
Learning and Using Abstractions for Robot Planning

Naman Shah,1 Abhyudaya Srinet, 1 Siddharth Srivastava 1

1 Autonomous Agents and Intelligent Robots Lab,
School of Computing, Informatics, and Decision Systems Engineering,

Arizona State University,
Tempe, AZ, USA

namanshah@asu.edu, asrinet1@asu.edu, siddharths@asu.edu

Abstract

Robot motion planning involves computing a sequence of
valid robot configurations that take the robot from its initial
state to a goal state. Solving a motion planning problem op-
timally using analytical methods is proven to be PSPACE-
Hard. Sampling-based approaches have tried to approximate
the optimal solution efficiently. Generally, sampling-based
planners use uniform samplers to cover the entire state space.
In this paper, we propose a deep-learning-based framework
that identifies robot configurations in the environment that are
important to solve the given motion planning problem. These
states are used to bias the sampling distribution in order to
reduce the planning time. Our approach works with a unified
network and generates domain-dependent network parame-
ters based on the environment and the robot. We evaluate our
approach with Learn and Link planner in three different set-
tings. Results show significant improvement in motion plan-
ning times when compared with current sampling-based mo-
tion planners.

1 INTRODUCTION
Robot motion planning (MP) aims to compute a collision-
free sequence of robot configurations that take the robot
from an initial configuration to an intended goal config-
uration. The simplest motion planning problems are also
proven to be PSPACE-Hard (Reif 1979; Canny and Reif
1987). Sampling-based motion planning techniques such as
rapidly-exploring random trees (RRT) (LaValle 1998), prob-
abilistic road maps (PRM) (Kavraki et al. 1996), fast match-
ing tree (FMT) (Janson and Pavone 2013), batch informed
trees (BIT*) (Menglu Lan et al. 2016) efficiently compute
an approximate to the optimal solution. Such planners are
known to be probabilistic complete i.e, if the solution exists,
the probability of finding a solution reaches 1.0 as the num-
ber of samples approaches infinity. Most sampling-based
motion planners (SBMPs) use uniform sampling to cover
the entire state space of the planning task. Such methods of
sampling fail to efficiently provide samples from cluttered
or narrow regions. For example, consider the environments
shown in Fig. 1. Green and blue regions in the images show
initial and goal locations respectively. The robot has to pass
through the narrow channel to reach the goal state. In such
scenarios, SBMPs equipped with uniform samplers would
struggle to generate samples from the narrow channel due to

Figure 1: The green area represents the initial location of the robot
and the blue area represents the goal location. Black regions show
obstacles. The robot has to pass through the narrow passage to
reach the goal location. Uniform samplers struggle in such scenar-
ios due to reduced probability of locations in the narrow passage.

reduced probability. The problem becomes more challeng-
ing when the robot has a higher degree of freedom (e.g. a
hinge joint or an arm manipulator) due to the dimensionality
of the configuration space (C-space).

This paper focuses on speeding up sampling-based mo-
tion planning by identifying regions that are important to
solve the given problem. These regions (sets of robot config-
urations) or configurations are the ones that the robot must
achieve to solve the posed motion planning problem. Such
regions are analogous to the concept of landmarks in auto-
mated task planning. Molina, Kumar, and Srivastava (2020)
defines such sets as critical regions and use them to improve
efficiency of path planning problems in 2D spaces. Such
critical regions can also be used to facilitate a hierarchical
algorithm that first computes a path over the identified criti-
cal regions and use SBMP over these regions. In this paper,
we propose a deep-learning-based framework that identifies
such critical regions for any given arbitrary motion planning
problem and uses them to bias the sampling distribution for
an SBMP. With this biased distribution, the sampling-based
motion planning algorithms are more likely to sample states
from these critical regions and that should lead to reduced
planning times.

In this paper, the proposed approach uses demonstrations
to learn critical regions for the given motion planning task.
Our approach utilizes a unified network. It uses the C-space
to compute network architecture and domain-dependent pa-



Figure 2: Network Architecture. Number of input channels m and number of output channels n depends on the environment and the robot.

rameters of the network and utilize it to learn the distribu-
tion of critical regions for the given C-space. We evaluate
our approach in three different domains with three differ-
ent robots. Our empirical evaluation shows that the model is
able to capture important information such as environment
and robot geometry, critical states, and goal states. Results
show significantly reduced planning times compared to re-
cently developed SBMPs that use uniform sampling.

To summarize the main contribution of our approach, our
approach is able to use the number of degrees of freedom
of the robot and the dimensionality of C-space to generate a
robot-specific network architecture to learn the distribution
of critical configurations. It uses the learned model to pre-
dict critical regions for the new motion planning problem,
which is then used with a sampling-based motion planner to
efficiently compute a motion plan.

The paper is organized as follows: section 2 reviews re-
cent work that addresses similar problems. Section 3 pro-
vides the detailed understanding of our approach, section 4
discusses the empirical evaluation of our approach and com-
pares it with recent motion planning algorithms, and section
5 discusses various approaches tried before the presented ap-
proach.

2 RELATED WORK
There has been a lot of research on guiding SBMPs to im-
prove the speed and efficiency of motion planning. Heuris-
tically guided RRT (Urmson and Simmons 2003) efficiently
uses heuristics to guide the search towards the goal. Though

this approach is useful to compute motion plans with opti-
mal cost, such an approach would be able to work only after
sufficient samples are generated to cover the entire config-
uration space. Burns and Brock (2005) propose to use an
adaptive sampling approach that estimates the model of the
C-space and its connectivity. Havoutis and Ramamoorthy
(2010) learn a non-linear manifold of the C-space to esti-
mate accurate heuristic of the states in the C-space. Yuan-
dong Yang and Brock (2014) use decomposition techniques
to estimate the medial axis of the state-space model to bias
the sampling distribution. While the heuristic obtained us-
ing the medial axis may be effective, it does not provide
any guarantees of increased performance. Zhang, Huh, and
Lee (2018) use rejection sampling to reject unrelated sam-
ples to speed up the motion planning problem. Zhang, Huh,
and Lee (2018) use reinforcement learning to learn a policy
that decides to accept or reject a new sample to expand the
search tree. While it reduces the search space to compute
the path, it may suffer from higher sample rejections in en-
vironments that have narrow passages which are not easily
sampled by uniform samplers. While all of these approaches
try to estimate the heuristic for improving the quality of mo-
tion plans and reducing planning time, they still require an
efficient sampler to provide the samples. Our approach aims
to learn such a sampler that can be used to efficiently gener-
ate samples that are required to solve the problem.

Multiple approaches have tried using statistical learning
to boost motion planning. Wang et al. (2021) present a
comprehensive survey on methods that utilize a variety of



(a) (b) (c)

Figure 3: Training environments and labels for SE2 domain. (a)
represents the input to the environment. Each label is generated
by solving 50 motion planning problems. Red regions in (b) are
critical locations of environments that are important to solve the
problem. Critical regions are computed using Def. 1. (c) shows the
distribution for the orientation of the robot. Blue regions show hor-
izontal alignment of the robot and the green regions show vertical
alignment of the robot. Blue rectangle in (a) shows the robot.

learning methods to improve the efficiency of the SBMPs.
We discuss a few of these approaches that are relevant to
our approach. Qureshi et al. (2020) use a convolutional
neural network model using the data obtained from video
streaming and expert demonstrations to guide the search ex-
ploration for path planning. Ichter, Harrison, and Pavone
(2018) and Kumar et al. (2019) use a conditional varia-
tional autoencoder (CVAE) (Sohn, Lee, and Yan 2015) to
learn the sampling distribution for the motion planning prob-
lem. Compared to the generative model presented by Ichter,
Harrison, and Pavone (2018), our discriminative model re-
quires less amount of data and provides a stable learning
framework that requires less complex input representation.
The simpler representation allows our approach to scaling
to higher dimensional robots and reduces overall inference
time. Molina, Kumar, and Srivastava (2020) use an image-
based approach to learn and infer the sampling distribution
using demonstrations. They use top view images of the en-
vironment with critical regions highlighted in the image
to learn the distribution of critical regions. While their ap-
proach efficiently learns critical regions for simple naviga-
tional problems, the representation used for the labels re-
stricts their approach to such simple navigational problems
and doesn’t allow them to work with arbitrary motion plan-
ning problems that have C-spaces of dimensions higher than
two. Liu, Stadler, and Roy (2020) use semantic informa-
tion to bias the sampling distribution for path planning tasks
in partially known environments. Compared to Liu, Stadler,
and Roy (2020), our approach is not limited to path planning
problems and does not require semantic information explic-
itly but aims to learn such a notion in the form of critical
regions.

(a) (b) (c) (d)

Figure 4: Training environments for hinged robot domain. (a) rep-
resents the input to the environment. Each label is generated by
solving 50 motion planning problem. Red regions in (b) are criti-
cal locations of the environment. (c) shows the distribution of the
orientation for the base link of the robot. Blue regions show the hor-
izontal and green regions show the vertical alignment of the robot.
(d) shows the distribution for the joint ω. Blue regions show that ω
is closer to 180◦ and green regions show that ω is close to either
90◦ or 270◦.Blue rectangles in (a) show the robot with the hinged
joint.

3 METHODOLOGY
We use the notion of critical regions in an environment as
defined by Molina, Kumar, and Srivastava (2020):
Definition 1 Given a robot R, an environment E, and a
class of motion planning problems M , the measure of criti-
cality of a Lebesgue-measurable open set r ⊆ C, µ(r), is de-
fined as limsn→+r

f(r)
v(sn)

, where f(sn) is the fraction of ob-
served motion plans solving tasks from M that pass through
sn, v(sn) is the measure of sn under a reference density, and
→+ denotes the limit from above along any sequence {sn}
of sets containing r (r ⊆ sn, ∀n).

The above definition identifies regions that are important
to solve a path planning problem. It assigns a higher score
to the regions in the environment that have a higher fraction
of motion plans passing through it. We use this notion of
critical regions to compute sets of critical configuration for
the given robot using motion planning demonstrations.

3.1 Learning Framework
We now explain the overall learning framework. We start
by explaining how our network is able to generate a robot-
specific architecture of the network and then discuss the data
generation and network training.

Deriving Robot Specific Network Architectures
In this section, we explain how our approach is able to gen-
erate robot-specific network architectures using the number
of degrees of freedom and the robot geometry. We use these
robot specific information to update the UNet (Ronneberger,
P.Fischer, and Brox 2015) base architecture as shown in the
Fig. 2. We start with a fully convolutional UNet architecture
that consists of a total of sixteen layers with 3 × 3 filters.
The first eight layers are convolutional layers that work as
an encoder unit and the remaining eight layers are deconvo-
lutional layers that work as a decoder unit. We use a single



(a) (b) (c)

Figure 5: Test evaluations for SE2 domain. (a) represents the input
to the environment. Top: Environment 3A, bottom: Environment
3B. Red regions in (b) are locations of environments that are pre-
dicted critical by the network. (c) shows the predicted orientation of
the robot. Blue regions are locations where the network predicted
robot to be horizontal and green regions are the regions where the
network predicted the robot to be vertical.

channel of the last base layer to predict critical locations for
the end-effector (base link for path planning) in the environ-
ment. We use additional k convolutional layers to predict the
distribution for joint values. Here k represents the number of
degrees of freedom the robot that is not captured by the lo-
cation of the end-effector in the environment. For e.g., for
a robot that has four degrees of freedom (x, y, θ, ω) where
x and y represents the location of the robot in the environ-
ment, the network would have k = 2 additional convolu-
tional layers - one convolutional layer for each remaining
degree of freedom (θ and ω in this case). The dimensions of
input to the network are computed using the dimensionality
of the environment and the number of degrees of freedom of
the robot. The first channel in the input represents the occu-
pancy matrix of the environment and each additional chan-
nel represents the goal value for each degree of freedom of
the robot. So for a robot with four degrees of freedom, the
network will have five channels in the input layer.

The total number of channels in a label vector is also com-
puted using the number of joints in the robot. We discretize
the values of each joint of the robot in p discrete bins. We
use a single channel to represent the distribution of critical
regions for the end-effector. Additional p channels represent
the distribution for values of each joint. So for a robot with
four degrees of freedom (x, y, θ, ω), where x and y repre-
sents the location of the robot in the environment, the total
number of output channels would be equal to 21, if p = 10
for θ and ω.

Training Data Generation For each instance of an envi-
ronment, we generate a set of 100 motion planning tasks
with randomly generated goal states. For each motion plan-
ning task, we generate 50 sub-tasks by generating 50 initial
states of the robot randomly. We run an off-the-shelf mo-
tion planner on these subtasks to obtain demonstrations. We

(a) (b) (c) (d)

Figure 6: Test evaluations for hinged robot domain. (a) represents
the input to the environment. Top: Environment 4A, bottom: En-
vironment 4B. Red regions in (b) are locations of environments
that are predicted critical by the network. (c) shows the predicted
orientation for the base link of the robot. Blue regions are loca-
tions where the network predicted the base link to be horizontal and
green regions are the regions where the network predicted the base
link to be vertical. (d) shows the distribution for the joint ω. Blue
regions show that the network predicted it to be closer to 180◦ and
green regions show that the network predicted the angle ω close to
90◦ or 270◦.

combine the solutions for all subtasks to compute critical re-
gions according to Def. 1 for the given environment E and
goal g. For our experiments, we use OpenRAVE (Diankov
2010) robot simulator to simulate the motion planning prob-
lems and implementation of OMPL’s BiRRT (Berenson et al.
2019) by https://ompl.kavrakilab.org to compute the motion
plans.

To generate the input vector, we discretize the environ-
ment into nd bins. We compute the occupancy matrix of the
environment using the raster scan of the discretized environ-
ment. We append the goal value for each degree of freedom
of the robot with the occupancy matrix to generate the input
vector. The first channel of the label is generated by com-
puting the criticality score for each discretized location of
the environment using Def. 1. We use a 3× 3 gaussian filter
to smoothen the computed regions. Additional p channels
are added to the label vector for each joint representing the
distribution of its values for the given end-effector location.

Network Training The layer predicting critical locations
of the environment, (CRl), uses the sigmoid activation as
the task is similar to element-wise classification. The lay-
ers predicting the distribution for individual joints (Jl) use
the softmax activation as the task corresponds to multi-class
classification. The loss function is defined as follows:

L = LCR +

Ndof∑
i=0

Li
J (1)

where,

LCR = (z − 1) ∗ log(1− σ(CRl))− qzlog(σ(CRl)),

Here LCR defines the weighted log loss for layers predicting
the critical regions in the environment. It is important to use
weighted log loss to tackle the class imbalance in the labels

https://ompl.kavrakilab.org


Figure 7: Plots show the fraction of motion planning tasks solved (y-axis) in the given time (x-axis) for the test environments in Figures 5, 6,
and 9.

as most of the locations in the environment are not critical.
σ represents the sigmoid function. q is the weight given to
the positive samples. Also,

Li
J = −log

(
ez

i
k∑

m ei

)

Li
j represents the softmax cross entropy loss for ith joint

of the robot. We use ADAM Optimizer (Kingma and Ba
2014) with learning rate 10−4. We implement the architec-
ture shown in Fig. 2 using Tensorflow (Abadi et al. 2016).
We train the network for 50, 000 epochs.

3.2 Motion Planning

While the biased distribution generated by our model can be
used with any of the existing sampling-based motion plan-
ners, we use Learn and Link planner (Molina, Kumar, and
Srivastava 2020) for our experiments. This planner gener-
ates multiple exploration trees rooted at multiple samples
from the environment. It then tries to extend all the trees un-
til they connect and form a single tree. Once a single tree
is formed, the planner uses Dijkstra’s Algorithm (Dijkstra
1959) to compute a path from the initial state to the goal
state. For our experiments, we generate αN samples using
the learned biased distribution and (1 − α)N samples uni-
formly. The planner provides two modes: 1) LLP: In this
mode, the exploration tree is generated on the fly. 2) LL-RM:
This mode is similar to PRM where the exploration graph is
built initially and reused for every problem. In our evalua-
tions, we compare results for both modes of the planner. For
our experiments, we set N = 500 and α = 0.25.

4 EMPIRICAL EVALUATION
We evaluate our approach with three different types of mo-
tion planning problems. In the first set of problems, we at-
tempt to solve path planning tasks for a rectangular robot in
SE2 environment. For the second set of problems, we up-
date the rectangular robot to have a hinge joint ω and solve
path planning problems for the updated robot. For the last
set of problems, we use a mobile manipulator called Fetch
(Wise et al. 2016) to solve arm manipulation tasks in a clut-
tered environment. We compare our approach against state-
of-the-art motion planners such as RRT (LaValle 1998),
PRM (Kavraki et al. 1996), and BiRRT (Karaman et al.
2011). Both, PRM and LL-RM were given 1.0 seconds to
build the roadmap. As the Learn and Link Planner is im-
plemented using Python, we use the Python implementa-
tion of the above-stated algorithms available at https://ompl.
kavrakilab.org/ to compare. Our training data, code, leaned
model, and results are available at https://aair-lab.github.io/
hdof ll.html.

4.1 SE2 domain
In this domain, the objective is to solve path planning tasks
for a rectangular robot involving three degrees of freedom
(x, y, θ). We use a total of 20 environments to generate the
demonstrations to train the model. Some of these environ-
ments with training labels are shown in Fig. 3. We generate
the training data as explained in section 3.1 using nd = 224
and p = 10. The input to the model is a 3D tensor of size
224×224×4. Label of each input is also a 3D tensor of size
224× 224× 11. We augment the generated data by rotating
it by 90◦, 180◦, and 270◦. In total, we obtain 8000 training
samples from 20 training environments.

https://ompl.kavrakilab.org/
https://ompl.kavrakilab.org/
https://aair-lab.github.io/hdof_ll.html
https://aair-lab.github.io/hdof_ll.html


(a) (b)

Figure 8: Training Environment for arm manipulation problems
with Fetch. The green area shows the goal location for the end ef-
fector. Blue regions in (b) shows the critical regions for the end
effector.

Result Analysis Fig. 5 shows the test environments and
sampling distributions generated using our trained model for
the current domain. Fig. 5(a) shows the environments, Env
A and Env B, with the initial state (blue) and the goal state
(green) which were a part of the input to the model and Fig.
5(b) and (c) shows how the network is able to learn the ge-
ometry of the environment and the robot to accurately pre-
dict the critical regions for the given problem. It can be seen
from Fig. 5 that the model was able to identify the critical ar-
eas such as narrow passages and tunnels in the environment.
It is also clear from Fig. 5(c) that the model was able to
learn the geometrical constraints. The model has predicted
horizontal orientation of the robot as needed in narrow tun-
nels in Env A (top) and vertical orientation for passages for
Env B (bottom).

4.2 Hinged Robot

In this domain, the objective is to solve path planning prob-
lems for a hinged robot that has two rectangular links con-
nected by a rotational joint ω. The robot has four degrees
of freedom (x, y, θ, ω). The joint ω can rotate in the range
[−π/2, π/2]. Similar to section 4.1, we use a total of 20
environments to generate the demonstrations to train the
model. Fig. 4 shows some of the environments used to gen-
erate the training data. We generate training data according
to section 3.1 using nd = 224 and p = 10. The input is
a 3D tesnor of size 224 × 224 × 5. The label is also a 3D
tensor of shape 224 × 224 × 21. We augment the environ-
ments by 90◦, 180◦, and 270◦ to generate the variants of the
input environments. We have a total of 8000 demonstrations
including the augmented data.

(a) (b)

Figure 9: Test evaluations for arm manipulation tasks using Fetch.
Top: Environment 8A and bottom Environment 8B. The green re-
gion shows the goal location for the end effector. Although the net-
work predicts CRs for all the joints, only CRs for end-effector are
shown in (b) in blue for clarity.

Result Analysis Fig. 6 shows the test environments and
sampling distributions generated using our trained model for
the hinged robot. Fig 6(a) shows the environments Env A
and Env B, with the goal state (green) which was given to
the model as input. Similar to the previous results, it can be
seen that the model was able to learn the required distribu-
tion of critical regions as well as the geometrical constraints
of the robot and the environment. Red regions in Fig. 6 accu-
rately capture the critical locations in the environment. Fig.
6(c) and (d) shows that the model was able to learn geo-
metrical constraints for the problem by predicting horizontal
orientation for the robot (blue regions) for narrow horizontal
tunnels in Env A (top) and vertical orientation for the robot
(green regions) for the narrow vertical passages in Env B
(bottom). It is clear from Fig. 6(d) that the model was suc-
cessfully able to generalize to able predict an accurate distri-
bution for joint ω. Fig. 6(d) shows that the model was able to
predict a line shape for the narrow channels and an L shape
for the corners.

4.3 Arm Manipulation: Fetch robot
For the last set of problems, we use a mobile manipulator
named Fetch (Wise et al. 2016) with 8 DOFs to perform arm
manipulation. The goal of these experiments is to show that
our approach is not limited to the path planning tasks and is
generalizable to any arbitrary motion planning task. Fig. 8
shows two of the eight training environments used to gener-
ate demonstrations. We generate a total of 800 training sam-
ples according to section 3.1 for eight training environments
using nd = 64 and p = 10. While the previous experiments
involved robot movements along only x and y axis, these
experiments included arm movements along all three x, y,



and z axis. We update the architecture shown in Fig. 2 by
replacing convolutional and deconvolutional layers with 3D
convolutional and 3D deconvolutional layers. We also re-
duce the number of discretized locations in the environment
as the reach of the robot is much lesser for arm manipula-
tion compared to path planning problems. The input to the
model is a 4D tensor of size 64× 64× 11. The first channel
consists of the distribution for critical locations in the en-
vironment. Label for each input is also a 4D tensor of size
64× 64× 64× 81.

Result Analysis Fig. 9 shows the test environments and
sampling distributions predicted by our model. Fig. 9(a)
shows the input environment to the model. Fig. 9(b) shows
the critical locations predicted by the model. It can be seen
from Fig. 9(b) that the model was able to predict critical lo-
cations around the goal. For simplicity, we do not show dis-
tributions for each joint, but our results show that the model
was able to learn these distributions and improve the effi-
ciency of motion planning.

4.4 Comparison
Fig. 7 shows the comparison of the number of motion plan-
ning problems solved by our approach in a given time with
the available SBMPs. The x-axis shows the time (in seconds)
and the y-axis shows the fraction of motion planning prob-
lems solved (out of 100) in the given time. While sampling-
based motion planners such as RRT, BiRRT, and PRM strug-
gle to compute motion plans due to the inability to sample
critical configurations of the environment, our biased sam-
pling distribution helps the Learn and Link planner to ef-
ficiently sample such configurations by using the learned
model. It can be seen from Fig. 7 that our approach was able
to solve a significantly higher number of problems in less
than 20% time than the available sampling-based motion
planners with uniform samplers. We also compare our ap-
proach in the domains 4.1 and 4.2 with the approach devel-
oped by Molina, Kumar, and Srivastava (2020). While their
approach only predicts critical regions for 2D spaces, we
uniformly sample remaining joint values for the robot. Re-
sults in Fig. 7 for environments 3A and 3B show that the ap-
proach developed by Molina, Kumar, and Srivastava (2020)
was able to perform better than the current sampling-based
approaches like RRT and BiRRT, but our approach was able
to outperform it significantly due to the availability of criti-
cal regions for all the degrees of freedom compared to just
for the base location.

We also implemented Guided-LLP mode that uses iden-
tified critical regions to formulate a high-level search prob-
lem. We convert the critical regions to high-level states and
construct a high-level search space. For the basic imple-
mentation, we use the minimum distance between two re-
gions to compute the connectivity between high-level states.
For our experiments, we set this distance to 0.2m. For the
given initial and goal state, a high-level plan is computed
by searching the shortest path in the high-level search space
that is then used to direct the low-level LLP. We evaluate
this mode in environments 3A and 3B. Fig. 7 shows that for
environment 3A, Guided-LLP was able to perform slightly

better compared basic variant. For environment 3B, its per-
formance was slightly inferior compared to the basic ver-
sion. This performance can be improved by using a more
intelligent approach for establishing connectivity between
high-level states.

5 ABLATION STUDY
Apart from the presented approach that uses UNet architec-
ture shown in Fig. 2, we mainly tried two other approaches.
As part of the first approaches, we implemented a genera-
tive network known as conditional generative adversarial
network (CGAN) (Mirza and Osindero 2014) to predict the
criticality score for all the states in an environment. The ap-
proach was not able to scale due to the dimensionality of the
model. For the second approach, we tried to learn the distri-
bution of each joint independently without identifying crit-
ical locations for the end-effector (base link for path plan-
ning) of the environment. While the approach was able to
learn distributions, it failed to improve the efficiency of the
planner due to the correlation between the values of each
joint.

6 CONCLUSION
In this paper, we present an approach to learn biased sam-
pling distribution that works with any available sampling-
based motion planner for any arbitrary motion planning
problem. Our model uses demonstrations to learn critical
states of the given environment and sampling distribution for
each joint of the robot. Through our experiments, we show
that our approach is robust and can be scaled to robots hav-
ing higher degrees of freedom.

Acknowledgements
This work was supported in parts by the NSF under grants
IIS 1844325, IIS 1909370, and OIA 1936997.

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.
2016. Tensorflow: A system for large-scale machine learn-
ing. In Proc. OSDI, 2016.
Berenson, D.; Srinivasa, S. S.; Ferguson, D.; and Kuffner,
J. J. 2019. Manipulation planning on constraint manifolds.
In Proc. ICRA, 2009.
Burns, B.; and Brock, O. 2005. Toward Optimal Configura-
tion Space Sampling. In Proc. RSS, 2005.
Canny, J.; and Reif, J. 1987. New lower bound techniques
for robot motion planning problems. ISBN 0-8186-0807-2.
Diankov, R. 2010. Automated Construction of Robotic Ma-
nipulation Programs. Ph.D. thesis, Carnegie Mellon Univer-
sity.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische mathematik 1(1): 269–271.
Havoutis, I.; and Ramamoorthy, S. 2010. Motion Synthesis
through Randomized Exploration on Submanifolds of Con-
figuration Space. In Baltes, J.; Lagoudakis, M. G.; Naruse,



T.; and Ghidary, S. S., eds., RoboCup 2009: Robot Soccer
World Cup XIII, 92–103. Berlin, Heidelberg: Springer Berlin
Heidelberg. ISBN 978-3-642-11876-0.

Ichter, B.; Harrison, J.; and Pavone, M. 2018. Learning sam-
pling distributions for robot motion planning. In Proc. ICRA,
2018.

Janson, L.; and Pavone, M. 2013. Fast Marching Trees: a
Fast Marching Sampling-Based Method for Optimal Motion
Planning in Many Dimensions - Extended Version. CoRR
abs/1306.3532.

Karaman, S.; Walter, M.; Perez, A.; Frazzoli, E.; and Teller,
S. 2011. Anytime Motion Planning using the RRT*.

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE transactions
on Robotics and Automation 12(4): 566–580.

Kingma, D.; and Ba, J. 2014. Adam: A Method for Stochas-
tic Optimization. Proc. ICLR, 2014 .

Kumar, R.; Mandalika, A.; Choudhury, S.; and Srinivasa, S.
2019. LEGO: Leveraging Experience in Roadmap Genera-
tion for Sampling-Based Planning. Proc. IROS, 2019 .

LaValle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planning .

Liu, K.; Stadler, M.; and Roy, N. 2020. Learned Sam-
pling Distributions for Efficient Planning in Hybrid Geomet-
ric and Object-Level Representations. In Proc. ICRA, 2020.

Menglu Lan; Shupeng Lai; Yingcai Bi; Hailong Qin; Jiaxin
Li; Feng Lin; and Chen, B. M. 2016. BIT*-based path plan-
ning for micro aerial vehicles. In Proc. IECON 2016.

Mirza, M.; and Osindero, S. 2014. Conditional Generative
Adversarial Nets. CoRR abs/1411.1784.

Molina, D.; Kumar, K.; and Srivastava, S. 2020. Identifying
Critical Regions for Motion Planning using Auto-Generated
Saliency Labels with Convolutional Neural Networks. Proc.
ICRA, 2020 .

Qureshi, A. H.; Miao, Y.; Simeonov, A.; and Yip, M. C.
2020. Motion planning networks: Bridging the gap between
learning-based and classical motion planners. IEEE Trans-
actions on Robotics .

Reif, J. H. 1979. Complexity of the mover’s problem and
generalizations. In Proc. SCFS 1979.

Ronneberger, O.; P.Fischer; and Brox, T. 2015. U-Net:
Convolutional Networks for Biomedical Image Segmenta-
tion. In Medical Image Computing and Computer-Assisted
Intervention (MICCAI), volume 9351 of LNCS, 234–
241. Springer. URL http://lmb.informatik.uni-freiburg.de/
Publications/2015/RFB15a. (available on arXiv:1505.04597
[cs.CV]).

Sohn, K.; Lee, H.; and Yan, X. 2015. Learning Structured
Output Representation using Deep Conditional Generative
Models. In Proc. NIPS, 2015.

Urmson, C.; and Simmons, R. 2003. Approaches for heuris-
tically biasing RRT growth. In Proc. IROS, 2003.

Wang, J.; Zhang, T.; Ma, N.; Li, Z.; Ma, H.; Meng, F.; and
Meng, M. Q.-H. 2021. A survey of learning-based robot
motion planning. IET Cyber-Systems and Robotics .
Wise, M.; Ferguson, M.; King, D.; Diehr, E.; and Dymesich,
D. 2016. Fetch and freight: Standard platforms for service
robot applications. In Workshop on Autonomous Mobile Ser-
vice Robots.
Yuandong Yang; and Brock, O. 2014. Adapting the sampling
distribution in PRM planners based on an approximated me-
dial axis. In Proc. ICRA, 2014.
Zhang, C.; Huh, J.; and Lee, D. D. 2018. Learning implicit
sampling distributions for motion planning. In Proc. IROS,
2018.

http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a

	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	Learning Framework
	Motion Planning

	EMPIRICAL EVALUATION
	SE^2 domain
	Hinged Robot
	Arm Manipulation: Fetch robot
	Comparison

	ABLATION STUDY
	CONCLUSION

