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Abstract

We create a unified framework for analyzing and synthe-
sizing plans with loops for solving problems with non-
deterministic numeric effects and a limited form of par-
tial observability. Three different action models—with de-
terministic, qualitative non-deterministic and Boolean non-
deterministic semantics—are handled using a single abstract
representation. We establish the conditions under which the
correctness and termination of solutions, represented as ab-
stract policies, can be verified. We also examine the feasibility
of learning abstract policies from examples. We demonstrate
our techniques on several planning problems and show that
they apply to challenging real-world tasks such as doing the
laundry with a PR2 robot. These results resolve a number of
open questions about planning with loops and facilitate the
development of new algorithms and applications.

1 Introduction
The inclusion of loops in plans is crucial for several reasons.
First, loops allow compact plans to repeat a sequence of ac-
tions, many times, for example in order to produce a suffi-
cient quantity of a certain material. Second, loops facilitate
the creation of plans that handle partial observability or non-
deterministic actions—both of which introduce uncertainty
about the number of times certain actions must be repeated
to meet desired conditions. Finally, loops can help increase
the applicability conditions of a plan, making it more general
and more useful. The utility of loops has motivated a range
of planning paradigms with different guarantees of termina-
tion and correctness (Cimatti et al. 2003; Levesque 2005;
Srivastava, Immerman, and Zilberstein 2008; Bonet, Pala-
cios, and Geffner 2009; Hu and Levesque 2010; Hu and Gi-
acomo 2011).

Consider for example a household robot that needs to do
the laundry. Its actions include picking up clothes from a ta-
ble and a basket; placing clothes in the basket or the washer;
picking up the basket and placing it at a location in the laun-
dry room; opening and closing the washer door and moving
from the laundry room to the washer room. A state-of-the-art
robot with advanced sensors and actuators, such as the PR2,
has to use a broad “pinch” grasp with its grippers to pick up
the clothes from a heap. The exact number of clothes in the
heap and the number that may be picked up with each grasp
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Figure 1: PR2 robot doing the laundry using our planning ap-
proach for addressing partial observability and non-determinism.

cannot be determined precisely. Doing the laundry thus rep-
resents a challenging planning problem involving partial ob-
servability, non-determinism, and unknown quantities of ob-
jects. Yet, humans typically consider this task simple enough
to be boring. Intuitively, they construct cyclic plans with
strong guarantees of correctness and termination: they know
that the solution must involve iterations of placing clothes
in the basket, carrying the basket to the laundry room, trans-
ferring clothes to the washer and so on. Such plans are com-
pact, broadly applicable (regardless of the number of clothes
in the initial heap) and surprisingly efficient at dealing with
partial observability and non-determinism.

We examine the feasibility of planning with loops in pop-
ular formulations of planning with different action seman-
tics (deterministic or non-deterministic), criteria for cor-
rectness (strong cyclic or terminating), and classes of solu-
tions (memoryless or finite-memory abstract policies). We
also provide an effective approach for computing plans with
loops by learning from examples. First, we characterize pre-
cisely different frameworks for planning using action mod-
els with deterministic and non-deterministic effects (Sec. 2).
We focus on actions that have numeric effects on a set of
counter variables. This captures the fundamental aspects of
planning with loops, as the counter variables can represent
the cardinalities of sets characterized by different proper-
ties (Boolean planning problems are a special case with 0/1
counters). Second, we prove novel results categorizing the
types of plans with loops that are necessary for expressing
solutions based on the properties of the planning framework
(Sec. 3). Third, we show that for most of the planning frame-
works it is possible to construct plans with loops by learn-
ing from examples (Sec. 3.3). Finally we demonstrate the ef-
fectiveness of our algorithm for learning from examples on
problems from the literature and show that it allows the PR2
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robot to actually do the laundry (Sec. 4).

2 Problem Formulation
To approach planning with loops under different forms of
observability and non-determinism, we use a primitive but
powerful representation where all variables are numeric
variables with N or R as their domains. Let V be the set
of such variables. For each x ∈ V , we define the levels
for x, `(x), as a finite set of natural numbers. The set of
intervals defined by a set of levels {l1, . . . , lk} is the set
{[0, l1), [l1, l2), . . . , [lk,∞)}, 0 < l1 < · · · < lk <∞.
Definition 1. An action consists of a precondition, which
maps each variable in V to a union of intervals defined
by the levels for that variable, and a set of action effects,
effects(a). Each member of effects(a) is of the form ⊕x or
	x, where x ∈ vars; effects(a) must include at most one
occurrence of each variable in V .

A concrete state in a domain is an assignment that maps
each variable in V to a value in that variable’s domain. The
value of a variable x in a state s is denoted as s(x).
Example 1. Consider the settlers domain from the Inter-
national Planning Competition, modified to include partial
observability and non-deterministic effects. The domain in-
volves a mining operation that can produce iron by execut-
ing a smeltIron action that consumes some amounts of
ore and coal. There are three mining actions: mineOre
that produces some ore, mineCoal that produces some
coal, and mineBoth that produces some amounts of both
ore and coal. The actions sellCoal and sellOre each
reduce the amount of coal and ore respectively, and in-
crease the amount of wealth. The state includes values
of the variables:{ore, coal, iron,wealth}, which are non-
negative. Preconditions of actions require that numeric vari-
ables be in certain ranges, e.g., smeltIron requires that
the amount of ore is at least ol and coal is at least cl:

action: smeltIron
precondition: ore ∈ [ol,∞) ∧ coal ∈ [cl,∞)
effects: {	ore, 	coal, ⊕iron}

The remaining actions can be similarly represented with
the mine actions having no preconditions, and the sell ac-
tions requiring some minimal quantity of the resource being
sold. Given a start state with non-zero amounts of ore and
coal, the goal is to reach a state in which the amount of iron
is above a given threshold.
Definition 2. A planning domain 〈V, `,A〉 consists of a set
of variables V , sets of levels `(x) for each x ∈ V and a set
of actions A defined using the levels `(x) for x ∈ V .
Definition 3. A planning problem 〈D, so, g〉 consists of a
planning domain D = 〈V, `,A〉, a concrete state s0 and a
goal mapping g from V ⊆ V to intervals in R such that for
all x ∈ V , g(x) is an element of the set of intervals `(x).

2.1 Semantics of Action Effects
We consider three interpretations of ⊕,	 that correspond
to popular frameworks in the literature. We use a common
framework to study these variants in a unified manner. In
this description, s1 and s2 stand for concrete states.

Deterministic semantics 〈⊕,	〉 := 〈+,−〉. a(s1) is the
unique state s2 such that for every x ∈ V if ⊕x is an effect
of a, s2(x) = s1(x) + 1 and if 	x is an effect of a then
s2(x) = max(s1(x) − 1, 0). s2(x) = s1(x) for all x that
don’t occur in effects of a.

Qualitative non-deterministic semantics 〈⊕,	〉 :=〈↑, ↓〉.
In this case ⊕x and 	x increase or decrease x by a non-
deterministic amount. Similar actions were introduced with-
out levels by (Srivastava et al. 2011b). The amount of change
caused due to each action application can make a variable
cross at most one level; on the other hand, in any execution,
a finite sequence of ↓ x (or ↑ x) effects is sufficient to make
x cross the next lower level if x 6= 0 (or the next higher
level, if the interval containing x is not [l,∞)). If x is in its
first interval, then a finite sequence of decreases is sufficient
to make it zero and subsequent decreases have no effect.

Formally, the effect of ↑ x is to non-deterministically in-
crease x by δ, where δ ∈ [ε, δmax]. ε > 0 is a fixed but
unknown constant in every execution. δmax is defined as
follows. Let s1(x) ∈ [lj , lj+1), where [lj , lj+1) is one of
the intervals defined by `(x). Let lj+2 be the next level
following lj+1 if lj+1 6= ∞, and ∞ otherwise. Define
δmax(x) = lj+2 − ε− x. The δ for decreases is constrained
similarly, with the additional restriction that if x = 0, it is
not changed by ↓ x. For brevity, we henceforth refer to such
semantics as qualitative semantics.

Boolean non-deterministic semantics 〈⊕,	〉 :=〈+?,−?〉.
In this interpretation, s2=a(s1) is the set consisting of states
where the effects of a may or may not take place. More
precisely, if ⊕x ∈ effects(a) then either s2(x) = s1(x)
or s2(x) = s1(x) + 1; if 	x ∈ effects(a) then either
s2(x) = s1(x) or, if s1(x) > 0, s2(x) = s1(x)− 1.

2.2 Abstract Interpretation of Action Effects
We use an abstract interpretation (Cousot and Cousot 1977)
that unifies the action semantics discussed above, and gives
directly the possible effects of applying actions on sets of
states. An abstract state associates each variable with one of
the intervals defined by its levels. The set of concrete states
represented by an abstract state s, denoted as γ(s), is the
set of concrete states q that map every variable x to a value
q(x) ∈ s(x). Given a level function `, we denote the unique
abstract state that represents a concrete state q as q̃`. We omit
the subscript if the meaning is clear from the context.

We use a natural ordering on the intervals induced by
the levels for a variable, so that the functions next(I) and
previous(I) return the intervals immediately succeeding and
preceding I respectively, with the exception that if I is the
first (last) interval, then previous (next) returns I itself. We
consider planning domains where action effects increase or
decrease variables. In particular, an action effect is of the
form ⊕x or 	x, for x ∈ V . The abstract interpretation
ã of a is defined as follows. ã(s1) is the set consisting of
abstract states s2 such that if ⊕x ∈ effects(a) then either
s2(x) = s1(x) or s2(x) = next(s1(x)); if 	x ∈ effects(a),
then either s2(x) = s1(x) or s2(x) = previous(s1(x)).
This abstract interpretation is sound: ã(s1) includes all pos-
sible effects under any semantics.



P1: a strong cyclic policy that may not terminate:
when (ore < ol ∧ coal < cl ∧ iron < il) mineBoth
when (ore < ol ∧ coal ≥ cl ∧ iron < il) sellCoal
when (ore ≥ ol ∧ coal < cl ∧ iron < il) sellOre
when (ore ≥ ol ∧ coal ≥ cl ∧ iron < il) smeltIron

P2: a strong cyclic policy that is guaranteed to terminate:
when (ore < ol ∧ coal < cl ∧ iron < il) mineBoth
when (ore < ol ∧ coal ≥ cl ∧ iron < il) mineOre
when (ore ≥ ol ∧ coal < cl ∧ iron < il) mineCoal
when (ore ≥ ol ∧ coal ≥ cl ∧ iron < il) smeltIron

Figure 2: Two possible plans for the mining problem.

2.3 Solutions to Planning Problems
In this paper, we focus on solutions or policies that map ab-
stract states to actions. Formally, an abstract policy π is a
partial mapping from abstract states to actions such that π
is defined for all non-goal states that are reachable under π
from the initial state s0. 1

Let the abstract transition graph of a policy π, denoted
tsπ , be the graph of the transition system defined by π. The
nodes of tsπ are abstract states; edge s1

a−→ s2 is in the graph
iff π(s1) = a and s2 ∈ ã(s1). If the only terminal states in
tsπ are goal states, then we say that tsπ is goal-closed.

Solution Properties Two criteria define the quality of a
solution. Whenever the goal state is reached within a fi-
nite number of steps in every execution, from every concrete
state c represented by the initial abstract state, the policy is
terminating. If a policy never leads to an abstract state from
which the goal cannot be reached by following it, then it is
strong cyclic. That is, from every abstract state that can be
reached by executing a strong cyclic policy, there exists an
execution consistent with the policy that leads to the goal.
Thus, strong cyclicity is strictly weaker than termination.

Example 2. Fig. 2 shows two possible solution plans for the
mining problem, expressed as abstract policies that map sets
of states satisfying certain conditions to actions. The policy
P1 is a strong cyclic solution because from every state that
can be reached while executing it, there is a possible execu-
tion that can lead to the goal: initially, there is a possibility
of reaching a state with ore < ol ∧ coal < cl ∧ iron < il;
from this state, the mineBoth action could lead to a state
with ore ≥ ol ∧ coal ≥ cl ∧ iron < il, allowing the
smeltIron action to be taken. However, this policy can
result in a non-terminating execution that repeatedly sells
ore and coal and then mines them without reaching the goal.

The second policy P2 is a strong cyclic policy that is also
guaranteed to terminate under deterministic and qualitative
semantics. It is easy to see that in this case the first three
mining operations will take place until they reach a state
satisfying ore ≥ ol ∧ coal ≥ cl ∧ iron < il, allowing the
smeltIron action to be taken. Clearly, P2 is preferable
over P1 because P1 is not guaranteed to reach the goal in a
finite number of steps under any semantics.

1Concrete policies that map concrete states to actions require
a compact representation (see Example 4) because the number of
concrete states can be uncountably infinite. Unless otherwise spec-
ified, the term “policy” refers to an abstract policy.

Algorithm 1: (Progress-Sieve) abstract policy termination test

Input: g = ts(π, s̃I)
1 Remove all edges e of g that have a progress variable w.r.t.

their SCCs
2 if no edge was removed then
3 Return “Non-terminating”

4 for g′ ∈ SCCs-of(g) do
5 if Progress-Sieve(g′)= “Non-terminating” then
6 Return “Non-terminating”

7 Return “Terminating”

3 Properties and Computability of Solutions
In this section we investigate fundamental questions about
popular planning frameworks with different action seman-
tics, observability conditions and solution requirements. We
first investigate the decidability of each of the solution
properties and provide algorithms when possible. Under
Boolean-ND semantics, termination of cyclic abstract poli-
cies can never be guaranteed. Given any cycle in the transi-
tion graph, action outcomes can be selected so that the cycle
is executed indefinitely. Moreover, cycles must exist in the
transition graph because it is possible for an action to have
no effect. Thus, terminating policies for such semantics are
not possible. We now focus on the remaining frameworks
and their solution properties.

Srivastava et al. (2011b) presented the Sieve algorithm for
determining if an abstract policy terminates under qualita-
tive semantics for the case where each variable has only one
level (0). The Progress-Sieve algorithm (Alg. 1) extends that
algorithm to variables with multiple levels by using a gener-
alized notion of progress variables. Like the Sieve algorithm
it recurs over strongly connected components (SCCs), and is
shown as Alg. 1.

Definition 4. (Progress variable) Given a policy π, variable
xi is a progress variable w.r.t. a subgraph G of tsπ iff either
all occurrences of xi in the effects of actions in G are 	xi
and for every state in G, xi 6∈ [0, l1), or all occurrences of
xi are ⊕xi and for every state in G, xi 6∈ [lj ,∞).

It turns out that the Progress-Sieve algorithm with levels is
also complete for the qualitative semantics. The inclusion of
other levels makes our situation significantly different from
prior work due to two reasons: (1) increase effects may also
lead to termination of the execution of an SCC; and (2) the
single 0 level allows a stronger argument where ε, the lower
bound on qualitative action effects, can be arbitrary. This
argument does not hold in our setting.

Theorem 1. The Progress-Sieve algorithm is a sound test of
termination w.r.t. deterministic and qualitative semantics.

The proof follows the inductive argument made by (Sri-
vastava et al. 2011b) with the additional observation that in
any ε bounded trajectory, any variable that is not in its last
interval (bounded by∞) that is repeatedly increased without
a decrease must eventually cross a level. Similarly, any vari-
able that is not in its first interval and is repeatedly decreased
must eventually cross a level.



Lemma 1. In any abstract transition sequence with com-
mon initial and final abstract states of the form s1

ã1−→
· · · sk

ãk−→ s1, if no variable is a progress variable then
for every xi and every initial valuation x0i ∈ s1(xi), there
exists ε > 0 and δ1i , . . . δ

k
i > ε such that each δji is

in the range of the effect of aj using qualitative seman-
tics and

∑
j=1...k δ

j
i = 0. In other words, the final value

xki = x0i +
∑
j=1...k δ

j
i = x0i .

Proof. Consider sequence of effects on a variable x1 that is
affected by actions in the given sequence. We use induction
on k, the number of actions in the sequence. k = 1 is a spe-
cial case. The only way in which a cycle with one action
can have no progress variables is if all affected variables
are in maximal ([lk,∞)) or minimal ([0, l1)) intervals and
are respectively increased or decreased. In that case, by the
definition of qualitative action semantics, the cycle must be
non-terminating. k = 1 is not valid because every variable
will be a progress variable for a path with one action.

If k = 2, the last action simply “undoes” the effect of
the first action. Suppose the hypothesis holds for k = m.
Consider a sequence of m+ 1 actions. We have 2 cases:
Case 1 The last (m+1)’th action causes a transition across
intervals. In this case, a δ can be chosen for the last action to
reach any point in the interval in which x01 belongs.
Case 2 The last action causes a transition within the in-
terval in which x01 belongs. By the induction hypothesis,
the sequence of first m actions can be instantiated so that
x01 = xm1 . Let the ε for which this equality is achieved be ε1.

If the last two actions affect x1 in the same direction, set
ε2 < min(ε1, δ/2) where δ is the affect of the m’th action
on x, and let the affect due to the last action be δ/2.

If the last two actions affect x1 in opposite directions, then
change the effect of them’th action to reach some point y 6=
x01 such that y > x01 (or y < x11) if the (m + 1)’th action
decreases (or increases) x. Let ε2 = min(ε1, |y − x01|)

In this manner, for any given sequence of m + 1 actions,
we can compute an ε and a sequence of δji ’s representing
changes on each variable by each action in the sequence such
that ε is a lower bound on all δji .

Theorem 2. The Progress-Sieve algorithm is a complete test
of termination w.r.t. qualitative semantics.

Proof. Suppose that the Progress-Sieve algorithm returns
“non-terminating”. This implies the presence of an SCC
without a progress variable. Then we can construct a se-
quence of states and actions S = s1

a1−→ · · · ak−→ s1, pos-
sibly with repetition such that every action in the SCC ap-
pears at least once in this sequence. By Lemma 1, we can
create a non-terminating instance of this sequence, so that
if the starting value of each variable is in the interior of its
interval then after every iteration of the action sequence, the
variable values return to the original values. This sequence
of actions can be executed ad infinitum. Thus, there is in fact
a non-terminating execution sequence.

Theorem 3. The Progress-Sieve algorithm is not a complete
test of termination w.r.t deterministic semantics.

Proof. The following is a counter-example to completeness.
Consider a planning problem with V = {x, y, z} `(x) =
{1, 5}, `(z) = `(y) = {1}. Let π1 be defined as: π1(s1 =
x ∈ [1, 5), y ∈ [0, 1), z ∈ [0, 1)) : + x,+y
π1(s2 = x ∈ [1, 5), y ∈ [1,∞), z ∈ [0, 1)) : + x,+z
π1(s3 = x ∈ [1, 5), y ∈ [1,∞), z ∈ [1,∞)) : − x,−y,−z
tsπ1 has the following SCC:
s1

+x,+y−−−−→ s2
+x,+z−−−−→ s3

−x,−y,−z−−−−−−→ s1 (each state also has
a self loop). This SCC has no progress variable but it termi-
nates after at most four steps because x is incremented by 1
in every full execution of the cycle s1, s2, s3.

Thus, the progress-sieve algorithm is an accurate test for
abstract policies under qualitative semantics, but it is only a
sound test under deterministic semantics.

We have thus established that for determining that a solu-
tion terminates, there is a sound and complete algorithm un-
der qualitative semantics, a sound algorithm under determin-
istic semantics, and the problem is meaningless for Boolean-
ND semantics. For determining strong cyclicity of an ab-
stract policy under any semantics, we only need to check the
connectivity properties of the finite abstract transition graph.

The next question is whether it is possible to construct
a complete test of termination under deterministic seman-
tics. The following result answers it negatively. Essentially,
even abstract policies can be used to represent abacus pro-
grams (Lambek 1961; Boolos and Jeffrey 1987; Helmert
2002), which are equivalent to Turing machines. Determin-
ing if a policy terminates under deterministic semantics is
thus equivalent to the halting problem for Turing machines.
Definition 5. (Abacus Programs) An abacus program
〈R,Q, `, q0, qf 〉 consists of a finite set of registersR, a finite
set of states S with special initial and halting states q0, qf ∈
S and state labels determined by ` : S \ {qf} 7→ Act. The
set of actions, Act, includes, for each register r and states
q1, q2:

• Inc(r, q1): increment r; goto q1
• Dec(r, q1, q2): if r = 0 goto q1 else decrement r; goto q2

The execution of abacus programs starts at q0; at every
step, the applicable edge leading out of the state is taken and
the corresponding action’s effect is applied to the relevant
register. Execution stops when the state qh is reached. Aba-
cus programs can be represented as graphs with nodes rep-
resenting states and edge labels representing actions. Thus
nodes for states that are mapped to decrementing actions
have two outgoing edges.
Theorem 4. For any abacus programA = 〈R,Q, `, q0, qf 〉,
there exists a policy π(A), and a set of abstract states Sf
such that an execution ofA terminates at qf iff the execution
of π(A) terminates at a state in Sf .

Proof. The set of variables over which π(A) is defined is
R ∪ Q ∪ {qij : qi, qj ∈ Q}. All variables have a singleton
level set, {1}. Let qi ∈ Q and ar,i,j be the action that effects
r and leads to qj . Let the effect of ar,i,j along the edge from
qi to qj be eff(ar,i,j). to a state qj , the policy π(A) includes
the following mappings. For ease in presentation, we only
write the state variables that are not in [0, 1) on the left.



Deterministic Qualitative Boolean-ND
Strong cyclic N/A True False
Terminating False True N/A

Table 1: Sufficiency of abstract solution policies for fully observ-
able problems.

qi ∈ [1,∞): +qij , eff(ar,i,j)
qi ∈ [1,∞), qij ∈ [1,∞): −qi
qij ∈ [1,∞): +qj
qj ∈ [1,∞), qij ∈ [1,∞): −qij

In the initial state, all variables other than q0 are set to
[0, 1); q0 is set to [1,∞). With this construction, execution
of an abacus program is captured by the execution of π(A)
in the sense that the state variable not in [0, 1) denotes the
“current” execution state of the abacus program. If the edge
from qi to qj is to be taken in the abacus program, the pol-
icy increments qij , decrements qi, increments qj and finally
decrements qij to achieve the representation of being in the
abacus program state qj . The intermediate variables qi,j are
required because we cannot set q0, to be exactly 1 initially
and must allow for multiple decrements of q0 to bring it to 0.
Thus, the execution of the policy corresponds to the execu-
tion of the given abacus program and the policy terminates
at a state with qf ∈ [1,∞) and the remaining state variables
at [0, 1).

3.1 Sufficiency of Policy Classes for FO Problems
The following sections describe the requirements for ex-
pressing solutions to planning problems under full observ-
ability (FO) and partial observability (PO), under all the pos-
sible combinations of action semantics and solution proper-
ties. We show that it is not always possible to express a so-
lution as an abstract policy, but sometimes the use of a finite
amount of memory with an abstract policy can be sufficient.
All the results are summarized in Tables 1 and 2. Finally, we
show that a large class of problems can be solved by learning
from examples.

Sufficiency of Abstract Terminating Policies We first in-
vestigate if the existence of a terminating concrete solution
implies the existence of a terminating abstract solution.
Example 3. Let domain D1 be defined using the variables
{x, y, z, w}. x, y, w have the level {1} while z has the level
{5}. The set of actions, expressed as tuples of preconditions
and effects, is as follows: a1 = 〈(x, y ∈ [0, 1)), (⊕y,⊕z)〉,
a2 = 〈(x, y ∈ [0, 1)), (⊕x,⊕z)〉, goalA1 = 〈(y ∈
[1,∞), z ∈ [5,∞)), (⊕w)〉, goalA2 = 〈(x ∈ [1,∞), z ∈
[0, 5)), (⊕w)〉. The goal condition is w ∈ [1,∞).

Under deterministic semantics, one of the two actions
goalA1 or goalA2 need to be applied to reach the goal.
If z < 4 initially, applying a2 enables the application of
goalA2 but not goalA1. If z ≥ 4, applying a1 enables the
application of goalA1 but not goalA2.

Example 4. A concrete policy πconc for Eg. 3 can be speci-
fied compactly as follows: z ∈ [4,∞) : a1; z ∈ [0, 4) : a2;
y ∈ [1,∞), z ∈ [5,∞) : goalA1; x ∈ [1,∞), z ∈ [0, 5) :
goalA2. This is not an abstract policy because it uses the
level 4 for z.

Deterministic Qualitative Boolean-ND
Strong cyclic True True True
Terminating False True N/A

Table 2: Sufficiency of memoryless abstract solution policies for
partially observable problems.

Theorem 5. Under deterministic interpretation of 〈⊕,	〉,
existence of a concrete terminating, goal-closed policy for a
fully observable planning problem does not imply the exis-
tence of an abstract terminating, goal-closed policy.

Proof. A counterexample is obtained using the domain D1

(Eg. 3) with the planning problem obtained by setting the
concrete initial state c0 as x = y = w = 0, z = 3.
πconc (Eg. 4) is a terminating, goal-closed policy under de-
terministic semantics, for any initial value of z. However
there is no abstract, terminating goal-closed policy. Consider
the initial abstract state s0 = x, y, w ∈ [0, 1); z ∈ [0, 5).
If a policy sets a1 for s0, one of the possible outcomes
is x ∈ [0, 1), y ∈ [1,∞), z ∈ [0, 5), in which no action
is applicable. If a2 is assigned to s0, the possible result
x ∈ [1,∞), y ∈ [0, 1), z ∈ [5,∞) has no applicable action.
Therefore, this problem has no abstract solution policy.

The following lemma and theorem follow from exist-
ing results. Since their proof applies directly to our setting,
we only state them here for completeness. The set of ab-
stract trajectories of a given policy is the set of sequences
s0, s1, . . . where si 6= sj , obtained by executing the policy
using abstract interpretations of actions.
Lemma 2. (Srivastava et al. 2011b) Let c1 and c2 be ab-
stract states in a domain D. If c̃1 = c̃2 then c1 and c2 have
the same set of abstracted trajectories w.r.t. any concrete
policy π.
Theorem 6. (Srivastava et al. 2011b) Under qualitative se-
mantics, a concrete, terminating solution policy exists for a
fully observable planning problem iff an abstract solution
policy does.

As noted earlier, terminating concrete policies for
Boolean-ND semantics do not exist.

Sufficiency of Abstract Strong Cyclic Policies Before
we determine whether abstract policies are sufficient when
we are only interested in strong cyclic policies, we clarify a
few key notions. We say that a concrete policy is cyclic if it is
possible to start executing the policy and visit the same con-
crete state at least twice. A concrete policy is strong cyclic
if the policy is cyclic, and every state visited during the ex-
ecution has an execution trajectory consistent with the pol-
icy, leading to the goal. Problems with deterministic action
semantics cannot have strong cyclic policies because if the
policy is cyclic, the states that are in a cycle will have no
paths to the goal since actions will have unique outcomes.

The following result follows from arguments presented
above for Thm. 6.
Theorem 7. Under qualitative semantics, a concrete strong
cyclic solution policy exists for a fully observable planning
problem iff an abstract strong cyclic solution policy does.



Example 5. Consider a planning domainD2 with variables
x and y. The levels for x and y respectively are {1, 3} and
{1, 5} respectively. The set of actions includes a1 = 〈(x ∈
[0, 1)), (⊕x)〉; a2 = 〈(x ∈ [1, 3)), (⊕x,⊕y)〉; a3 = 〈(x ∈
[1, 3)), (	x,⊕y)〉.
Example 6. Let D′2 be the domain obtained by remov-
ing action a1 in D2 (defined in Eg. 5). Define a fully ob-
servable planning problem P2 over D′2 with the start state
x = 1, y = 0 and the goal condition y ∈ [5,∞). We can
specify a concrete partial policy, πconc2 in this domain as
x = 1, y ∈ [0, 5) : a2;x = 2, y ∈ [0, 5) : a3. Under
Boolean-ND semantics, an execution of the policy starting
with the initial state will apply a2 until either x is increased,
or y, or both. If in the process y reaches 5, execution stops.
If x reaches 2, application of a3 is repeated until either x
becomes 1 (and application of a2 resumes again) or y be-
comes 5. In either case, there is a path to reaching the goal
state and thus the policy is strong cyclic.
Theorem 8. Under Boolean-ND semantics, existence of a
concrete strong cyclic solution policy for a fully observable
planning problem does not imply existence of an abstract
strong cyclic solution policy.
Proof. Eg. 6 presents a concrete strong cyclic policy for D′2
in Eg. 5. However, there is no abstract strong cyclic policy
because the result of applying ã2 on any abstract state with
x ∈ [1, 3) in that example has as its possible outcomes, ab-
stract states with x ∈ [3,∞), with no path to the goal.

3.2 Sufficiency of Policy Classes for PO Problems
So far we discussed the sufficiency of abstract solution poli-
cies while defining solvability as the existence of a concrete
solution policy. However, in many real-world situations the
state is only partially observable. In such situations the agent
may not know the value of each state variable precisely, and
thus cannot execute concrete solution policies that map arbi-
trary values or intervals of variables to actions. We consider
a form of partial observability where the agent only knows
the interval that each variable belongs to, where the intervals
are fixed per problem. That is, the set of observable intervals
for each variable is the set of intervals defined by its levels.
Definition 6. A partially observable planning problem
〈D, so, g〉 consists of a planning domain D = 〈V, `,A〉, an
abstract state s0 in D, and g, a mapping from V ⊆ V to in-
tervals in R such that for all x ∈ V , g(x) is an element of
the set of intervals defined by `(x).

Abstract policies satisfy the epistemic constraints im-
posed on the agent in such problems but, as we show below,
are in some cases insufficient compared to “finite-memory
abstract policies” that can incorporate a finite history of exe-
cutions and observations. A finite-memory abstract policy is
defined in the form of a finite-state controller. As expected,
the definition reduces to that of an abstract policy when the
set of memory states is empty.
Definition 7. (Finite-memory policy) A finite-memory ab-
stract policy 〈Q, q0, π〉 over a domain D = 〈V, `,A〉 con-
sists of a finite set of memory states Q, an initial memory
state q0 ∈ Q, and a mapping π : Q×S 7→ Q×A, where S
is the set of abstract states defined by D.

As in memoryless policies, a finite-memory policy may be
partial, covering only the reachable states. A finite-memory
policy is goal-closed if the only terminal states (defined as
pairs of memory states and abstract states) in the abstract
transition system induced by the policy are goal states.

Sufficiency of Memoryless Strong Cyclic Policies The
following result shows that memoryless abstract policies are
actually sufficient when strong cyclic policies are required.
Theorem 9. Suppose π is a finite-memory strong cyclic pol-
icy w.r.t. the goal condition g. Then there exists a policy π′
which is also strong cyclic w.r.t. g, but does not use memory.
Proof. We construct the policy π′ as follows. Consider the
transition graph tsπ , whose nodes represent dual states de-
fined as pairs of a memory state and a problem state. De-
fine ts′π as the graph obtained by merging all nodes with
the same problem state. Nodes of ts′π are labeled only
with problem states and can have multiple outgoing edges.
Repeat the following process for every goal state sg . Let
border(k) be the set of states whose min distance in terms of
actions from the goal state is k. Thus border(0) = goal state.
Iterate over non-empty sets border(k), in increasing order
of k, the following operation: for each state in border(k),
remove outgoing edges corresponding to all actions except
those for an action that leads to a state in border(k − 1).

After every step of this process, every state in ts′π has a
path to the goal. We prove this by induction on k. The claim
is true initially because the policy tsπ was strong cyclic. Af-
ter the k = m iteration, let s be a state in border(m + 1).
The pruning is such that s still has a path to some state in
border(m). By induction, that state has a path to the goal
and therefore s has a path to the goal. Thus, π′ is strong
cyclic.

Sufficiency of Memoryless Terminating Policies We
now show that if termination is required, the sufficiency of
memoryless policies depends on the semantics.
Example 7. In this example we construct a finite mem-
ory terminating policy for the domain D2 described in
Eg. 5. We first define a partially observable planning prob-
lem P3 with the initial state x ∈ [0, 1), y ∈ [1, 5) and
the goal condition y ∈ [5,∞). Define the finite-memory
policy πconc2 using two memory states q0, q1 as follows.
〈q0, (x ∈ [0, 1), y ∈ [0, 1))〉 : 〈q0, a1〉; 〈q0, (x ∈ [1, 3), y ∈
[1, 5))〉 : 〈q1, a2〉; 〈q1, (x ∈ [1, 3), y ∈ [1, 5))〉 : 〈q0, a3〉.
Under deterministic semantics, an execution of this policy
results in a finite action application sequence of the form
a1, a2, a3, a2, a3, . . .. The execution terminates only when y
reaches 5. πconc2 is therefore a finite-memory, terminating,
goal-closed policy.
Theorem 10. Under deterministic interpretation of 〈⊕,	〉,
existence of a finite-memory terminating, goal-closed policy
for a partially observable planning problem does not neces-
sarily imply the existence of a memoryless terminating, goal-
closed policy.
Proof. Eg. 7 gives the required counterexample. This prob-
lem has no memoryless abstract policy because the same ab-
stract state, x ∈ [1, 3), y ∈ [1, 5) requires a finite number of
repetitions of the action sequence a1, a3.



Theorem 11. Under qualitative interpretation of 〈⊕,	〉, a
finite-memory terminating, goal-closed policy for a partially
observable planning problem exists iff a memoryless termi-
nating, goal-closed policy does.
Proof. Consider the fully observable version of the given
problem. If this problem has a terminating solution, it must
have a memoryless concrete policy as a solution (adding
memory in fully observable problems has no benefit). If it
does, then by Thm 6 it must have a qualitative solution pol-
icy, which also solves the partially observable problem. In
other words the partially observable planning problem has
a terminating solution policy iff the fully observable prob-
lem does and the fully observable planning problem has a
terminating solution policy iff it has an abstract terminating
solution policy.

3.3 Feasibility of Learning from Examples
The preceding sections show that memoryless abstract poli-
cies are sufficient for six of the nine meaningful combina-
tions of action semantics, solution criteria, and observability
(Tables 1 and 2). With this motivation, we consider the prob-
lem of efficiently computing abstract policies. One approach
is to enumerate all possible abstract policies, and select one
that is terminating and goal-closed (Srivastava et al. 2011b).
Clearly, this approach is not scalable. Learning from exam-
ples would be possible only if every desirable policy could in
principle be constructed using a finite set of example plans.
Ideally, it should also be possible to generate these plans
by invoking planners with a well defined goal condition. We
show the surprising result that both these conditions hold for
abstract memoryless policies.

Given a concrete state c0 and a sequence of actions p =
p1, . . . , pn the application of p on c0 with deterministic se-
mantics (+1,−1 for ⊕,	) is denoted as p(c0). p(c0) is a
sequence of concrete states co, c1, . . . , cn. If this sequence
satisfies c̃k = c̃l =⇒ pl = pk under a level mapping `,
then we say that p respects ` when executed on c. Such a
plan naturally defines a partial policy on the states c̃0, . . . c̃n:
π(c̃l) = pl. Consider a finite set of example plans 〈ci, pi〉
such that pi respects ` when executed on ci. We define such
a set to be consistent with ` if whenever two concrete states
cil, c

j
k in any two executions pi(ci) and pj(cj) respectively

are such that c̃il = c̃jk, we have pik = pil . Using this notation,
the desired result is as follows.
Theorem 12. Given a level mapping ` and memoryless ab-
stract policy π which is goal-closed and terminating, there
exists a finite set of goal-achieving example plans which use
deterministic semantics (x+1,max(0, x−1) for⊕,	), are
consistent with `, and collectively define π.
Proof. We construct the set of examples as follows. Unmark
all states in tsπ . Repeat the following steps until all states
are marked: (1) Select an unmarked node s. Create a con-
crete state c ∈ γ(s), with variable values in N. Apply policy
π starting at c, using deterministic semantics; (2) Mark all
states reached during this process. Include the trajectory ex-
ecuted starting from c in the set of examples. Every step of
the application in step 1 results in a transition in the concrete
state space. Since our abstract interpretation is sound, every

successive concrete state must belong to one of the resulting
abstract states included in π. Since π is terminating (termi-
nation under qualitative semantics implies termination under
deterministic semantics because effects under deterministic
semantics are subsumed by those under qualitative seman-
tics), this execution must end after a finite number of steps
by reaching a state not in the domain of the policy. Since π
is goal-closed, this state must be a goal state.

Every iteration of this procedure marks at least one addi-
tional state in tsπ , so it must terminate. The set of examples
constructed while executing step 2 is the desired set.

4 Implementation and Validation
Thm. 12 suggests that our desired solutions can be con-
structed by combining solutions to appropriate determin-
istic planning problems. With this motivation, we imple-
mented a version of the hybrid search algorithm presented
by (Srivastava et al. 2011a). This algorithm incrementally
generates deterministic concrete planning problems and
solves them using a classical planner. The concrete solu-
tions are simulated using the abstract action semantics de-
veloped in this paper, resulting in an abstract transition
graph. The algorithm successively creates concrete problem
instances (with deterministic semantics) corresponding to
non-terminal non-goal states in this graph, repeats the en-
tire abstraction process and merges the new transition graph
with the existing graph. In doing so, it creates copies of ab-
stract states in the graph when needed to ensure termination.
The implementation is in Java and uses FF (Hoffmann and
Nebel 2001; Hoffmann 2003) as the classical planner.
Problems from the literature We experimented with ver-
sions of the mining problem from the settlers domain by
adding various items to the production chain (e.g., tools can
be produced when there is a sufficient amount of iron), as
well as the problems considered by (Srivastava et al. 2011b)
and those by (Bonet, Palacios, and Geffner 2009) that have
memoryless solutions. We summarize the results below:
• Timing All the problems were solved in at most 1s (on a

1.7GHz Intel Core i5 Mac), including the time for gener-
ating and solving concrete problems.

• Number of examples The average numbers (over 10 runs)
of concrete plans generated were: delivery+fuel: 4.4;
snow: 1.2; trash-collection: 6; tree: 1; nestedVar: 1; min-
ing (producing tools): 4.1; corner and hall: 1.
The difficulty of nestedVar can be scaled by increasing the

number of variables. With 10 variables, the number of poli-
cies is 102
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with only one true solution. This makes search
infeasible, but our approach solves the problem in 2.2s by
generating and solving just 1 problem instance. The solu-
tions computed using our approach are also robust in that
they are terminating solutions under qualitative and deter-
ministic semantics of actions, and strong cyclic for possib-
listic semantics. In addition, levels can be scaled arbitrarily
without affecting the solution properties.
Real-World Validation with the PR2 Robot In order to
demonstrate the practical validity of our approach, we also
applied it to a real-world task using the PR2 robot. Our sys-
tem computed high-level terminating plans with loops by



Figure 3: Snapshots of the PR2 doing laundry using our approach.

generalizing and merging example plans using abstract se-
mantics as described in Sec. 4. These high-level plans were
refined into motion plans by extending a recently developed
approach for combined task and motion planning for fully
observable deterministic problems (Srivastava et al. 2014).
In order to refine high-level plans with loops, at every stage
of execution, we refine and execute only the segment of the
plan up to the next branch, followed by a sensing action for
resolving that branch. E.g., while loading the basket, the pol-
icy includes a branch on the number of dirty clothes on the
table. Instead of generating motion plans for all the possible
levels of this count, we execute the detect-clothes-ontable
action and refine only the branch whose condition is satis-
fied by the detected result. We used a Kinect sensor to ob-
tain RGBD data and OpenCV’s contour generation based on
color masks to detect clothes as objects with a specific range
of colors (close to red). In this implementation, the physical
pose at which a detection is required for resolving the level
of a variable (such as num dirty clothes on table) is derived
from variable names using a lookup table for the poses cor-
responding to surfaces and other fixed locations.

We validated this approach with the laundry task (Fig. 3).
In this problem, the state is defined by a combination of
Boolean and Natural number variables including the number
of clothes at the table, the basket and the washer; whether
or not a gripper is free; whether or not the robot is hold-
ing the basket, etc. The initial state has a heap with an un-
known number of clothes on the table in a closet and a
washer is present with its door closed. As noted in the in-
troduction, the available actions are to move between var-
ious locations, pick up and place objects (such as clothes
and a laundry basket) at various locations (into the washer,
the basket, at the table with dirty clothes, or at a location
in the laundry room). The solution plan involves iteratively
picking up the clothes and placing them into the basket;
moving from the “closet” where the dirty clothes are, to the
“laundry room”; placing the basket at a table in the laundry
room; opening the washer; incrementally loading the clothes
into the washer and finally, closing the washer door. Note
that the laundry basket is available for transporting clothes,
but the robot can also use its grippers and make multiple
trips for doing so. Our system computes the solution plan
(that uses the basket) in less than 1 second. A video of the
PR2 robot doing laundry using this approach is available at
http://tiny.cc/laundrybot.

5 Discussion and Conclusions
We developed a unified framework that captures several pop-
ular planning paradigms where plans with loops are useful.
It allowed us to prove fundamental results and facilitated

an effective solution approach for constructing robust plans
with loops in real-world scenarios. Our comprehensive anal-
ysis also sheds light on the limits of feasibility, which can
make future algorithm development efforts more effective.

Strong cyclic policies have been studied extensively for
several applications including the design of agent behaviors
and automated service composition (Bertoli, Pistore, and
Traverso 2010). Another popular direction of research fo-
cuses on computing cyclic controllers that are guaranteed
to work for only one problem instance with a finite state
space (Bonet, Palacios, and Geffner 2009; Hu and De Gi-
acomo 2013). These approaches leverage the succinctness
of plans with loops, but are limited in their ability to ex-
ploit the broad applicability afforded by cyclic plans. While
they provide solutions that could work for multiple prob-
lem instances, this is only a post-facto observation. They
are only guaranteed to solve a single instance with a finite
state space, and they cannot produce a characterization of
the general class they may solve. In contrast, our results ap-
ply directly to generalized planning (Srivastava, Immerman,
and Zilberstein 2011), where the agent has to solve sets of
infinitely many planning problems with unknown numbers
of objects. Solutions computed by our approach are guaran-
teed to solve instances with different variable values that can
represent unbounded counts of objects (e.g., the solution for
laundry is guaranteed to terminate and solve the problem for
any finite but unbounded number of dirty clothes; each value
of this quantity constitutes a distinct planning problem with
a finite state space).

The algorithm presented in Sec. 4 draws upon prior work
on incrementally obtaining example plans, generalizing
them using abstract interpretation, and merging them while
ensuring goal reachability and termination. However, in or-
der to use this process under the much broader class of
action semantics and problem formulations presented here,
the components for action application, abstract interpreta-
tion and termination analysis require the new approach de-
veloped in this paper. As a result of using abstract semantics,
the computed solutions are simultaneously strong (terminate
at a goal state) under deterministic and qualitative semantics
and strong cyclic under Boolean-ND semantics.

The Progress-Sieve algorithm is more general than ex-
isting algorithms for determining termination (Hu and
Levesque 2010; Srivastava et al. 2011b), even for the spe-
cial case of deterministic action effects. Numeric planning
has reached a mature level of development (Coles and Coles
2011; Helmert 2002), but existing approaches do not address
the inclusion of loops in plans, partial observability and non-
deterministic effects.
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