j
n}, and s′A = {pA1 , . . . , pAh }.

Now we will see how these lemmas we proved so far combines to show that the planning
problem created as part of Alg. 1 is guaranteed to generate a distinguishing query, if exists.

Theorem 1. Consider a model M ′ that is an abstraction of the agent model MA, and Mi

and Mj are two models concretized from M ′ such that they differ in mode of a single pal
tuple. Given such pair of models Mi and Mj and an initial state sI , the planning problem

P ij
PO has a solution iff Mi and Mj have a distinguishing plan-outcome query qPO.

Proof. We first show that if the planning problem PPO has a solution, then Mi and Mj

have a distinguishing plan-outcome query qPO comprising of an initial state sI and plan
πPO. By construction, the initial state sI in qPO and P ij is same. Suppose P ij has a
solution plan π, which is a sequence of actions a1, a2, . . . , ak where ax ∈ AP ij , such that
on executing this plan, the goal condition is met. Consider the trace of this execution be
⟨sI , a1, s1, a2, s2, . . . , sk−1, ak, sG⟩. Recall that the goal of P ij is that either the predicate
pψ is true, or the final state according to the two models on executing the plan does not
match. We will consider these cases individually.

Case 1 : The predicate pψ is true on executing the plan, i.e., sG |= pψ. By the construction
of P ij , it means that ak made pψ true. It implies that only one of Mi’s or Mj ’s preconditions
were met in sk−1. Consider that model whose preconditions were not met to be Mi. Now
using lemma 4, we know that [sk−1]Mi = [sk−1]Mj , hence we will refer it as [sk−1]Mx for
brevity. Using Lemma 2, this also means that in the original models Mi and Mj , when

18

executing the corresponding action aik (or ajk) in the state [sk−1]Mx , [sk−1]Mx ̸|= pre(aik),

and [sk−1]Mx |= pre(ajk). Hence, if P
ij has a solution such that sG |= pψ, then Mi Mj .

Case 2 : One of the predicates is true according to one of the model, and false according to
another in the goal state, i.e., sG |= ∃pi, pj ∈ P ij(pi∧¬pj)∨ (¬pi∧ pj). By the construction
of P ij , it means that ak made this condition true. It implies that both of Mi’s or Mj ’s
preconditions were met in sk−1. Now using lemma 4, we know that [sk−1]Mi = [sk−1]Mj ,
hence we will refer it as [sk−1]Mx for brevity. Using Lemma 2, this also means that in the
original models Mi and Mj , when executing the corresponding action aik (or a

j
k) in the state

[sk−1]Mx , [sk−1]Mx |= pre(aik) ∧ pre(ajk). Since, in the predicate after executing ak differs,
[sk]Mi ̸= [sk]Mj . Hence, if P

ij has a solution such that sG |= ∃pi, pj ∈ P ij(pi ∧¬pj)∨ (¬pi ∧
pj), then Mi Mj .

Equivalent Models It is possible for AIA to encounter a pair of models Mi and Mj that
are not prunable. In such cases, the models Mi and Mj are functionally equivalent and
cannot be discarded. Hence, both the models end up in the set poss models in line 18 of
AIA.

We will next prove that a model is not an abstraction of the agent model if it is not
consistent with that of the agent. But to prove that, we will use a couple of smaller results.
We first start by showing that we can only prune an abstract model based on a query’s
responses if the agent can execute all actions in the query plan successfully.

Lemma 5. Let Mi ∈ {M+,M−,M∅} be the model generated by adding the pal tuple γ to
M ′ which is an abstraction of the true agent model MA. Suppose q is a distinguishing
query for two distinct models Mi and Mj ∈ {M+,M−,M∅} \Mi. If MA cannot execute all
the actions in the query successfully, then we cannot decide consistency of the Mi (or Mj)
response with that of the agent.

Proof. Suppose q = ⟨sqI , πq⟩ is a distinguishing query for two distinct models Mi,Mj ,
i.e. Mi

qMj , and the response of models Mi,Mj , and MA to the query q are q(Mi) =

⟨ℓi, ⟨pi1, . . . , pim⟩⟩, q(Mj) = ⟨ℓj , ⟨pj1, . . . , p
j
n⟩⟩, and q(MA) = ⟨ℓA, ⟨pA1 , . . . , pAk ⟩⟩. We show

that when ℓA ̸= len(πq), i.e., MA cannot execute all the actions in the query successfully,
then we can make incorrect inferences about the consistency of the Mi (or Mj) response
with that of the agent.

We prove this by counterexample. When ℓA ̸= len(πq), consider the models M1 with pu,
and M2 with pu in Tab. 2. Consider the initial state to be {(in package1 truck1)}, and
the plan be ⟨unload(package1 truck1 location1)⟩. Now the responses of MA and M1 to
this query will be ⟨0, {(in package1 truck1)}⟩, whereas that of M2 will be ⟨1, {pu}⟩. This
happens because the first action in the plan failed for MA because of the precondition (at

truck1 location1) that is not satisfied in the initial state. On the other hand, the first
action for M1 failed because of the precondition ¬(in package1 truck1). This happens
because an action may execute successfully in an abstract model (M2 here), but fail in the
model which is an accurate concretization of it (MA here) because of some predicate ((at
truck1 location1) here) that the abstract models haven’t added to their model. Hence
Mi (or Mj) cannot be pruned if ℓA ̸= len(πq).

19

Lemma 6. Let Mi ∈ {M+,M−,M∅} be the model generated by adding the pal tuple γ to
M ′ which is an abstraction of the true agent model MA. Suppose q is a distinguishing query
for two distinct models Mi and Mj ∈ {M+,M−,M∅} \Mi. If Mi’s (or Mj’s) response is
not consistent with that of the agent, then it is not an abstraction of MA.

Proof. Suppose q = ⟨sqI , πq⟩ is a distinguishing query for two distinct models Mi,Mj ,
i.e. Mi

qMj , and the response of models Mi,Mj , and MA to the query q are q(Mi) =

⟨ℓi, ⟨pi1, . . . , pim⟩⟩, q(Mj) = ⟨ℓj , ⟨pj1, . . . , p
j
n⟩⟩, and q(MA) = ⟨ℓA, ⟨pA1 , . . . , pAk ⟩⟩. Now the

model Mi’s response to q is said to be consistent with that of MA when ℓA = len(πq),
len(πq) = ℓi and si ⊆ sA, where si = {pi1, . . . , pim} \ pu and sA = {pA1 , . . . , pAk }. We prove
this in multiple parts. We have already shown in Lemma 4 that ℓA = len(πq) is a necessary
condition for consistency. We will now show that if either len(πq) = ℓi or si ⊆ sA are not
true, then Mi is not an abstraction of MA.

We first show that if len(πq) ̸= ℓi, then Mi is not an abstraction of MA. Since ℓA =
len(πq)taa, the agent can execute each of the actions in the plan. Now if Mi is also able to
execute an action whereas Mj can (since q is a distinguishing query), then using Lemma 2
it can only be the last action. Now the set of preconditions for an abstracted model will
never be larger than its corresponding concretized model, hence if an action is executable in
the concretized model, it should also be executable in the abstracted model. Now since the
other actions in the plan are correct as M ′ is an abstraction of MA, hence if len(πq) ̸= ℓi,
then Mi is not an abstraction of MA.

We now show that if si ̸⊆ sA, then Mi is not an abstraction of MA. Since ℓA = len(πq),
the agent can execute each of the actions in the plan. Now if the states that Mi and Mj

do not end up in the same state, then using Lemma 2 it can only be after the last action.
Now the set of effects for an abstracted model will never be larger than its corresponding
concretized model, hence if an action is executable in the concretized model and ends up
in a state, then the abstracted model should also reach a state where only the subset of its
effects are true. Hence if si ̸⊆ sA, then Mi is not an abstraction of MA.

Theorem 2. Let Mi ∈ {M+,M−,M∅} be the model generated by adding the pal tuple γ
to M ′ which is an abstraction of the true agent model MA. Suppose q is a distinguishing
query for two distinct models Mi and Mj ∈ {M+,M−,M∅} \Mi. If Mi (or Mj) is pruned
out by Alg. 1, then it is not an abstraction of MA.

Proof. We prove this by mathematical induction. Suppose q = ⟨sqI , πq⟩ is a distinguishing
query for two distinct models Mi,Mj , i.e. Mi

qMj , and the response of models Mi,Mj ,

and MA to the query q are q(Mi) = ⟨ℓi, ⟨pi1, . . . , pim⟩⟩, q(Mj) = ⟨ℓj , ⟨pj1, . . . , p
j
n⟩⟩, and

q(MA) = ⟨ℓA, ⟨pA1 , . . . , pAk ⟩⟩. Now when ℓA ̸= len(πq), none of Mi or Mj can be discarded
as shown in Lemma 4.

When ℓA = len(πq), and Mi (or Mj) is pruned then it means that either len(πq) ̸= ℓi or
{pi1, . . . , pim} ̸⊆ {pA1 , . . . , pAk }. So we will now prove that if len(πq) ̸= ℓi or {pi1, . . . , pim}\pu ̸⊆
{pA1 , . . . , pAk } then Mi is not an abstraction of MA.

Let P(n) be the proposition that for every model with n pal tuples, which is consistent
with MA, refining it with a pal tuple with the correct mode according to Def. 3 will prune
out the models that are not an abstraction of MA.

20

Base Case: The proof for P(0) being true is by case analysis. Assume the model M ′ = {},
which is consistent with MA, is concretized with pal tuple γ = ⟨p, a, l⟩. There are only two
cases possible as the location can only be a precondition or an effect.

Case 1 : Consider l = pre. This case splits into 2 subcases, based on if the predicate will be
true in the initial state or not. Note that the plan will have only one action as the models
are completely empty except the only action that is being concretized.
Case 1.1 : If p ∈ sqI , πq = ⟨a⟩, and ℓA = len(πq) = 1, then ⟨p, a, pre,−⟩ ̸∈ MA. Also
Mj

qM−, where j ∈ {+, ∅}, as ℓj = 1, and ℓ− = 0. Hence P(0) is true.

Case 1.2 : If ¬p ∈ sqI , π
q = ⟨a⟩, and ℓA = len(πq) = 1, then ⟨p, a, pre,+⟩ ̸∈ MA. Also

Mj
qM+, where j ∈ {−, ∅}, as ℓj = 1, and ℓ+ = 0. Hence P(0) is true.

Case 2 : Consider l = eff. If M = {} and l = eff, ∀i, j ∈ {+,−, ∅}, ̸ ∃q Mi
qMj as shown in

Lemma 1. Hence P(0) is true.

Inductive Step: Assume that P(n) is true for some n ≥ 0; that is we have a model
M ′, with n palm tuples, which is an abstraction of MA, and refining it with a pal tuple
γ = ⟨p, a, l⟩ will generate models with n + 1 tuples. From Lemma 4, we know that before
executing the last action, the state reached by both the abstracted models (sF−1) will be a
subset of the state reached by MA (sF−1). There are two cases:

Case 1 : Consider l = pre. Since l = pre, pu ̸∈ sF−1. This case splits into 2 subcases:

Case 1.1 : If p ∈ sF−1, and ℓA = len(πq), then ⟨p, a, pre,−⟩ ̸∈ MA. Also Mj
qM−, where

j ∈ {+, ∅}, as ℓj = len(πq), and ℓ− = len(πq)− 1. Thus, M− is not an abstraction of MA.
Hence P(n) is true.

Case 1.2 : If ¬p ∈ sF−1, and ℓA = len(πq), then ⟨p, a, pre,+⟩ ̸∈MA. Also Mj
qM+, where

j ∈ {−, ∅}, as ℓj = len(πq), ℓ+ = len(πq) − 1. Thus, M+ is not an abstraction of MA.
Hence P(n) is true.

Case 2 : Consider l = eff. Since l = eff, pu may or may not be in sF−1. In either case, the full
plan is executed in Mi,Mj and MA. Hence we can compare the states reached after execut-

ing the complete plan. Let sMi
F = {pi1, . . . , pim}, s

Mj

F = {pi1, . . . , pin}, and sF = {pi1, . . . , pik}
be the final states reached upon executing πq in Mi,Mj and MA respectively and sF−1 is
the state reached in Mi and Mj before executing action a. This case splits into 2 subcases:

Case 2.1 : If p ∈ sF−1. If p ∈ sF , ⟨p, a, eff,−⟩ ̸∈ MA and s
M−
F ̸⊆ sF . Similarly if ¬p ∈ sF ,

⟨p, a, eff,+⟩ ̸∈MA and s
M+

F ̸⊆ sF , and ⟨p, a, eff, ∅⟩ ̸∈MA and s
M∅
F ̸⊆ sF . Hence P(n) is true.

Case 2.2 : If ¬p ∈ sF−1. If ¬p ∈ sF , ⟨p, a, eff,+⟩ ̸∈MA and s
M+

F ̸⊆ sF . Similarly if p ∈ sF ,

⟨p, a, eff,−⟩ ̸∈ MA and s
M−
F ̸⊆ sF , and ⟨p, a, eff, ∅⟩ ̸∈ MA and s

M∅
F ̸⊆ sF . Hence P(n) is

true.

21

This proves that if we add a pal tuple to a model that is an abstraction of MA, then we
prune only inconsistent models Mi whenever len(πq) ̸= ℓi or {pi1, . . . , pim} ̸⊆ {pA1 , . . . , pAk }
when ℓA = len(πq).

We will now prove that the set of estimated models returned by AIA is correct and the
returned models are functionally equivalent to the agent’s model, and no correct model is
discarded in the process. We will henceforth refer to Alg. 1 as AIA (Agent Interrogation
Algorithm). To prove our next theorem we’ll need some additional lemmas that we prove
below. The first one mentions that AIA never prunes away a model whose possible con-
cretization is an abstraction of the agent model, and the second one shows that AIA always
terminates.

Lemma 7. Given an agent A with a model MA, and an abstract model Mabs, if AIA prunes
away an abstract model Mabs, then no possible concretization of Mabs will be an abstraction
of the agent model MA.

Proof. We prove this using simple inference. At each node in the lattice, we always prune
away some of the models. If we discard an inconsistent model, it is because some palm tuple
in the model has a different mode m, than that of MA (Lemma 6). This incorrect palm
tuple will also be present in all its concretizations, making all of them inconsistent with MA.
Theorem 2 proves that at each node the models pruned away by AIA are not an abstraction
of the agent model. This means that they have at least one of the pal tuples in a mode
that does not match that of the agent model. Now concretizing such a model will only add
other pal tuples in one of the three modes as explained in section 3.5, hence the incorrect
mode of the pal tuple will remain unchanged thereby making all possible concretizations of
such a model an incorrect abstraction of the agent model.

With the guarantee that we are not pruning away any correct possible model, we now
prove that the agent interrogation algorithm will terminate, hence giving a solution.

Lemma 8. The Agent Interrogation Algorithm (Alg. 1) will always terminate.

Proof. As mentioned in Def. 16, in our subset lattice, “level” is equivalent to the number of
refined pal tuples. At each step of the algorithm, when we consider a refinement in terms
of pal tuples, we are left with one or more variants of the pal tuple. This ensures that we
never refine the models more than once at a single level in the lattice. Since we refine at
least one pal tuple in every iteration of the algorithm, the algorithm is bound to terminate
as the number of pal tuples is finite for a finite number of propositions and actions under
consideration.

Theorem 3. The Agent Interrogation Algorithm (Alg. 1) will always terminate and return
a set of models, each of which are functionally equivalent to the agent’s model MA.

Proof. Theorem 1 and Theorem 2 prove that whenever we get a prunable query, AIA
discards only the models that are not abstractions of the agent model, thereby ensuring
that no model that is an abstraction of the agent model is discarded. When we do not
get a prunable query, AIA infers the correct precondition(s) of the failed action using
update pal ordering(), hence the number of refined palm tuples always increase with the

22

number of iterations of AIA (line 4 of AIA), thereby ensuring its termination in finite
time. And when the algorithm terminates, the models that remain have all their responses
consistent with that of the agent’s model and hence are functionally equivalent to that of
the agent model.

We now explain how AIA models the causally accurate relationships of the domain.

5.2 Causal Accuracy of the Learned Models

We compare the properties of models learned by AIA with those of approaches that learn
the models from observational data only. For the methods that learn models in STRIPS-like
the learned models can be classified as causal, but it is not necessary that they are sound
with respect to the ground truth model MA of the agent A. E.g., in case of the robot driver
discussed earlier, these methods can learn a model where the precondition of the action
drive is src_blue if all the observation traces that are provided to it as input had src_blue

as true. This can happen if all the source locations are painted blue. To avoid such cases,
some of these methods run a pre-processing or a post-processing step that removes all static
predicates from the preconditions. However, if there is a paint action in the domain that
changes the color of all source locations, then these ad-hoc solutions will not be able to
handle that. Hence, these techniques may end up learning spurious preconditions as they
do not have a way to distinguish between correlation and causations.

On the other hand, it is also not necessary that the models learned by approaches
using only observational data are complete with respect to the ground truth model MA

of the agent A. This is because they may miss to capture some causal relationships if
the observations do not include all the possible transitions, or contains only the successful
actions. E.g., if we have additional predicates (city_from ?loc), and (city_to ?loc) in
the domain, and all the observed transitions are for the transitions within same city, then
the model will not be able to learn if the source city and destination city have to be same
for driving a truck between them.

5.2.1 Causal Models

In this section, we provide an overview of terminology regarding causal implications from
Halpern (2015). We will use this framework to show that models learned by our approach
are causally accurate.

Definition 11. A causal model M is defined as a 4-tuple ⟨U, V,R, F ⟩ where U is a set of
exogenous variables (whose values are determined by factors outside the model), V is a set
of endogenous variables (whose values are directly or indirectly derived from the exogenous
variables), R is a function that associates with every variable Y ∈ U ∪ V a nonempty set
R(Y) of possible values for Y , and F is a function that associates with each endogenous
variable X ∈ V a structural function denoted as FX such that FX maps ×Z∈(U∪V−{X})R(Z)
to R(X).

Note that the values of exogenous variables are not determined by the model; a setting
u⃗ of values of exogenous variables is termed as a context by Halpern (2016). This helps in
defining a causal setting as:

23

Definition 12. Given a setting of exogenous variables u ∈ U , a causal setting is a pair
(M, u⃗) consisting of a causal model M and context u⃗.

A causal formula φ is true or false in a causal model, given a context. Hence, (M, u⃗) |= φ
if the causal formula φ is true in the causal setting (M, u⃗).

Every causal model M can be associated with a directed graph, G(M), in which each
random variable X is represented as a vertex and the causal relationships between these
variables are represented as directed edges between members of U ∪{V \X} and X (Pearl,
2009). We use the term causal networks when referring to these graphs to avoid confusion
with the notion of causal graphs used in the planning literature (Helmert, 2004).

To perform an analysis with interventions, we use do-calculus introduced in Pearl (1995).
To perform interventions on a set of variables X ∈ V , do-calculus assigns values x⃗ to X⃗,
and evaluates the effect using the causal model M . This is termed as do(X⃗ = x⃗) action.
To define this concept formally, we first define submodels (Pearl, 2009).

Definitions 13-16 are by Halpern (2016). These definitions summarize the concepts we
use to define and assess the causal accuracy of the learned agent models.

Definition 13. Let M be a causal model, X a set of variables in V , and x⃗ a particular
realization of X⃗. A submodel Mx⃗ of M is the causal model Mx⃗ = ⟨U, V,R, F x⃗⟩ where F x⃗

is obtained from F by setting X ′ = x′ (for each X ′ ∈ X⃗) instead of the corresponding FX′,
and setting F x⃗

Y = FY for each Y ̸∈ X.

We now define what it means to intervene X⃗ = x⃗ using the action do(X⃗ = x⃗). Let M
be a causal model, X a set of variables in V , and x⃗ a particular realization of X⃗. The effect
of action do(X⃗ = x⃗) on M is given by the submodel Mx⃗.

In general, there can be uncertainty about the effects of these interventions, leading to
probabilistic causal networks, but in this work, we work with fully observable and deter-
ministic settings, hence assume that interventions do not lead to uncertain effects.

We can also derive the structure of causal networks using interventions in the real world,
as interventions allow us to find if a variable Y depends on another variable X. We use
Halpern (2016)’s notion of dependence as follows.

Definition 14. A variable Y depends on a variable X if there is some setting of all the
variables in U ∪ V \ {X,Y } such that varying the value of X in that setting results in a
variation in the value of Y .

We now use these concepts to define what a causal formula is (Halpern, 2016) and then
use it to define what we mean by an actual cause.

Definition 15. Given a signature S = (U, V,R), a primitive event is a formula of the
form X = x, for X ∈ V and x = R(X). A causal formula is [Y⃗ ← y⃗]φ, where φ is a
Boolean combination of primitive events, Y⃗ = ⟨Y1, Y2, . . . Yi⟩ are distinct variables in V ,
and yi ∈ R(Yi).

[Y⃗ ← y⃗]φ means that φ would hold if Yk were set to yk, for k = 1, . . . , i. We next
formally define an actual cause.

24

.

.

Figure 3: An example of a Dynamic Causal Decision Network (DCDN). pti and pt+1
i are the action-

parameter instantiated predicates at time t and t + 1 respectively and at is a decision node repre-
senting the decision to execute action the parameterized a at time t.

Definition 16. Let X ⊆ V be a subset of endogenous variables V , and φ be a boolean
causal formula expressible using variables in V . X⃗ = x⃗ is an actual cause of φ in the

causal setting (M, u⃗), i.e., (X⃗ = x⃗)
(M,u⃗)

// φ, if the following conditions hold:

AC1. (M, u⃗) |= (X⃗ = x⃗) and (M, u⃗) |= φ.

AC2. There is a set W⃗ of variables in V and a setting x⃗′ of the variables in X⃗ such that if
(M, u⃗) |= W⃗ = w⃗∗, then (M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗∗]¬φ.

AC3. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such that X⃗ ′ = x⃗′ satisfies conditions
AC1 and AC2, where x⃗′ is the restriction of x⃗ to the variables in X⃗.

AC1 mentions that unless both φ and X⃗ = x⃗ occur at the same time, φ cannot be
caused by X⃗ = x⃗. AC23 mentions that there exists a x⃗′ such that if we change a subset
X⃗ of variables from some initial value x⃗ to x⃗′, keeping the value of other variables W⃗ fixed
to w⃗∗, φ will also change. AC3 is a minimality condition which ensures that there are no
spurious elements in X⃗.

In this section, we’ll first show a mapping between the STRIPS-like models that we
learn and the causal models defined earlier. And then we’ll define the causal soundness and
completeness of one causal model w.r.t. another causal model, and show that the models
learned by Alg. 1 are causally accurate.

5.2.2 Representing Planning Models as Causal Networks

The classical causal model framework used in Def. 11 lacks the temporal elements and
decision nodes needed to express the causal relationships in the planning models.

To express actions in the model, we use the decision nodes similar to Dynamic Decision
Networks (Kanazawa & Dean, 1989). To express the temporal behavior of planning models,
we use the notion of Dynamic Causal Models (Pearl, 2009) and Dynamic Causal Networks
(DCNs) (Blondel, Arias, & Gavaldà, 2017). These are similar to causal models and causal

3. Halpern (2016) terms this version of AC2 as AC2(am)

25

networks respectively, with the only difference that the variables in these are time-indexed,
allowing for analysis of temporal causal relations between the variables. We also introduce
additional boolean variables to capture the executability of the actions. The resulting causal
model is termed as a causal action model, and we express such models using a Dynamic
Causal Decision Network (DCDN).

A general structure of a dynamic causal decision network is shown in Fig. 3. All the
decision variables and the executability variables pti, where i ∈ [0, k], where k is the number
of instantiated predicates, in a domain are endogenous. There is an edge from each predicate
in an action’s precondition to each predicate in an action’s effect. All the variables are
endogenous because we can perform interventions on them as needed.

We now show a mapping between the components of the causal models used in Def. 11
and the planning models defined in Def. 1. The exogenous variables U map to the static
predicates (Helmert, 2009) in the domain, i.e., the ones that do not appear in the effect of
any action; V maps to the non-static predicates; R maps each predicate to ⊤ if the predicate
is true in a state, or ⊥ when the predicate is false in a state; F calculates the value of each
variable depending on the other variables that cause it. This is captured by the values of
state predicates and executability variables being changed due to other state variables and
decision variables.

5.2.3 Causal Soundness and Completeness

Before we prove that the models learned by Alg. 1 are causally correct, we first define the
notions of causal soundness and completeness of a pair of models wrt. each other.

Definition 17. Let U⃗ and V⃗ be the vectors of exogenous and endogenous variables, respec-
tively; and Φ be the set of all boolean causal formulas expressible over variables in V.

A causal model M1 is causally complete with respect to another causal model M2 if
for all possible settings of exogenous variables, the causal relationships that are implied by
the model M1 are a superset of the set of causal relationships implied by the model M2, i.e.,

∀u⃗ ∈ U⃗ , ∀X⃗, X⃗ ′ ⊆ V⃗,∀φ,φ′ ∈ Φ, ∃x⃗ ∈ X⃗, ∃x⃗′ ∈ X⃗ ′ s.t. {⟨X⃗, u⃗, φ, x⃗⟩ : (X⃗ = x⃗)
(M2,u⃗)

// φ} ⊆
{⟨X⃗ ′, u⃗, φ′, x⃗′⟩ : (X⃗ ′ = x⃗′)

(M1,u⃗)
// φ′}.

A causal model M1 is causally sound with respect to another causal model M2 if for
all possible settings of exogenous variables, the causal relationships implied by M1 are a
subset of the causal relationships implied by M2, i.e., ∀u⃗ ∈ U⃗ ,∀X⃗, X⃗ ′ ⊆ V⃗,∀φ,φ′ ∈ Φ, ∃x⃗ ∈
X⃗, ∃x⃗′ ∈ X⃗ ′ s.t. {⟨X⃗, u⃗, φ, x⃗⟩ : (X⃗ = x⃗)

(M1,u⃗)
// φ} ⊆ {⟨X⃗ ′, u⃗, φ′, x⃗′⟩ : (X⃗ ′ = x⃗′)

(M2,u⃗)
// φ′}.

We now show that the model(s) learned by AIA are causally sound and complete.

Theorem 4. Given an agent A with a ground truth model MA (unknown to the agent
interrogation algorithm AIA), the action model M learned by AIA is causally sound and
complete with respect to MA.

Proof. We first show that M is sound with respect to MA. Assume that some X⃗ = x⃗ is an

actual cause of φ according to M in the setting u⃗, i.e., (X⃗ = x⃗)
(M,u⃗)

// φ. Now by Thm 3,
M contains palm tuples that are consistent with MA. Hence any palm tuple that is present
in M will also be present in MA, implying that under the same setting u⃗ according to MA

X⃗ = x⃗ is an actual cause of φ.

26

Now lets assume that some X⃗ = x⃗ is an actual cause of φ according to MA in the

setting u⃗, i.e., (X⃗ = x⃗)
(MA,u⃗)

// φ. Now by Thm.3, M contains exactly the same palm tuples
as MA. Hence any palm tuple that is present in Mag will also be present in M , implying
that under the same setting u⃗ according to M X⃗ = x⃗ is an actual cause of φ. Hence the
action model M learned by the agent interrogation algorithm are sound and complete with
respect to the model MA.

5.3 Complexity Analysis

Theoretically, the asymptotic complexity of AIA is O(|P |∗| × |A|), but it does not take
into account how much computation is needed to answer the queries or to evaluate their
responses. This complexity just shows the amount of computation needed in the worst
case to derive the agent model by AIA. Here, we present a more detailed analysis of the
complexity of AIA’s queries using the results of relational query complexity by Vardi (1982).

This analysis takes into account the computational effort that the agent will have to
put in to answer the queries. This is because we want to have minimal requirements on the
agent to support AAM, and hence we don’t want to ask questions that are too complex to
answer. This analysis will also form a foundation for our future work on comparing different
types of queries.

According to the notion of query complexity in Vardi (1982), a specific query is fixed
in the language, then data complexity – given as function of size of databases – is found by
applying this query to arbitrary databases. In the second notion of query complexity, if a
specific database is fixed, then the expression complexity – given as a function of the length
of expressions – is found by studying the complexity of applying queries represented by
arbitrary expressions in the language. Finally, combined complexity – given as a function of
combined size of the expressions and the database – is found by applying arbitrary queries
in the language to arbitrary databases.

Theorem 5. The membership classes of data, expression, and combined complexities of
plan outcome queries are AC0, ALOGTIME, and PTIME respectively.

Proof. To analyze qPO’s complexity, let us assume that the agent has stored the possible
transitions it can make (in propositional form) using the relations R(valid, s, a, s′, succ),
where valid, succ ∈ {⊤,⊥}, s, s′ ∈ S, a ∈ A; and N(valid, n, n+), where valid ∈ {⊤,⊥},
n, n+ ∈ N, 0 ≤ n ≤ L, and 0 ≤ n+ ≤ L + 1, where L is the maximum possible length of a
plan in the qPO queries. L can be an arbitrarily large number, and it does not matter as
long as it is finite. Here, S and A are sets of grounded states and actions respectively. succ
is ⊤ if the action was executed successfully, and is ⊥ if the action failed. valid is ⊤ when
none of the previous actions had succ = ⊥. This stops an action to change a state if any of
the previous actions failed, thereby preserving the state that resulted from a failed action.
Whenever succ = ⊥ or valid = ⊥, s = s′ and n = n+ signifying that applying an action
where it is not applicable does not change the state.

27

Assuming the length of the query plan, len(π) = D, we can write a query in first order
logic, equivalent to the plan outcome query as

{(sD, nD) | ∃s1, . . . ,∃sD−1,∃succ1, . . . ,∃succD−1,∃n1, . . . ,∃nD−1

R(⊤, s0, a1, s1, succ1) ∧R(succ1, s1, a2, s2, succ2) ∧ · · · ∧R(succD−1, sD−1, aD, sD,⊤)∧
N(⊤, 0, n1) ∧N(succ1, n1, n2) ∧ · · · ∧N(succD−1, nD−1, nD)}

The output of the query contains the free variables sD = sℓ and nD = ℓ. Such
first order (FO) queries have the expression complexity and the combined complexity in
PSPACE (Vardi, 1982). The data complexity class of FO queries is AC0 (Immerman,
1987).

The following results use the analysis in Vardi (1995). The query analysis given above
depends on how succinctly we can express the queries. In the FO query shown above, we
have a lot of spurious quantified variables. We can reduce its complexity by using bounded-
variable queries. Normally, queries in a language L assume an infinite supply x1, x2, . . . of
individual variables. A bounded-variable version Lk of the language L is one which can be
obtained by restricting the individual variables to be among x1, . . . , xk, for k > 0. Using
this, we can reduce the quantified variables in FO query shown earlier, and rewrite it more
succinctly as an FOk query by storing temporary query outputs.

E(succ, s, a, s′, succ′, n, n′)=R(succ, s, a, s′, succ′) ∧N(succ, n, n′)

α1(succ, s, a1, s
′, succ′, n, n′)=E(⊤, s0, a1, s′, succ′, 0, n′)

We then write subsequent queries corresponding to each step of the query plan as

αi+1(succ, s, ai+1, s
′, succ′, n, n′) =

∃s1,∃succ1,∃n1{E(succ, s, ai+1, s1, succ1, n1)∧
∃s, ∃succ,∃n[succ = succ1 ∧ s = s1∧
n = n1 ∧ αi(succ, s, ai, s

′, succ′, n, n′)]}

Here i varies from 1 to D, and the value of k is 6 because of 6 quantified variables –
s, s1, succ, succ1, n, and n1. This reduces the expression and combined complexity of these
queries to ALOGTIME and PTIME respectively. Note that these are the membership
classes as it might be possible to write the queries more succinctly.

6. Empirical Evaluation

We implemented AIA in Python to evaluate the efficacy of our approach.4 In this
implementation, initial states (S, line 1 in Algorithm 1) were collected by making the agent
perform random walks in a simulated environment. We used a maximum of 60 such random
initial states for each domain in our experiments. The implementation assumes that the
domains do not have any constants and that actions and predicates do not use repeated

4. Code available at https://git.io/Jtpej

28

https://git.io/Jtpej

Domain |P ∗| |A| |q̂| tµ (ms) tσ (µs)

Gripper 5 3 17 18.0 0.2
Blocksworld 9 4 48 8.4 36
Miconic 10 4 39 9.2 1.4
Parking 18 4 63 16.5 806
Logistics 18 6 68 24.4 1.73
Satellite 17 5 41 11.6 0.87
Termes 22 7 134 17.0 110.2
Rovers 82 9 370 5.1 60.3
Barman 83 17 357 18.5 1605
Freecell 100 10 535 2.24† 33.4†

Table 3: The number of queries (|q̂|), average time per query (tµ), and variance of time per query
(tσ) generated by AIA with FD. Average and variance are calculated for 10 runs of AIA, each on a
separate problem. †Time in sec.

variables (e.g., at(?v, ?v)), although these assumptions can be removed in practice without
affecting the correctness of algorithms. The implementation is optimized to store the agent’s
answers to queries; hence the stored responses are used if a query is repeated. We evaluated
three hypotheses using the experiments:

Hypothesis 1: The number of queries grows as we increase the number of pal tuples in
the domains.

Hypothesis 2: The number of queries is lower than the observational learners to learn
the complete model.

Hypothesis 3: The approach always learns the correct set of equivalent models.

We tested AIA on two types of agents: symbolic agents that use models from the IPC
(unknown to AIA), and simulator agents that report states as images using PDDLGym.
We wrote image classifiers for each predicate for the latter series of experiments and used
them to derive state representations for use in the AIA algorithm. All experiments were
executed on 5.0 GHz Intel i9-9900 CPUs with 64 GB RAM running Ubuntu 18.04.

The analysis presented below shows that AIA learns the correct model with a reasonable
number of queries, and compares our results with the closest related work, FAMA (Aineto,
Celorrio, & Onaindia, 2019). We use the metric of model accuracy in the following analysis:
the number of correctly learned palm tuples normalized with the total number of palm tuples
in MA.

6.1 Experiments with Symbolic Agents

We initialized the agent with one of the 10 IPC domain models, and ran AIA on the resulting
agent. 10 different problem instances were used to obtain average performance estimates.

Table 3 shows that the number of queries required increases with the number of pred-
icates and actions in the domain, hence proving Hypothesis 1. We used Fast Down-
ward (Helmert, 2006) with LM-Cut heuristic (Helmert & Domshlak, 2009) to solve the plan-
ning problems. Since our approach is planner-independent, we also tried using FF (Hoffmann
& Nebel, 2001) and the results were similar. The low variance shows that the method is
stable across multiple runs.

29

0 20 40

0.5

1.0
Gripper

0 20 40
0.0

0.5

1.0
Blocksworld

0 20 40
0.0

0.5

1.0
Miconic

0 20 40 60
0.0

0.5

1.0
Parking

0 20 40 60
0.0

0.5

1.0

M
od

el
 A

cc
ur

ac
y Logistics

0 20 40
0.0

0.5

1.0
Satellite

0 200 400
0.0

0.5

1.0
Freecell

0 50 100
0.0

0.5

1.0
Termes

0 100 200 300
0.0

0.5

1.0
Barman

0 100 200 300
0.0

0.5

1.0
Rovers

0

2

0

5

10

0

10

0

5

×10−1

2.0

2.5

3.0
×10−2

0.0

0.5

1.0

Ti
m

e
pe

r Q
ue

ry
 (s

ec
.)

0

1

2

0

10

2

4×10−2

0

10

20

Number of Queries

Accuracy: AIA FAMA Time: AIA FAMA

Figure 4: Performance comparison of AIA and FAMA in terms of model accuracy and time taken
per query with an increasing number of queries.

6.2 Comparison with Observational Learner

We compare the performance of AIA with that of FAMA, state of the art observational
learner, in terms of stability of the models learned and the time taken per query. Since
the focus of our approach is on automatically generating useful traces, we provided FAMA
randomly generated traces of length 3 (the length of the longest plans in AIA-generated
queries) of the form used throughout this paper (⟨sI , a1, a2, a3, sG⟩).

Fig. 4 summarizes our findings. AIA takes lesser time per query and shows better
convergence to the correct model, hence proving Hypothesis 2. FAMA sometimes reaches
nearly accurate models faster, but its accuracy continues to oscillate, making it difficult to
ascertain when the learning process should be stopped (we increased the number of traces
provided to FAMA until it ran out of memory). This is because the solution to FAMA’s

30

Figure 5: PDDLGym’s simulated Sokoban (left) and Doors (right) environments used for the exper-
iments.

internal planning problem introduces spurious palm tuples in its model if the input traces
do not capture the complete domain dynamics. For Logistics, FAMA generated an incorrect
planning problem, whereas for Freecell and Barman it ran out of memory (AIA also took
considerable time for Freecell). Also, in domains with negative preconditions like Termes,
FAMA was unable to learn the correct model. We used Madagascar (Rintanen, 2014) with
FAMA as it is the preferred planner for it. We also tried FD and FF with FAMA, but
as the original authors noted, it could not scale and ran out of memory on all but a few
Blocksworld and Gripper problems where it was much slower than with Madagascar.

Also, not that AIA is able to learn the correct model for all the instances, hence proving
Hypothesis 3.

6.3 Experiments with simulator agents

AIA can also be used with simulator agents that do not know about predicates and report
states as images. To test this, we wrote classifiers for detecting predicates from images of
simulator states in the PDDLGym (Silver & Chitnis, 2020) framework.

The classifiers are based on detecting objects in an image using colors (Duffy, Crowley,
& Lacey, 2000; Khan et al., 2012).

This framework provides ground-truth PDDL models, thereby simplifying the estimation
of accuracy. We initialized the agent with one of the two PDDLGym environments, Sokoban
and Doors shown in Fig. 5. AIA inferred the correct model in both cases and the number
of instantiated predicates, actions, and the average number of queries (over 5 runs) used to
predict the correct model for Sokoban were 35, 3, and 201, and that for Doors were 10, 2,
and 252.

7. Related Work

A number of researchers have explored the problem of learning agent models from obser-
vations of its behavior (Gil, 1994; X. Wang, 1994; Benson, 1995; Wu et al., 2007; Yang et
al., 2007; Cresswell et al., 2009; Zhuo & Kambhampati, 2013). Such action-model learn-
ing approaches have also found practical applications in robot navigation (Balac et al.,
2000), web-service description learning (Walsh & Littman, 2008), player behavior model-
ing (Krishnan et al., 2020), etc. To the best of our knowledge, ours is the first approach to

31

address the problem of generating query strategies for inferring relational models of black-
box agents. We now present a detailed comparison of our work with the related works.

7.1 Passive Observations based Learners

Amir and Chang (2008) use logical filtering (Amir & Russell, 2003) to learn partially ob-
servable action models from the observation traces. Shahaf and Amir (2007); Zettlemoyer
et al. (2008) and Shirazi and Amir (2011) also use logical filtering to acquire action models.
Camacho and McIlraith (2019) present an approach for learning highly expressive LTL mod-
els from an agent’s observed state trajectories using an oracle with knowledge of the target
LTL representation. This oracle can also generate counterexamples when the estimated
model differs from the true model, but it is not clear how to acquire such an oracle. Roy,
Fisman, and Neider (2020) learns the models in Property Specification Language (PSL)
with very little overhead as compared to learning LTL formulas. All these approaches learn
models at the propositional level.

Genetic programming-based techniques like EvoCK (Aler et al., 1998), L2Plan (Levine
& Humphreys, 2003), and LOUGA (Kučera & Barták, 2018) learn the domain rules by
searching through a set of rules using genetic programming. LOCM (Cresswell et al., 2009),
LOCM2 (Cresswell & Gregory, 2011), etc. present a class of algorithms that use finite-state
machines to create action models from observed plan traces. ARMS (Yang et al., 2007),
AMAN (Zhuo & Kambhampati, 2013), etc. leverage MAX-SAT to learn action models with
partial or noisy traces.

FAMA (Aineto et al., 2019) reduces model recognition to a planning problem and can
work with partial action sequences and/or state traces as long as correct initial and goal
states are provided. While both FAMA and some other approaches like LOUGA (Kučera
& Barták, 2018) require a post-processing step to update the learned model’s preconditions
to include the intersection of all states where an action is applied, it is not clear that such a
process would necessarily converge to the correct model. Stern and Juba (2017), Juba et al.
(2021), etc. learn safe action models for various settings leveraging intermediate states in
execution traces. Our experiments indicate that such approaches exhibit oscillating behavior
in terms of model accuracy because some data traces can include spurious predicates, which
leads to spurious preconditions being added to the model’s actions.

Bonet and Geffner (2020) and Rodriguez et al. (2021) present approaches for learning
relational models using a SAT-based method when the action schema, predicates, etc. are
not available. These approaches take as input a predesigned correct and complete directed
graph encoding the structure of the entire state space. The authors note that their approach
is viable for problems with small state spaces.

Online Learning Xu and Laird (2010) and Lamanna et al. (2021) use online learning to
learn an action model incrementally. The idea is to incorporate new observations to improve
the action model. These approaches even though incremental, do not focus on acquiring
directed observations that will help it learn faster, but rater work with already available
observations.

In contrast to these directions of research, our approach directly queries the agent and
is guaranteed to converge to the true model while presenting a running estimate of the
accuracy of the derived model; hence, it can be used in settings where the agent’s model

32

changes due to learning or a software update. In such a scenario, our algorithm can restart
to query the system, while approaches that derive models from observed plan traces would
require arbitrarily long data collection sessions to get sufficient uncorrelated data.

7.2 Non-Passive Observation based Learners

Unlike the approaches that learn the action models using passively collected observations,
there are some approaches that try to generate observations that help them direct the
learning with lesser observations in general.

Active Learning The field of active learning (Settles, 2012) addresses the related problem
of selecting which data labels to acquire for learning single-step decision-making models
using statistical information measures. IRALe (Rodrigues et al., 2011) is one method that
learns lifted transition modules by exploring actions in states where its partially learned
preconditions almost hold. However, the effective feature set in active learning is the set
of all possible plans, which makes conventional methods for evaluating the information
gain of possible feature labelings infeasible. In contrast, our approach uses a hierarchical
abstraction to select queries to ask while inferring a multistep decision-making (planning)
model.

RL based Model Learning: Incremental Learning Model (Ng & Petrick, 2019) uses
reinforcement learning to learn a non-stationary model without using plan traces, and re-
quires extensive training to learn the full model correctly. Chitnis et al. (2021) present
an approach for learning probabilistic relational models where they use goal sampling as
a heuristic for generating relevant data, while we reduce that problem to query synthesis
using planning. Their approach is shown to work well for stochastic environments, but
puts a much higher burden on the AI system for inferring its model. This is because the
AI system has to generate a conjunctive goal formula while maximizing exploration, find a
plan to reach that goal, and correct the model as it collects observations while executing
the plan.

Automata Learning: There is a large body of work on the active learning of automata of
various types, namely DFA (Angluin, 1987) NFA (Oncina & Garćıa, 1992; Dupont, 1996),
Moore machine (Giantamidis & Tripakis, 2016; Moerman, 2018), Mealy machine (Shahbaz
& Groz, 2009), etc. Angluin (1987) proposed the earliest approaches for actively learning
DFAs using the L* algorithm, which leveraged membership queries and equivalence queries.
A significant limitation of L* is that these machines use grounded states as inputs, limiting
their application to small state spaces. There have been multiple optimizations, including
replacing exhaustive observation tables with decision trees (Kearns et al., 1994); carefully
choosing suffixes as columns instead of adding all the prefixes of the counterexamples in the
observation table (Rivest & Schapire, 1993); reorganizing the decision trees by combining the
previous two approaches (Isberner et al., 2014); and using parameterized states in register
automata (Cassel et al., 2015). Even with these optimizations, the number of membership
queries required to learn the automata is quadratic in the input size. In contrast, the number
of equivalence queries required is linear in the size of the input (Isberner et al., 2014). The
above-mentioned approaches use the minimal adequate teacher (MAT) framework proposed
by Angluin (1987). However, this has several drawbacks, which we cover below.

33

The first drawback of the MAT framework is that it needs a teacher who knows the
correct model or approximates it to answer the equivalence queries correctly. Angluin
(1988) showed that (i) using only membership queries, it is not possible to infer the correct
DFA using a polynomial number of membership queries if the number of states of the target
DFA is unknown; and (ii) even if the target number of states are known, an exponential
number of membership queries are required. In our case even if we treat the simulator as a
teacher, we don’t need equivalence queries to guarantee that the model we learn is correct.

The second drawback of the MAT framework is that it needs knowledge of the input
and output alphabet for working with membership and equivalence queries. The final
drawback of the MAT framework is that the learned automata have control states that
might not be readily interpretable as they may not map to actual environment states but
some property of the environment. Our assessment approach alleviates these concerns as
the final model is easily interpretable as the preconditions and effects are defined in terms
the user understands.

Causal Accuracy of Learned Models: There have been some recent approaches that
learn causal dynamics of a sequential decision-making system (Madumal et al., 2020; Z. Wang
et al., 2022, 2024; Nashed et al., 2023; Amitai et al., 2024), but they either lack the theo-
retical guarantees we provide, need extra information about the dependency graph, or are
not as scalable as our approach as we increase the domain size.

8. Conclusions and Future Work

We presented a novel approach for efficiently learning the internal model of an autonomous
agent in a STRIPS-like form through query answering. Our theoretical and empirical results
showed that the approach works well for both symbolic and simulator agents.

Extending our predicate classifier to handle noisy state detection, similar to prevalent
approaches using classifiers to detect symbolic states (Konidaris et al., 2014; Asai & Fuku-
naga, 2018) is a good direction for future work. Some other promising extensions include
replacing query and response communication interfaces between the agent and AAM with
a natural language similar to Lindsay et al. (2017), or learning other representations like
Zhuo et al. (2014). Additionally, in the future, such an assessment system can be used to
make AI systems compliant with Level II assistive AI (Srivastava, 2021) by integrating this
work with interfaces like JEDAI (Shah et al., 2022), PDSim (De Pellegrin & Petrick, 2024),
JEDAI-Ed (Dobhal et al., 2024), etc.

Acknowledgements

We thank Shashank Rao Marpally for help in implementing an older version of the simulator
agents. This work was supported in part by the ONR grant N00014-23-1-2416.

References

Aineto, D., Celorrio, S. J., & Onaindia, E. (2019). Learning Action Models With Minimal
Observability. Artificial Intelligence, 275 , 104–137.

34

Aler, R., Borrajo, D., & Isasi, P. (1998). Genetic Programming of Control Knowledge for
Planning. In Proc. AIPS.

Amir, E., & Chang, A. (2008). Learning Partially Observable Deterministic Action Models.
Journal of Artificial Intelligence Research, 33 , 349–402.

Amir, E., & Russell, S. (2003). Logical Filtering. In Proc. IJCAI.

Amitai, Y., Septon, Y., & Amir, O. (2024). Explaining reinforcement learning agents
through counterfactual action outcomes. In Proc. AAAI.

Angluin, D. (1987). Learning Regular Sets from Queries and Counterexamples. Information
and Computation, 75 (2), 87-106.

Angluin, D. (1988, apr). Queries and concept learning. Machine Learning , 2 (4), 319–342.

Asai, M., & Fukunaga, A. (2018). Classical Planning in Deep Latent Space: Bridging the
Subsymbolic-Symbolic Boundary. In Proc. AAAI.

Bäckström, C., & Jonsson, P. (2013). Bridging the Gap Between Refinement and Heuristics
in Abstraction. In Proc. IJCAI.

Balac, N., Gaines, D., & Fisher, D. (2000). Learning Action Models for Navigation in Noisy
Environments. In ICML Workshop on Machine Learning of Spatial Knowledge.

Benson, S. (1995). Inductive Learning of Reactive Action Models. In Proc. ICML.

Blondel, G., Arias, M., & Gavaldà, R. (2017, 03). Identifiability and Transportability
in Dynamic Causal Networks. International Journal of Data Science and Analytics,
3 (2), 131–147.

Bonet, B., & Geffner, H. (2020). Learning First-Order Symbolic Representations for Plan-
ning from the Structure of the State Space. In Proc. ECAI.

Camacho, A., & McIlraith, S. A. (2019). Learning Interpretable Models Expressed in Linear
Temporal Logic. In Proc. ICAPS.

Cassel, S., Howar, F., Jonsson, B., Merten, M., & Steffen, B. (2015). A Succinct Canonical
Register Automaton Model. Journal of Logical and Algebraic Methods in Program-
ming , 84 (1), 54-66.

Chitnis, R., Silver, T., Tenenbaum, J., Kaelbling, L. P., & Lozano-Perez, T. (2021). GLIB:
Efficient Exploration for Relational Model-Based Reinforcement Learning via Goal-
Literal Babbling. In Proc. AAAI.

Cresswell, S., & Gregory, P. (2011). Generalised Domain Model Acquisition from Action
Traces. In Proc. ICAPS.

Cresswell, S., McCluskey, T., & West, M. (2009). Acquisition of Object-Centred Domain
Models from Planning Examples. In Proc. ICAPS.

De Pellegrin, E., & Petrick, R. P. A. (2024). Planning domain simulation: An interactive
system for plan visualisation. In Proc. ICAPS.

Dobhal, D., Nagpal, J., Karia, R., Verma, P., Nayyar, R. K., Shah, N., & Srivastava, S.
(2024). Using explainable AI and hierarchical planning for outreach with robots. arXiv
preprint arXiv:2404.00808 .

35

Duffy, N., Crowley, J., & Lacey, G. (2000). Object Detection using Colour. In Proc. ICPR.

Dupont, P. (1996). Incremental Regular Inference. In Proc. Third International Colloquium
on Grammar Inference.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence, 2 (3-4), 189–208.

Fox, M., & Long, D. (2003). PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research, 20 (1), 61–124.

Giantamidis, G., & Tripakis, S. (2016). Learning moore machines from input-output traces.
In International symposium on formal methods.

Gil, Y. (1994). Learning by Experimentation: Incremental Refinement of Incomplete
Planning Domains. In Proc. ICML.

Halpern, J. Y. (2015). A Modification of the Halpern-Pearl Definition of Causality. In
Proc. IJCAI.

Halpern, J. Y. (2016). Actual Causality. The MIT Press.

Helmert, M. (2004). A Planning Heuristic Based on Causal Graph Analysis. In Proc.
ICAPS.

Helmert, M. (2006). The Fast Downward Planning System. Journal of Artificial Intelligence
Research, 26 , 191–246.

Helmert, M. (2009). Concise Finite-domain Representations for PDDL Planning Tasks.
Artificial Intelligence, 173 (5-6), 503–535.

Helmert, M., & Domshlak, C. (2009). Landmarks, Critical Paths and Abstractions: What’s
the Difference Anyway? In Proc. ICAPS.

Helmert, M., Haslum, P., & Hoffmann, J. (2007). Flexible Abstraction Heuristics for
Optimal Sequential Planning. In Proc. ICAPS.

Hoffmann, J., & Nebel, B. (2001). The FF Planning System: Fast Plan Generation Through
Heuristic Search. Journal of Artificial Intelligence Research, 14 , 253-302.

Immerman, N. (1987). Expressibility as a complexity measure: Results and directions (Tech.
Rep. No. YALEU/DCS/TR-538). Department of Computer Science, Yale University.

Isberner, M., Howar, F., & Steffen, B. (2014). The TTT Algorithm: A Redundancy-Free
Approach to Active Automata Learning. In Proceedings of the international conference
on runtime verification.

Juba, B., Le, H. S., & Stern, R. (2021). Safe Learning of Lifted Action Models. In Proc.
KR.

Kanazawa, K., & Dean, T. (1989). A Model for Projection and Action. In Proc. IJCAI.

Kearns, M. J., Vazirani, U. V., & Vazirani, U. (1994). An Introduction to Computational
Learning Theory. MIT press.

Khan, F. S., Anwer, R. M., van de Weijer, J., Bagdanov, A. D., Vanrell, M., & Lopez, A. M.
(2012). Color Attributes for Object Detection. In Proc. CVPR.

36

Kim, B., Shah, J. A., & Doshi-Velez, F. (2015). Mind the gap: A generative approach to
interpretable feature selection and extraction. In Proc. NeurIPS.

Konidaris, G., Kaelbling, L. P., & Lozano-Perez, T. (2014). Constructing Symbolic Repre-
sentations for High-Level Planning. In Proc. AAAI.

Krishnan, A., Williams, A., & Martens, C. (2020). Towards Action Model Learning for
Player Modeling. In Proc. AIIDE.

Kučera, J., & Barták, R. (2018). LOUGA: Learning Planning Operators Using Genetic
Algorithms. In Knowledge Management and Acquisition for Intelligent Systems.

Lage, I., & Doshi-Velez, F. (2020). Learning interpretable concept-based models with human
feedback. In ICML Workshop on Human Interpretability in Machine Learning.

Lamanna, L., Saetti, A., Serafini, L., Gerevini, A., & Traverso, P. (2021). Online Learning
of Action Models for PDDL Planning. In Proc. IJCAI.

Levine, J., & Humphreys, D. (2003). Learning Action Strategies for Planning Domains
Using Genetic Programming. In Applications of Evolutionary Computing.

Lindsay, A., Read, J., Ferreira, J., Hayton, T., Porteous, J., & Gregory, P. (2017). Framer:
Planning Models from Natural Language Action Descriptions. In Proc. ICAPS.

Madumal, P., Miller, T., Sonenberg, L., & Vetere, F. (2020). Explainable reinforcement
learning through a causal lens. In Proc. AAAI.

Malle, B. F. (2004). How the Mind Explains Behavior: Folk Explanations, Meaning, and
Social Interaction. The MIT Press.

Mao, J., Lozano-Pérez, T., Tenenbaum, J. B., & Kaelbing, L. P. (2022). PDSketch: Inte-
grated domain programming, learning, and planning. In Proc. neurips.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., . . . Wilkins,
D. (1998). PDDL – The Planning Domain Definition Language (Tech. Rep. No. CVC
TR-98-003/DCS TR-1165). Yale Center for Computational Vision and Control.

Miller, T. (2019). Explanation in Artificial Intelligence: Insights from the Social Sciences.
Artificial Intelligence, 267 , 1-38.

Moerman, J. (2018). Learning Product Automata. In Proc. 14th International Conference
on Grammatical Inference.

Mou, Y., & Xu, K. (2017). The Media Inequality: Comparing the Initial Human-Human
and Human-AI Social Interactions. Computers in Human Behavior , 72 , 432-440.

Nashed, S. B., Mahmud, S., Goldman, C. V., & Zilberstein, S. (2023). Causal explanations
for sequential decision making under uncertainty. In Proc. AAMAS.

Nayyar, R. K., Verma, P., & Srivastava, S. (2022). Differential assessment of black-box AI
agents. In Proc. AAAI.

Ng, J. H. A., & Petrick, R. P. A. (2019). Incremental Learning of Planning Actions in
Model-Based Reinforcement Learning. In Proc. IJCAI.

Oncina, J., & Garćıa, P. (1992). Inferring Regular Languages in Polynomial Update Time.
Pattern Recognition and Image Analysis, 1 , 49–61.

37

Pearl, J. (1995). Causal Diagrams for Empirical Research. Biometrika, 82 (4), 669–688.

Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge University Press.

Rintanen, J. (2014). Madagascar: Scalable Planning with SAT. In Proc. 8th International
Planning Competition.

Rivest, R., & Schapire, R. (1993). Inference of Finite Automata Using Homing Sequences.
Information and Computation, 103 (2), 299-347.

Rodrigues, C., Gérard, P., Rouveirol, C., & Soldano, H. (2011). Active Learning of Rela-
tional Action Models. In Proc. ILP.

Rodriguez, I. D., Bonet, B., Romero, J., & Geffner, H. (2021). Learning First-Order
Representations for Planning from Black Box States: New Results. In Proc. KR.

Roy, R., Fisman, D., & Neider, D. (2020). Learning Interpretable Models in the Property
Specification Language. In Proc. IJCAI.

Sacerdoti, E. D. (1974). Planning in a Hierarchy of Abstraction Spaces. Artificial Intelli-
gence, 5 (2), 115–135.

Schulze, K. G., Shelby, R. N., Treacy, D. J., Wintersgill, M. C., VanLehn, K., & Gertner, A.
(2000). Andes: An active learning, intelligent tutoring system for Newtonian Physics.
Themes in Education, 1 (2), 115–136.

Settles, B. (2012). Active Learning. Morgan & Claypool Publishers.

Shah, N., Verma, P., Angle, T., & Srivastava, S. (2022). JEDAI: A system for skill-aligned
explainable robot planning. In Proc. AAMAS.

Shahaf, D., & Amir, E. (2007). Logical Circuit Filtering. In Proc. IJCAI.

Shahbaz, M., & Groz, R. (2009). Inferring Mealy Machines. In Proc. 2nd World Congress
on Formal Methods.

Shirazi, A., & Amir, E. (2011). First-order Logical Filtering. Artificial Intelligence, 175 (1),
193-219.

Silver, T., & Chitnis, R. (2020). PDDLGym: Gym Environments from PDDL Problems.
In ICAPS Workshop on Bridging the Gap Between AI Planning and Reinforcement
Learning (PRL).

Srivastava, S. (2021). Unifying Principles and Metrics for Safe and Assistive AI. In Proc.
AAAI.

Srivastava, S., Russell, S., & Pinto, A. (2016). Metaphysics of Planning Domain Descrip-
tions. In Proc. AAAI.

Stern, R., & Juba, B. (2017). Efficient, Safe, and Probably Approximately Complete
Learning of Action Models. In Proc. IJCAI.

Vardi, M. Y. (1982). The complexity of relational query languages (extended abstract). In
Proc. 14th Annual ACM Symposium on Theory of Computing.

Vardi, M. Y. (1995). On the complexity of bounded-variable queries (extended abstract). In
Proc. 14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

38

Systems.

Verma, P., Karia, R., & Srivastava, S. (2023). Autonomous capability assessment of se-
quential decision-making systems in stochastic settings. In Proc. NeurIPS.

Verma, P., Marpally, S. R., & Srivastava, S. (2021). Asking the Right Questions: Learning
Interpretable Action Models Through Query Answering. In Proc. AAAI.

Verma, P., Marpally, S. R., & Srivastava, S. (2022). Discovering user-interpretable capabil-
ities of black-box planning agents. In Proc. KR.

Walsh, T. J., & Littman, M. L. (2008). Efficient Learning of Action Schemas and Web-
Service Descriptions. In Proc. AAAI.

Wang, X. (1994). Learning Planning Operators by Observation and Practice. In Proc.
AIPS.

Wang, Z., Wang, C., Xiao, X., Zhu, Y., & Stone, P. (2024). Building minimal and reusable
causal state abstractions for reinforcement learning. In Proc. AAAI.

Wang, Z., Xiao, X., Xu, Z., Zhu, Y., & Stone, P. (2022). Causal dynamics learning for
task-independent state abstraction. In Proc. ICML.

Wu, K., Yang, Q., & Jiang, Y. (2007, June). ARMS: An Automatic Knowledge Engineering
Tool for Learning Action Models for AI Planning. Knowledge Engineering Review ,
22 (2), 135–152.

Xu, J., & Laird, J. (2010). Instance-Based Online Learning of Deterministic Relational
Action Models. In Proc. AAAI.

Yang, Q., Wu, K., & Jiang, Y. (2007). Learning Action Models from Plan Examples Using
Weighted MAX-SAT. Artificial Intelligence, 171 (2-3), 107–143.

Zettlemoyer, L. S., Pasula, H. M., & Kaelbling, L. P. (2008). Logical Particle Filtering. In
Probabilistic, Logical and Relational Learning - A Further Synthesis.

Zhuo, H. H., & Kambhampati, S. (2013). Action-Model Acquisition from Noisy Plan Traces.
In Proc. IJCAI.

Zhuo, H. H., Muñoz-Avila, H., & Yang, Q. (2014). Learning Hierarchical Task Network
Domains from Partially Observed Plan Traces. Artificial Intelligence, 212 , 134 - 157.

39

	Introduction
	Background
	Planning Models
	Observations

	Formal Framework
	Form of Agent Queries
	Requirements for Independent Assessment
	Distinguishability and Prunability
	Components of Agent Models
	Model Abstraction

	Solving the Agent Interrogation Task
	Agent Interrogation Algorithm
	Query Generation
	Filtering Possible Models
	Updating PAL ordering

	Formal Analysis of the AIA
	Theoretical Guarantees
	Causal Accuracy of the Learned Models
	Causal Models
	Representing Planning Models as Causal Networks
	Causal Soundness and Completeness

	Complexity Analysis

	Empirical Evaluation
	Experiments with Symbolic Agents
	Comparison with Observational Learner
	Experiments with simulator agents

	Related Work
	Passive Observations based Learners
	Non-Passive Observation based Learners

	Conclusions and Future Work
	References

