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Generalized planning problems capture planning problems
with uncertainties in object quantities and properties. While
the generalized planning problem is incomputable in general,
this thesis presents a new formalization of the problem, a
study of the limits of computability of generalized plans and
algorithms for solving a broad class of generalized planning
problems.
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1. Introduction

Advances in Al are fueling the development of au-
tomated agents ranging in scope from intelligent soft-
ware to automated vacuum cleaners and self-driving
cars. As the number and impact of such agents in
our society increases, the need for computing desir-
able behaviors for them (“automated planning”) while
ensuring safety is becoming crucial. Interaction with
real, dynamic worlds poses many computational prob-
lems for automated agents, including the key represen-
tational problem of expressing and reasoning about sit-
uations with unknown numbers of objects. Situations
where we would like to use automated agents rarely
have a small or predetermined number of objects. A
rover sent to a distant planet cannot know in advance
the number of rocks of interest that it can expect to
encounter. Similarly, it would be infeasible to pre-
program a household robot for assisting the elderly,
with the precise number and properties of objects that
can be found in an average home.

Although research in automated planning has led to
vast improvements in the scalability of planning sys-
tems, representing and planning in situations with un-
known numbers of objects with uncertain properties re-
mains a largely unexplored frontier of research. Con-
sider the simple problem of sorting an unknown num-
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ber of objects in a room into their respective boxes
(clothes, shoes, etc.). An algorithmic, generalized plan
for this problem would consist of a simple loop of ac-
tions, which incrementally picks up an object, senses
its property and stores it in the appropriate box. Al-
though this appears to be a simple plan, automatically
computing such plans with safety or correctness guar-
antees requires reasoning about cyclic control flows.
This has been called a “notorious” problem in auto-
mated planning due to its equivalence with the halt-
ing problem of Turing machines in general. It is not
surprising that very few directions of work address the
problem of computing or representing such plans.

2. Contributions

In my thesis, I formulated this problem as a gener-
alized planning problem [1]. I identified the factors
that make it intractable in general, and identified a use-
ful subclass of problems where reasoning about cyclic
control and therefore, automatically computing gener-
alized plans, is possible. I also developed algorithms
for computing generalized plans in this class.

Given a possibly infinite set of initial problem states
and “lifted” action specifications independent of the
actual object quantities, the generalized planning prob-
lem is to compute a control structure that solves as
many of the initial states as possible. We used the
language of first-order logic with transitive closure
(FO(TC)) to express both the class of initial states and
actions in this formalization. The initial states of a
generalized planning problem can come from different
state spaces with varying object quantities and prop-
erties. In this framework, generalized plans are algo-
rithms expressed in the form of finite state automata
with actions labeling the control-nodes and conditions
labeling the edges. A generalized plan can also in-
clude actions with variables in place of arguments
(e.g. put(obj,, box,)) and choice-actions (e.g. choose
box,: type(box,)=type(obj,)) specifying the objects to
be chosen for those variables during execution. This
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representation allows us to express solutions for prob-
lems with unknown object quantities and properties.

As a foundation for my thesis, I developed a set of
evaluation criteria for generalized plans. These criteria
can be used to evaluate any approach that addresses the
generalized planning problem. For example, to be truly
applicable, any generalized plan should come with an
efficient applicability test that determines whether it
will solve a given problem instance. This is because
even small generalized plans with cyclic control can
have disparate behaviors on different “similar” prob-
lems, to the extent of efficiently achieving the goal in
one, and traversing almost the entire state space with-
out ever achieving in another. Automatically comput-
ing the applicability test for a generalized plan amounts
to computing the preconditions under which it will
solve a problem. Unfortunately, because of the expres-
siveness of generalized plans, this problem is equiva-
lent to the halting problem of Turing machines and is
incomputable in general.

I addressed this challenge by studying the problem
of finding preconditions for reaching a desirable state
in an abacus program. Abacus programs have a fi-
nite set of positive, integer-valued registers and actions
that can increment or conditionally decrement these
registers. This framework is Turing-equivalent and
can therefore express any cyclic control flow, includ-
ing generalized plans. Further, generalized plans for
a broad class of planning problems have natural rep-
resentations as abacus programs. Although it is im-
possible in general to compute the preconditions for
reaching a desirable state in an abacus program, I de-
veloped methods for computing them in a useful sub-
class. In this class, our methods can be used to com-
pute the applicability conditions for a generalized plan,
under which it will achieve the goal in a finite number
of steps without visiting undesirable states.

Equipped with these theoretical results, I developed
algorithms for computing generalized plans with effi-
cient applicability tests for a class of planning prob-
lems. These algorithms use the concept of canonical
abstraction from software model checking as a foun-
dation. Given a concrete state, its canonical abstrac-
tion represents all objects that have the same properties
with respect to a set of abstraction predicates by a sum-
mary element. Adapting this system to planning rep-
resentations and using all unary predicates in the do-
main as abstraction predicates gives us an efficient, fi-
nite representation for states with uncertainty in object
quantities and properties.

Plan Generalization 1 used canonical abstraction in
an algorithm for plan generalization. This algorithm

first applies an input concrete plan on the canonical ab-
straction of an initial state that the plan solves. This
yields a sequence of abstract states where recurring
state properties can be easily identified in the form of
subsuming states. When one abstract state in the se-
quence subsumes another, the actions between these
two states can be placed in a loop (executability of the
loop is guaranteed by properties of the abstraction).
However, most such loops will repeatedly iterate over
the same concrete states and will never terminate dur-
ing execution. Therefore, before creating the loop we
test whether it will make progress and terminate in ev-
ery possible execution, using the abacus program ap-
proach discussed above. In a broad class of domains,
this approach produces generalized plans with loops
together with efficient applicability tests. Typically, the
output generalized plans solve many more problems
than the original concrete plan, which solved only one.
Hybrid Plan Synthesis 1 also developed an algorithm
for “bootstrapping” the generalization process and in-
crementally growing partial generalized plans. In this
algorithm, a classical planner is used to create a con-
crete plan for an unsolved problem instance. At the
beginning, this instance can be any member of the
class of initial states. At any point in the overall algo-
rithm, a super-set of problem instances that may not be
solved by the algorithm is maintained. The incremen-
tal process works by selecting a small instance from
this class, invoking a classical planner on it, and gen-
eralizing and merging the resulting plan with the exist-
ing generalized plan. In this way the algorithm quickly
builds an initial generalized plan and then continues to
add to its coverage by incorporating automatically ob-
tained, useful plan segments.

These approaches were able to solve a wide range
of generalized planning problems. We also used them
to solve algorithm-synthesis problems like reversing a
singly linked list and sorting a list of elements. By
using state-of-the-art planners, we were able to utilize
our theoretical results and representations to develop
a system for performing goal-directed heuristic search
for generalized plans.
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