
Using State Abstractions to Compute Personalized
Contrastive Explanations for AI Agent Behavior

Sarath Sreedharan, Siddharth Srivastava, Subbarao Kambhampati

CIDSE, Arizona State University, Tempe, AZ 85281 USA
{ ssreedh3, siddharths, rao } @ asu.edu

Abstract

There is a growing interest within the AI research community in developing

autonomous systems capable of explaining their behavior to users. However, the

problem of computing explanations for users of different levels of expertise has

received little research attention. We propose an approach for addressing this

problem by representing the user’s understanding of the task as an abstraction of

the domain model that the planner uses. We present algorithms for generating

minimal explanations in cases where this abstract human model is not known.

We reduce the problem of generating an explanation to a search over the space

of abstract models and show that while the complete problem is NP-hard, a

greedy algorithm can provide good approximations of the optimal solution. We

empirically show that our approach can efficiently compute explanations for a

variety of problems and also perform user studies to test the utility of state

abstractions in explanations.

Keywords: Explanations for Plans, Abstractions, Contrastive Explanations

1. Introduction

AI systems have the potential to transform society by assisting humans in

diverse situations ranging from extraplanetary exploration to assisted living. In

order to achieve this potential, however, humans working with such systems

need to be able to understand them just as they would understand human team

members. This presents a number of challenges because most humans do not

Artificial Intelligence (AIJ), Vol. 301, Article 103570, 2021

understand AI algorithms and their behavior at the same intuitive level that

they understand other humans. Handling and possibly overcoming such knowl-

edge asymmetry requires us to develop and deploy AI systems that are capable

of providing cogent explanations for their actions/decisions to end users. A sig-

nificant challenge for any such system would be the fact that more often than

not, the AI system may be modeling and reasoning about the task with much

greater fidelity than the user is aware of (or capable of reasoning with). While

there have been a number of recent works on the problem of explaining plans

and actions chosen by agents (readers can refer to the survey [1] for previous

works in this direction), they have generally assumed that the user understands

the task at the same level of abstraction as the agent in question.

In this paper, we propose a new approach to this problem where the agent

explains its ongoing or planned behavior in a way that is both tailored to the

user’s background and is designed to reduce cognitive burden on the user’s end.

This is done by modeling a user’s expertise, or the level of detail at which a

user understands the task using abstracted models. We can estimate this level

based on questions that the user asks and provide explanations that are close

to this estimated level of expertise.

We consider explanations in the framework of counterfactual reasoning,

where a user who is confused by the agent’s activity (or proposed activity)

presents alternative behavior that they would have expected the agent to exe-

cute. This aligns with the widely held belief that humans expect explanations

to be contrastive [2]. In keeping with the terminology used in social sciences

literature, we will denote the set of alternative behaviors as foils to the proposed

robot behavior.

For instance, consider a mission-control operator who needs to manage an

autonomous robot on Mars in the midst of a sandstorm that could present

valuable data for analysis. If the robot proposes to go back to the base before

going to a vantage point for observing the storm, the operator would naturally be

perplexed, and may be motivated to ask the rover why it didn’t go directly to the

vantage point. While answering the operator’s queries it is important that the

2

explanation being given is tailored to meet the user’s background knowledge.

Here an explanation that informs the operator of some specific mission goals

that warranted this unintuitive plan, for example “I am required to drop the

collected samples in the base before going to the vantage point”, may be preferred

over a detailed explanation involving the specifics of the battery model or the

rover motors (for example “Motors of model #2310 needs to be recalibrated after

every 20 miles and I need to go to base to recaliberate”). As far as the rover

is concerned, both of these explanations are equally valid reasons to choose the

circuitous route, but a mission control operator may find the former easier to

understand while an engineer may better appreciate the latter. This level of user

specificity requires methods that estimate possible models that can capture the

user’s level of understanding of the task. As mentioned, we will make use of

the questions (i.e the foils) raised by the user for the specific task at hand (and

potentially even the history of previous interactions) to build such estimates.

Accurate estimate of the user’s expertise not only lets us control the level of

detail in explanation but also allows us to provide the most concise explanation

(by avoiding unnecessary details) and thereby reduce the cognitive burden of

the user.

In this paper we present the Hierarchical Expertise-Level Modeling

or the HELM approach for facilitating such context and user-specific explana-

tions. We assume that the user’s understanding of the task is an abstraction

of the model used by the robot; which captures both the limited information

and computational capabilities of the user. HELM generates appropriate ex-

planations by searching through a model lattice of possible abstractions of the

agent’s model. The model lattice provides a concise way for the system designer

to encode their prior knowledge about potential users. Each model within this

lattice represents a different level of understanding of the task, with the high-

est fidelity representation (corresponding to the most detailed understanding of

the domain used by the robot) forming the base of the lattice and the model

representing the most naive understanding of the task (for example one held by

a lay person) forming the highest nodes. Since the user’s level of expertise is

3

unknown to the agent, it has to estimate the human model before searching for

an explanation.

We focus on contrastive explanations, where an explanation that is an answer

to a question of the form “Why P and not Q?”, in our case, P and Q are stand-

ins for the current robot plan and the foil respectively. Most existing works in

explanation for plans have focused on answering the first part “Why P?” (for

example works like [3, 4] have looked at identifying causal explanations for each

action), so the majority of this work will focus on finding a concise explanation

for the latter part of the full question. Specifically, our explanations will consist

of model information that may be absent in the user’s abstract model and

possible proofs for foil failure. Thus, in addition to helping convince the user

of the incorrectness of the foils in question, the explanations should also shift

the user’s model to a more accurate model in the lattice. This approach could

be understood as a variant of the model refinement methods discussed in the

counter-example guided model checking (CEGAR) literature [5]. Our methods

extend these principles to settings with uncertainty regarding the current level

of abstraction of the model (a non-issue in the model-checking settings where

CEGAR methods are typically used).

This paper generalizes and extends our recent work [6] with extended theo-

retical and empirical results and exposition. In addition to clarifying the con-

cepts our contributions include

• We consider the use of non-standard lattices as a way to allow designers

to incorporate more information about the user’s model in to the expla-

nation generation process and discuss potential computational tradeoff

introduced by the use of such lattice types over the ones considered in the

rest of the paper.

• We investigate the use of such methods for domains that contain state de-

pendent costs (hence affected by the abstraction) and discuss the potential

explanatory dialogue that could occur in such settings.

• We also show how our method could be used in cases where the user

4

Figure 1: An illustration of the hierarchical explanation process. The human observer

who views the task at a higher level of abstraction expects the rover to execute a

different plan from the one chosen by the rover. The rover presents the human with

an explanation it believes will help resolve the foils in the human’s updated model.

model may not just be abstract but the user may also hold erroneous

beliefs about the task.

• We perform a user study to verify the utility of abstraction in generating

explanation that are easier for users to work with.

The rest of this paper is structured as follows. Section 2 a brief overview

of the background and in Section 3 we present our formal framework. Section

4 covers different approaches for generating explanations and sections 4.1, 4.2

and 4.3 extend these methods to more general settings. Section 5 presents

evaluations of the method. In sections 6 and 7, we will discuss the related work

and possible future directions.

2. Background

In this work, we focus on abstractions that form models by projecting out

state fluents. While the presentation in the following sections is equally valid

for both predicate and propositional abstractions, we will focus on propositional

5

abstractions to keep our formulation clear and concise and later discuss potential

changes required to meet the requirements of predicate abstractions. We will

look at planning models of the form M = 〈P, S,A, I,G〉 where P gives the set

of state fluents, S the set of possible states, A the set of actions, I the initial

state and G the goal. Each state s ∈ S is uniquely represented by the set of

propositions that are true in that state, i.e, s ⊆ P .

Each action a ∈ A is associated with a set of positive preconditions prec+
a

(specified as a conjunction of propositions) and negative preconditions prec−a

that need to hold for the effects (ea) of that action to be applied to a particular

state. Each effect set ea can be further separated into a set of add effects e+
a

and a set of delete effects e−a . The result of executing an action a on a state s

in this setting is defined as a(s) = (s ∪ e+
a) \ e−a , if prec−a ⊆ s ∧ prec−a ∩ s = ∅.

A plan π is defined as a sequence of actions (〈a1, .., an〉, n being the size of the

plan), and a plan is said to solve M (i.e, π(I) |=M G) if π(I) ⊇ G.

Automated planning has a long tradition of employing abstraction both for

plan generation (cf. [7]) and for generating heuristics (cf. [8, 9]) and a number

of different abstraction schemes have been proposed in these works. In fact,

state abstractions as presented in this work have been widely used in pattern

databases and are referred to as projections in that literature (cf. [10, 11]).

Following works like [8, 12], we will also use the concept of a transition sys-

tem induced by the planning model to define state abstractions. Intuitively, a

transition system constitutes a graph where the nodes represent possible states,

and the edges capture the transitions between the states that are valid in the

corresponding planning model.

Formally a transition system T corresponding to a model M can be repre-

sented by a tuple of the form T = 〈S,L, T, so, Sg〉, where S is the set of possible

states in M, L is the set of transition labels (corresponding to the action that

induce that transition), T is the set of possible labeled transitions, s0 is the

initial state and Sg is the set of states that satisfies the goal specified by M.

We will refer to T to be the safe transition system induced by a model M, if

and only if, for any labeled transition 〈s, a, s′〉 ∈ T , we have prec+
a ⊆ s and

6

prec−a ∩ s = ∅. Through most of this work we will focus our attention on cases

where the semantics of the planning task is defined in terms of safe transition

systems.

Definition 1. A propositional abstraction function fΛ for a set of propositions

Λ and state space S, defines a surjective mapping of the form fΛ : S → X,

where X is a projection of S, such that for every state s ∈ S, there exists a

state fΛ(s) ∈ X where fΛ(s) = s \ Λ.

Definition 2. For a planning model M = 〈P, S,A, I,G〉 with a corresponding

transition system T , a model M′ = 〈P ′, S′, A′, I ′, G′〉 with a transition system

T ′ is considered an abstraction of MMM for a set of propositions Λ, if for every

transition s1
a−→ s2 in T corresponding to an action a, there exists an equiv-

alent transition fΛ(s1)
a′−→ fΛ(s2) in T ′, where a′ is part of the new action set A′.

We will slightly abuse notation and extend the abstraction functions to mod-

els and actions, i.e in the above case, we will have M′ ∈ fΛ(M) (where fΛ(M)

is the set of all models that satisfy the above definition for the set of fluents Λ)

and similarly we will have a′ ∈ fΛ(a). As per Definition 2, the abstract model

is complete in the sense that all plans that were valid in the original model will

have an equivalent plan in this new model. We will use the operator @ to cap-

ture the fact that the model M′ is an abstraction of M, i.e if M @M′ then

there exist a set of propositions Λ such that M′ ∈ fΛ(M).

2.1. Designing Complete Abstractions

While there exists a number of works that have looked at the problem of

designing abstractions (cf. [13, 7, 12]), unfortunately many of these works have

considered directly updating transition system or using specialized or more ex-

pressive problem formulation to capture abstract models. Thankfully, the fact

that we are interested in complete abstractions (as opposed to sound abstrac-

tions) means we can employ simpler model transformation schemes to generate

7

abstract models. In particular, we will consider transformations that simply

drops the set of literals to be abstracted from all the action definitions, i.e,

Theorem 1. For a given modelM = 〈P, S,A, I,G〉 and a set of propositions Λ,

a model M′ = 〈P ′, S′, A′, I ′, G′〉 is a complete abstraction under safe execution

semantics for Λ, if P ′ = P − Λ, S′ = [S]fΛ , I ′ = fΛ(I), G′ = G \ Λ and for

every a ∈ A (where a = 〈prec+
a , prec−a , eff+

a , eff−a 〉) there exists a′ ∈ A′, such that

a′ = 〈prec+
a \ Λ, prec−a \ Λ, eff+

a \ Λ, eff−a \ Λ〉.

Proof Sketch. To see why the new model would be an complete abstraction,

consider a transition 〈s, a, s′〉 induced by M. Now as per the definitions of

safe transition systems, we know that s ⊆ prec+
a and s ∩ prec−a = ∅ and s′ =

s \ eff−a ∪ eff+
a . Its easy to see that given this setting, (s \ Λ) ⊆ (prec+

a \ Λ) and

(s \ Λ) ∩ (prec−a \ Λ) = ∅, which means there must be an action a′ ∈ A′ that is

executable in fΛ(s). Similarly we can show the result of executing a′ must be

fΛ(s), this shows that M′ is a complete abstraction of M as every transition

induced by it is present in the transition system induced by M′.

An important point to note here is that this transformation scheme generates

a unique abstract model for each model and proposition set, and we will denote

this unique model as fΛ(M). For the rest of the paper, we will mainly focus on

this method to induce the abstractions, but general framework of explanation

generation discussed in this paper can be adapted to other methods of generating

abstract models. In cases, where we prove specific results or present optimization

that rely on this abstraction procedure we will denote the abstraction function

by f safe
Λ to differentiate it from other methods. With the definition of abstraction

and related notations in place, we will look at our explanatory setting and a

way to capture the space of possible user models that would allow for efficient

estimation of unknown user model given user queries. While the above operation

is defined for propositional fluents, we can perform similar operations on the

lifted domain, where projecting out a predicate would correspond to projecting

out a set of propositional fluents from the grounded domain.

8

3. Hierarchical Expertise-Level Modeling

As mentioned earlier, we are investigating explanatory settings where the

user’s understanding of the task can be represented as an abstraction of the

robot’s model. While the exact level of abstraction may be unknown, given

a set of candidate state fluents that may be missing from the human model,

we can capture the potential models and their relationship through a model

lattice

Definition 3. For a model M#, the model lattice LLL is a tuple of the form

L = 〈M,E,P, `〉, where M is the set of lattice nodes such that M# ∈ M and

∀ M′ ∈ M,M# v M′, E is the lattice edges, P is the superset of propositions

considered for abstraction within this lattice and ` is a function mapping edges

to labels. Additionally, for each edge ei = (Mi,Mj) there exists a proposition

p ∈ P such that fp(Mi) =Mj and `(Mi,Mj) = p.

Thus each edge in this lattice corresponds to an abstraction formed by pro-

jecting out a single proposition (represented by the label of the edge). We can

also define a concretization function γp that retrieves the model that was used

to generate the given abstract model by projecting out the proposition p, i.e,

γp(M) =M′ if (M′,M) ∈ E and `(M′,M) = p else γp(M) =M.

For a given lattice, if each node in M has an incoming edge for every propo-

sition missing from its corresponding model then we will refer to such lattices

as being Proposition Conserving lattices.

Definition 4. A lattice L is proposition conserving-iff for any model M ∈ M

(M = 〈PM, SM, AM, IM, GM〉) and ∀p ∈ P, if p is not in PM then there exists

a model M′ ∈M, such that (M′,M) ∈ E and `(M′,M) = p).

Notice that enforcing conservation of propositions doesn’t require any further

assumptions about the human model and can be easily ensured while generat-

ing the lattice. Additionally, we will call a proposition conserving lattice that

contains an abstract node corresponding to each possible subset of P as the

9

Complete Abstraction Lattice for M given P. The earlier parts of this paper

will assume a proposition conserving lattices as they will allow us to simplify

discussions and provide efficient solutions. In later sections, we will relax these

assumptions and will look at potential tradeoffs for using non-proposition con-

serving lattices.

We also assume that all abstraction functions used in generating the models

in the lattice are commutative and idempotent, i.e., fp2
(fp1

(M)) = fp1
(fp2

(M))

and fp1
(fp1

(M)) = fp1
(M). In the wider literature, a lattice is generally defined

to have a unique maximal element and a unique minimal element. While the

abstraction lattices we consider in this work will have a unique minimal element

(i.e the most concrete nodes), we do not assume that the lattices have a single

maximal node (Figure 2 presents an example lattice that does not have a unique

maximal node), in that sense the abstraction lattice may be better understood

as meet-semilattices, but we will use the term model lattice or abstraction lattice

for convenience.

As mentioned earlier, we consider an explanation generation setting where

the human observer (H) uses a task model (this model will be denoted asMH =

〈PH , SH , AH , IH , GH〉), that is a more abstract version of the robot’s model

(MR = 〈PH , SR, AR, IR, GR〉). While the robot may not know MH , it knows

that MH is a member of the set M for the lattice L. The human comes up

with a foil set F = {π1, π2, ..., πm} that the robot needs to refute by providing

an explanation regarding the task. The explanation should contain information

about specific domain properties (i.e., state fluents) that are missing from the

human’s model, how these properties affect different actions (For example, which

actions use these propositions as preconditions and which ones generate/delete

them) and how the inclusion of these fluents result in the invalidity of the given

foils. To illustrate the utility of such explanations consider an example involving

a simplified version of the rover domain mentioned earlier.

Example 1. Let us suppose that the rover uses a modified version of the IPC

rover domain [14] that also takes into account the battery level of the rover. Each

10

rover operation has a different energy requirement, and the battery level needs to

be above a predefined threshold for it to execute them, e.g., it can perform rock

sampling only if the battery level is above 75%. Furthermore, the rover needs to

visit the base station (i.e., the lander) and perform a reset action to recharge its

batteries.

The rover knows that the human observer is at most ignorant of its energy

requirements, ability to use solar cells and/or storage capabilities. So the model

lattice L needs to consider abstractions corresponding to the following proposi-

tions

P={battery level above 25 perc, battery level above 50 perc,

battery level above 75 perc, full store1, solar panels activated}.

Figure 2 shows the lattice that the robot would use in this setting. Here we

will create each abstract model by following the process discussed in section 2.1.

For example, consider the action sample rock store0 w1, it has the following defi-

nition

〈{battery level above 75 perc, at w1, empty store1, has store store1}, {},

{full store1, has rock sample}, {empty store1, battery level above 75 perc}}〉

Now in an abstract version of this model, if the propositions full store1, bat-

tery level above 75 perc are dropped the definition becomes

〈{at w1, has store store1}, {},

{has rock sample}, {empty store1}}〉

Here the robot presents the plan

πR = 〈 navigate w0 lander, reset at lander,

navigate lander w1, sample rock store0 w1〉

and a naive observer may respond by proposing the foil set with a single plan

F = {〈 navigate w0 w1, sample rock store0 w1 〉}

11

If the observer was an engineer, they might instead raise a foil that already

takes into account the energy requirements

F ′ = {〈 navigate w0 w1,

receive energy from solar cells, sample rock store0 w1 〉}

If the robot knew that the human was ignorant about all the battery level

predicates and nothing else, the robot could help resolve the naive foil by in-

forming them about the fact that action sample rock requires the battery to be

above 75% (i.e describing the proposition battery level above 75 perc). In terms

of the human model, this would involve setting the value of the proposition bat-

tery level above 75 perc false in the initial state, updating the precondition of

sample rock store0 w1 to include the fact (among other actions) and adding it

as an add effect to the action reset at lander. In this updated model the human

foil can no longer achieve the goal. In the case, of expert foil, the robot would

need to inform the user about the proposition solar panels activated and that

the action receive energy from solar cells require the solar panels to be activated

which is not true for the rover. Thus in each case explanations to be provided to

user can be generated once we know the set of propositions whose concretization

is required to refute the given foils (henceforth referred to as explanatory fluent

set).

Definition 5. Let E = {p1, ..., pn} be a set of fluents, then E is said to be an

explanatory set for the human model MH and a foil set F if

∀π ∈ F, π(IγE(MH)) 6|=γE(MH) GγE(MH)

Where γE(MH) is the model obtained by applying the concretizations corre-

sponding to E on the model MH .

In the case of projection based abstractions of the form defined in Section

2.1, we can directly provide the model components covered by the explanatory

fluent set as part of the final explanatory message provided to the user. For

other abstraction techniques, we may need to employ more specialized methods

12

Figure 2: A possible abstraction lattice for the rover domain.

to generate explanatory messages from the fluents. In Example 1 if we are to

focus on the naive foil, the rover would have difficulty coming up with a single

explanation as it does not know MH . However, it can restrict its attention to

just the models that are consistent with the foils. In this scenario, it would

correspond to {c2, c7, c8, c11, c12, c14, c15}.

Now we need to find a way of generating sets of explanatory fluents given

this reduced set of models.

Proposition 1. Let Mi be some model in L such that MH v Mi. If E is

explanatory for Mi and some foil set F , then E must also explain F for MH .

This proposition directly follows from the fact that for a proposition con-

serving lattice γE(Mi) will be a logical weaker model than γE(MH). Next, we

will define the concept of a minimal abstracting set for a given lattice L and

foils F

Definition 6. Given an the abstraction lattice L = 〈M,E,P, `〉 and a foil set

13

F , the minimal abstracting set MF
min is the maximal elements of the subset of

all the models that are consistent with F .

MF
min = {Mi|Mi is a maximal element of Msat} where Msat = {M | M ∈

M,∀π ∈ F (π(IM) |=M GM)}

Proposition 2. For a given model lattice L, the minimal abstracting set MF
min

is a subset of the maximal elements of the entire abstraction lattice.

The above property ensures that when searching for the minimal abstracting

set, we do not need to test the entire set of nodes or even need to know the

entire lattice. In Example 1, the minimal abstracting set for the naive foil will

be MF
min = {c14, c15}.

If we can find an explanation that is valid for all the models in MF
min then

by Proposition 1 it must work for MH as well.

Proposition 3. For a given model lattice L and a set of foils F and the min-

imal abstraction set MF
min, there exists an explanatory fluent set E such that

∀ M′ ∈MF
min and ∀π ∈ F ,

π(IγE(M′)) 6|=γE(M′) GγE(M′)

It is easy to see why this property holds, as any explanation that involves

concretizing all possible propositions in P satisfies this property.

In most cases, we would prefer to compute the minimal or cheapest expla-

nation to communicate. If all concretizations are equally expensive to commu-

nicate to the explainee, then this would correspond to finding the explanatory

fluents set with the smallest size. For the naive foil in the rover example, even if

the human is unaware of multiple task details, the robot can easily resolve the

explainee’s doubts by just explaining the concretizations related to the proposi-

tion battery level above 75 perc without getting into other details. Describing the

details of remaining propositions is unnecessary and in the worst case might

leave the human feeling overwhelmed and confused. In this case, the explana-

tion would just include information regarding battery levels and how to identify

14

when the battery level is or above 75% and model updates like

sample rock-has-precondition-battery level above 75 perc

sample soil-has-precondition-battery level above 75 perc

...

Before delving into the optimization version of the problem, let us look at the

complexity of the corresponding decision problem

Theorem 2. Given a the set of foils F and the corresponding minimal abstrac-

tion set MF
min for a modelM, the problem of identifying whether an explanatory

fluent set of size k exists for the complete lattice (which is not given) defined

over an abstraction function f is NP-complete, provided the abstract func-

tion generates planning models that belong to the class described in Section 2 in

polynomial time.

Proof (Sketch). The fact that we can test the validity of the given explanation

in polynomial time (size of the explanation is guaranteed to be smaller than |P|)

shows that the problem is in NP. We can show NP-completeness by reducing

the set covering problem [15] to an instance of the explanation generation prob-

lem. Let’s consider a set covering problem with U as the universe set and S as

the set of sub-collections. Now let us create an explanation generation problem

where the set of foils F is equal to U and the propositions in the set P contain

a proposition for each member of S. Additionally concretizing with respect to

a proposition will resolve only the foils covered by its corresponding subset in

S. For this setting, the MF
min consists of a single node that contains none of the

propositions (and hence all the foils hold) and the concrete model contains all

of them. Now if we can come up with a set of explanatory fluents of size k in

this setting, then this explanation corresponds to a set cover of size k.

The above result considers a case where the lattice needs to be generated

on the fly from the minimal abstraction set. Though there may be cases where

the designer may be able to provide an explicit and smaller non-proposition

conserving lattice upfront. As we will see in Section 4.1, such lattices can be

used to capture the designer’s knowledge about the end-users.

15

4. Generating Optimal Explanations

As mentioned earlier, we are interested in producing the minimal explana-

tion. Additionally, in most domains, the cost of communicating the concretiza-

tion details could vary among propositions. An explanation that involves a

proposition that appears in every action definition might be harder to commu-

nicate than one that only uses a proposition that is part of the definition of a

single action.

In addition to the actual size, the comprehensibility of the explanations

may also depend on factors like human’s mental load, the familiarity with the

concepts captured by the propositions, etc.. To keep our discussions simple,

we will restrict the cost of communicating an explanation to just the number

of unique model updates this explanation would bring about in the human

model.We will use the symbol CEp to represent the cost of communicating the

changes related to the proposition p and also overload it to be applicable over

sets of propositions.

Now our problem is to find the optimal explanation (represented as Emin)

for a given set of foils F or more formally

Definition 7. A set of fluents E is said to be the optimal explanatory fluent

set for the human model MH and a foil set F , if

1. if E is an explanatory set and

2. there exists no other set Ê, such that Ê is also an explanatory set and

CEE > CE
Ê

.

Given the fact that the human model is not known to start with, it may

appear that there is no way to generate optimal explanations for the human

model directly. A possible alternative might be to try identifying the set of

fluents that is optimal for the set of models that could beMH . Calculating such

an explanation naively could be extremely expensive as identifying all possible

candidates for the human model would involve testing each node in the lattice

for whether its a potential candidate for the human model and then searching

16

over the space of all explanatory fluent set to find one that is optimal for the

entire set of candidate models (where the optimality for a set of models is defined

to be the cheapest set of fluents that is explanatory for all the models in the set).

Thankfully, the properties of the lattice allow us to compute optimal solutions

without keeping track of the entire set. Moreover, for lattices containing abstract

models generated using procedures discussed in Section 2.1, we will see how

fluent sets that are optimal for minimal abstracting set are still optimal for

the original human model. That is uncertainty over human models results in no

loss of optimality. But before proving that property, we will define the idea of

the resolution set, that captures the specific plans resolved by concretizing the

given propositions (i.e the proposition appears as an unsatisfied precondition or

goal in the plan).

Definition 8. For a set of models M′, a foil set F and a proposition p, the

resolution set RF (M′, p) gives the subset of foils that no longer holds in the

concretized models generated through f safe
Λ , i.e

RF (M′, p) = {π|π ∈ F ∧ (∀M′ ∈M′(π(Iγp(M′)) 6|=γp(M′) Gγp(M′) ∧

π(IM′) |=M′ GM′))}

The idea of generating resolution sets are again closely related to the idea of

resolving counter-examples used in CEGAR based method. We will also use RF
to also represent the set of foils resolved by a set of propositions. For notational

convenience, we will use RF (M′, {}) to capture the subset of foils that do not

hold in the current model set M′.

Proposition 4. For a set of model M′ and a foil set F

RF (M′, {p1, p2}) = RF (M′, {p1}) ∪ RF (M′, {p2})

The above property implies that concretizing any n propositional fluents

cannot resolve foils that weren’t resolved by the individual fluents. The above

property follows from the fact that adding a proposition into the model only

17

resolves a foil if it adds a precondition not supported by previous actions in the

plan. Since this is independent of other fluents already part of the abstraction,

we can see that a set of fluents will only resolve the foils that are resolved by

the individual elements of that set.

Proposition 5. For two models M1, M2 and a set of foils F , if M1 =

f safeΛ (M2, {p1, .., pk}) then for any proposition p,

RF ({M1}, {p} ⊇ RF ({M2}, {p}) \ RF ({M2}, {})

The proposition can be established by following the definition of resolution

set and rewriting the lefthand side of the equation as

RF ({M2}, p) = RF ({M1}, {p1, .., pk} ∪ {p})

From Proposition 4 we know

RF ({M2}, p) = RF ({M1}, 〈p1, .., pk〉 · 〈p〉)

= RF ({M1}, p) ∪RF ({M1}, {p1, .., pk})

RF ({M2}, p) = RF ({M1}, 〈p1, .., pk〉 · 〈p〉)

= RF ({M1}, p) ∪RF ({M2}, {})

Now removing elements RF ({M2}, {}) from both LHS and RHS we get

RF ({M2}, p) \ RF ({M2}, {}) = RF ({M1}, p) \ RF ({M2}, {})

Which proves our original assertion.

This proposition directly leads to the following observation.

Proposition 6. Let MF
min be the minimal abstracting set for a foil set F and

MH be the human model. if every model in MF
min if formed from MH through

f safeΛ , then for any fluent set Emin that is optimal for MF
min then Emin must be

optimal for MH .

18

We can show the validity of the above proposition through contradiction.

To start with from the definition of foils we know, RF ({MH}, {}) = ∅ and thus

RF (MF
min, {}) = ∅. Let us assume there exists an explanatory set F1 that is

optimal for human model but not optimal for MF
min. This could only be due to

two possible reasons, i.e., F1 is not an explanatory set for MF
min or there exists

another set F2 that is optimal for MF
min but not applicable for MH . Through,

Proposition 5 we have already established that any explanatory fluent set for

human model must be an explanatory set for MF
min. Similarly, from Proposition

1, we know any explanatory set applicable for an abstract model set must be

applicable for the concrete model as well.

Now the question is how to exactly identify Emin, one possibility is to per-

form an A* search [16] over the space of possible fluent sets to identify Emin.

Each search state consists of the minimal set of abstract models for the hu-

man model given the current explanation prefix. We will stop the search as

soon as we find a state where the foils no longer hold for the current minimal

set. In addition to the systematic search, we can see that the specifics of the

setting also allows us to leverage greedy search (described in Algorithm 1). In

each iteration of this search, the algorithm greedily chooses the proposition that

minimizes
Cp

|F ′∩RF (M′,p)| , where F ′ is the set of unresolved foils at that iteration

and the search ends when all foils are resolved.

Theorem 3. The explanatory fluent set Ê generated by Algorithm 1 for a set of

foils F and a lattice L = 〈M,E,P, `〉 is less than or equal to (ln k)∗CEEmin
, where

CEEmin
is the cost of an optimal explanatory fluent set and k represents the max-

imum number of foils that can be resolved by concretizing a single proposition,

i.e, k = maxp |RF (Mmin, p)|.

Proof (Sketch). We will prove the above theorem by showing that Algorithm 1

corresponds to the greedy search algorithm for a weighted set cover problem.

Consider a weighted set cover problem 〈U, S,W 〉 such that the universe set U =

F , the subcollections set S is defined as S = {sp|p ∈ P} where sp = RF (Mmin, p)

and the cost of each subset sp is gives as W (sp) = CEp . Proposition 4 ensures

19

Algorithm 1 Greedy Algorithm for Generating Ê

1: procedure Greedy-exp-search

2: Input : 〈F,L = 〈M,E,P, `〉〉

3: Output : Explanation Ê

4: Procedure:

5: curr model = 〈Mmin, F 〉

6: Ê = {}

7: Mmin ←MinimalAbstractModels(L, F)

8: Precompute the resolution sets RF (Mmin, p) for each p ∈ P

9: while True do

10: M′, F ′ = curr model

11: if |F ′| = 0 then return Ê . Return Ê if all the foils are resolved

12: else

13: pnext = argmin
p

(
Cp

|F ′∩RF (M′,p)|)

14: Mnew = {γpnext
(M)|M ∈M′}

15: curr model = 〈Mnew, F \ RF (M′, p)〉

16: Ê = Ê ∪ p

20

that the size of resolution set is a submodular and monotonic function. In

this setting, the act of identifying a set of propositions that resolve the foil

set is identical to coming up with a set cover for U in the new weighted set

cover problem. Furthermore, we can show that the optimal set cover Copt must

correspond to the cheapest explanation Emin (We can prove this equivalence

using Propositions 1,3 and 4, we are skipping the details of this proof due

to space constraints). Algorithm 1 describes a greedy way of identifying the

cheapest set cover for this weighted set cover problem and thus the minimal

explanation for the original problem. For weighted set cover the above greedy

algorithm is guaranteed to generate solutions that are at most ln k ∗W (Copt)

[17], where k = maxs∈S |s| and this approximation guarantee will hold for Emin

as well.

We can use this algorithm to either generate solutions and or to calculate an

inadmissible heuristic for the previously mentioned A* search. For the heuristic

generation, we will further simplify the calculations (specifically step 8 in Algo-

rithm 1) by considering an over-approximation of RF . Instead of considering

the set of all foils resolved by concretizing each proposition p, we will consider

the set of foils where p appears in the precondition of one of the actions in it.

This set should be a superset for RF for any proposition.

Now that we have formulated the basic form of explanation for this setting,

we will look at how we can relax some of the assumptions made in earlier sections

and how it effects the explanation generation problem. In particular, we will

look at cases where the lattices are no longer proposition conserving, the users

may be raising foils that are sub-optimal as opposed to invalid and finally how

to support models with noise.

4.1. Supporting Explanation Generation for Non-Proposition Conserving Lat-

tices

Proposition conserving lattices, in particular, complete lattices provide a

concise way for the problem designer to specify their knowledge about the end

21

users. In fact, with well-defined abstraction functions, they need only specify

the most concrete model and the set of most abstract models to generate the

rest of the lattice. Unfortunately, there may be cases where such lattices may no

longer be enough to capture all information the system designer may be capable

of providing about the end users. For example, consider a scenario where a robot

needs to put away groceries. The goal of the robot here is to put away a set of

items in prespecified storage locations. In this case, medicines need to be put

in the medicine cabinet while condiments should be placed in kitchen shelves.

In addition to these task-level constraints, the robot’s operations are restricted

by various motion level constraints that limit the possible physical movements

that the robot can perform, including possible ways an object can be grasped

and areas in the workspace it can reach. Clearly, these two types of constraints

are quite different in terms of the background knowledge needed to understand

them. While the task constraints correspond to some simple rules of the task

that are easy to explain to a lay user, understanding the motion constraints

require knowledge about robotics that is usually absent in most users. Thus

there is a natural hierarchy in the concepts related to this task. One way to

capture such information could be by controlling the order in which the various

fluents are considered for abstraction, i.e., remove a particular set of fluents be-

fore moving to others (thereby making the lattice non-proposition conserving).

This means, the easier to understand fluents would get introduced higher up

in the lattice and the harder to understand fluent appear lower in the lattice

closer to the concrete node. The task mentioned above is a particularly good

fit for non-proposition conserving lattices because even the motion constraints

could be captured at multiple conceptual levels. In general, non-proposition

conserving lattices are a useful tool to use when you have settings where there

are different propositions that capture the same phenomena but at varying lev-

els of detail or focus on different aspects. For example, in the case of picking

up an object, one could talk about the ability to pick up the object, picking up

the object by grasping a particular region and even grasping using a particular

grasp point on the object. We can organize the lattice in such a way that the

22

propositions are visited in the order that reflects the preferences of the end-user.

For example, for this scenario, we can arrange the concepts in such a way that

simpler concepts (for example propositions related to simple reachability) are

tested before moving onto more complex concepts.

While there are reasons to choose non-proposition conserving lattices and we

could generate explanations using such lattices with some minor modifications

on the solution method described before, the use of such lattices also have a

few disadvantages. The obvious one being that the designer now have to fully

specify such lattices, also the use of such lattices prevents the use of heuristics

and greedy search described in earlier sections. It should also be noted that

when the foils can only be resolved by introducing fluents from lower levels then

the search would still need to search through all the nodes in the above before

identifying the nodes that resolve the foil. Also once such a node is identified, it

won’t be easy to separate the set of fluent that actually contribute to resolution

from those that are redundant (particularly when there are multiple foils).

To overcome these shortcomings, we will allow designers to specify a non-

proposition conserving lattice while the explanation generation algorithm itself

operates on a modified proposition conserving lattice that uses an updated cost

function. To achieve this, we will start by defining the concept of a well-formed

lattice

Definition 9. An abstraction lattice L = 〈M,E,P, `〉 is said to be well formed,

if there exists a unique minimal node (i.e the most concrete model), thus for any

model M∈M, M# vM.

Any lattice we describe hence forth, will be assumed to be well-formed unless

specified otherwise. While the concept of minimum abstraction set remains the

same for a non-proposition conserving lattice, analyzing the results of concretiz-

ing the human model with respect to explanatory fluents requires us to look at

a new concept named a completion of a lattice.

Definition 10. For a given well formed non-proposition conserving abstraction

lattice L = 〈M,E,P, `〉, a second lattice L̂ = 〈M̂, Ê,P, ˆ̀〉 is said to be a com-

23

pletion if L̂ is a proposition conserving lattice, such that, M ⊆ M̂, E ⊆ Ê and

` ⊆ ˆ̀

A completion is relevant in this setting, because if we allow the system to

freely choose propositions for the explanatory set, the updated human model (i.e

the model obtained after the explanation) may not be part of the original non-

proposition conserving lattice but is guaranteed to be part of the completion.

Note that completions for a non-proposition conserving lattices are not unique,

but in most cases we will consider a minimal completion. We can create such a

completion by starting with the given lattice and adding any missing incoming

edges iteratively (introducing new models only if there exists no current nodes

that correspond to the set of missing propositions expected at the source of the

edge).

Definition 11. Given a non-proposition conserving lattice L = 〈M,E,P, `〉, it’s

completion L̂ = 〈M̂, Ê,P, ˆ̀〉, the human model MH ∈ M and the foil set F , a

set of propositions E = {p1, ..., pn} is said to be a set of explanatory fluents if

∀π ∈ F, π(IγE(MH)) 6|=γE(MH) GγE(MH) and γE(MH) ∈ M̂

As the original human model is assumed to be part of the given lattice, it

must be part of the completion as well, moreover, the relation between the min

abstraction set and the human model is conserved in the completion as well.

This means that any set of explanatory fluents identified by using the minimum

completion of the given lattice would also be valid for the human model as well.

Such a minimal completion lattice, need not be created beforehand, but could

in fact be generated online when searching for the explanation. Unfortunately,

directly using such a completion lattice for explanation generation (once the min

abstraction set is found), would result in finding sets of propositions that ignore

the information captured by the given lattice. To incorporate this information

we need to not only use the completion we need to consider a new cost function

CEL for the explanation generation.

Proposition 7. Given a min abstraction set Mmin for a non-proposition con-

24

serving lattice L = 〈M,E,P, `〉, we can use it’s completion L̂ = 〈M̂, Ê,P, ˆ̀〉 to

identify the explanatory fluents provided the cost of explaining a given proposi-

tion p is defined as CEL(p) = CEp + max
M∈Mmin

L(p,M), where L(p,M) is a penalty,

such that L(p,M) ∝ CE
P̂

where P̂ is the least costly set of propositions such that

p ∈ P̂ and γP̂ (M) ∈M.

This new penalty term ensures that a proposition is considered for expla-

nation only after the propositions from higher levels of the given lattice is con-

sidered. Now that we are dealing with explanations using a new proposition

conserving lattice, all earlier results directly carry over including the heuristic,

though the search is less efficient as calculating the cost for each node requires

lookup of the given lattice. Since the proposition conserving lattice is assumed

to be provided upfront, we may be able to precompute the costs.

4.2. Supporting Explanations for Sub-optimal Foils

We will now consider scenarios where the explainee raises foils that are valid

but may, in fact, be costlier than the one chosen by the robot. In such scenarios,

we would want the robot to explain why the current plan may be preferred, but

such explanations could be complicated by the fact that the actions in the

domain may have state-dependent costs, for example, the cost of picking up a

light block may be lower than picking up a heavier block. Here we would again

need to present the user with a set of fluents and associated action costs that

allow the user to correctly evaluate their alternate plans.

To investigate this setting, we will restrict our attention to cases where each

action could be associated a set of positive conditional costs. We will consider

a slightly updated action definition, where each action a for a model M is now

defined by a tuple of the form 〈preca, e+
a , e
−
a , CMa 〉, where preca, e

+
a and e−a are

same as before and Ca are the set of state dependent costs associated with the

action a. CMa is itself defined as a set of individual costs of the from 〈φ, c〉,

where φ is a conjunction of state literals, which when satisfied in a state causes

the action a to induce a cost c (where c ∈ R≥0). Now the cost of executing the

action a at state s is defined

25

CMa (s) = Σ〈φi,ci〉∈CMa (δ(φi, s, ci))

Where δ(φi, s, ci) = ci if s |= φi else δ(φi, s, ci) = 0.

We will use the function CM to return the total cost of a plan for a given

initial state, i.e, for a plan π = 〈a1,, an〉 and an initial state I, CM(π, I) =

CMa1
(I) + ...+ CMan (an−1(...(a1(I))...)).

Following the convention set by [18], we can assert that such a domain model

induces a transition system of the form T = 〈S, s0, Sg, L, T, CT 〉, which is similar

to the original transition system definition except that now each transition is

associated with a cost determined by both source state and action. An abstract

model M′ with a transition system T ′ for a set of propositions Λ is defined in

a similar way with the cost of each transition (s, a, s′) given by CT ′
(s, a, s′) =

min({CT (ŝ, a, ŝ′) | ŝ, ŝ′ ∈ S ∧ fΛ(ŝ) = s ∧ fΛ(ŝ′) = s′)}).

We will also update the explanatory setting a bit and assume that the robot

presents the user with the plan and the anticipated cost of the plan in the most

concrete model (denoted as CπR
). The user responds by providing a foil set

which they believe is less costlier than the plan in question. Here we can define

a set of explanatory fluents to be

Definition 12. A set of proposition E = {p1, ..., pn} is said to be explanatory

fluents for the human model MH and a foil set F if

∀π ∈ F, π(IγE(MH)) 6|=γE(MH) GγE(MH) ∨ CMH (π, IγE(MH)) > CπR

Revisiting the abstraction lattice, given the fact that we are dealing with

only positive costs, the first property we can assert is that

Proposition 8. Given two models M1 and M2, such that M1 v M2, then

for any plan π, we have C(π, IγE(M1)) ≥ C(π, IγE(M2))

This means that once we establish that a given foil is costlier than robot plan

in a model, then it holds in all models that are more concrete than that one. This

insight allows us to reassert Proposition 1 for this new extended definition of

26

explanation and by extension allows us to use the idea of the minimal abstraction

set in this new setting (Proposition 2 holds here as well).

This means that we can more or less directly use the search method discussed

for the in-validity case here directly. Unfortunately, in this setting the size of

resolution set is no longer sub-modular and hence we can not leverage the greedy

method discussed for the pure invalidity case.

4.3. Supporting Explanations in the Presence of Human Models with Incorrect

Beliefs

An underlying assumption for most of the earlier discussion has been the

fact that the user’s model of the task can be represented as an abstraction

of the robot model, i.e. the user model may be imprecise but not incorrect.

Unfortunately, this is not an assumption that can be met in all scenarios. More

often than not, the user may not only be unaware of certain facts pertaining to

the task but may also hold incorrect beliefs about it. Throughout this section,

we will discuss how approaches discussed in earlier sections can be used to handle

such cases.

Formally, let the real (but unknown) user model beMH and we assert that

this model is an abstraction of some (again unknown) model M̂R that is defined

over the same set of fluents as MR, but may have errors in regards to action

definitions, perceived initial and goal state. Let us assume both M̂R and MH

belong to the same class of planning problems as defined in Section 2. Again let

the set of alternate plans raised by the user be F . It is important to note that the

reason the user thinks these foils are valid may no longer be just due to missing

fluents, but could also be due to the user’s incorrect understanding of the task.

This means that foils are not an accurate way of identifying the user’s level of

understanding, but we can still use the foils to figure out the level of abstraction

at which the foils can be refuted. Though in scenarios with such models, we have

to consider a complete lattice that contains all possible fluents (i.e assuming user

could be wrong about the use of any of the fluents), i.e., the lattice we will use

would be L = 〈M,E,P, `〉, where P = PR (defined using fsafeΛ). We can now

27

use the methods described in earlier sections to find a set of explanatory fluents

E that can refute the given set of foils. Once the information regarding the

explanatory fluents in provided to the user, irrespective of the other fluents, the

user should have a correct understanding of each fluents listed in E . LetMH+E

be the updated human model that contains the correct information about E .

Note that even though MH or MH + E may not be part of L, the abstraction

of this updated human model that projects out all propositions absent from

E must be part of the lattice L, i.e, fP\E((MH) + E) ∈ γE(Mmin). In this

scenario, γE(Mmin) will be singleton set and we will represent the only element

in this set as Mmin. As per the definition of valid explanation, we know that

RF (Mmin, E) = ∅ and since γE(MH) v γE(Mmin) and therefore the resolution

set for γE(MH) must also be empty.

5. Evaluations

5.1. Empirical Evaluations on Explanation Generation for Invalid Foils

For our empirical evaluation, we wanted to understand how effective our

basic approaches were in terms of the conciseness of the explanations produced,

the solution computation time and the usefulness of approximation. For the ap-

proximation, we were interested in identifying the trade-off between decrease in

runtime vs. reduction in solution quality. Since both explanation for incorrect

beliefs and non proposition-conserving gets compiled down to finding explana-

tion on proposition-conserving lattices, we didn’t perform separate evaluations

for those methods. All three explanation methods discussed in this paper (blind,

heuristic and greedy) were evaluated on five IPC benchmark domains[14]. All

the experiments detailed in this section were run on an Ubuntu workstation

with 64G RAM.

For each domain, we selected 30 problems from either available test sets

or by using standard problem generators (the problems sizes were selected to

reflect the size of previous IPC test problems). The lattice for each problem-

domain pair was generated by randomly selecting 50% of domain predicates

28

Figure 3: The graph compares the performance of greedy set cover against the optimal

blind search for |F | = 4. It plots the average time saved by the set cover and the

average increase in cost of the solution for each domain.

and then generating a fully connected proposition conserving lattice using that

set of predicates. Since none of the models contained any conditional effects,

we created the abstract models by dropping the propositions to be abstracted

from the domain models (which are complete for these domains). The foils were

generated by selecting random models from the lattice and creating plans from

these models that do not hold in the concrete model. Each search evaluated

here, generates the set of proposition whose concretizations can resolve the foils

set F . In actual applications, this set of propositions needs to be converted into

an explanan (the actual message) by considering how this proposition is used

in the robot model. Figure 4 shows the explanation generated by our approach

for a problem in Rover domain.

Table 1 presents the results from our empirical evaluation on the IPC do-

mains. The table shows the average cost/size of each explanation along with

the time taken to generate them. Note that by size, we refer to the number

of predicates that are part of the explanation while the cost reflects the total

number of unique model updates induced by that explanation. We attempted

explanation generation for foil set sizes of one, two and four per problem.

Our main conclusion is that heuristic search seems to outperform blind

29

D
om

ai
n

N
am

e
C

P
|P
|
|F
|

B
li

n
d

S
ea

rc
h

(O
p

ti
m

a
l)

H
eu

ri
st

ic
S

ea
rc

h
G

re
ed

y
S

et
C

ov
er

C
os

t
S

iz
e

T
im

e(
S

)
C

o
st

S
iz

e
T

im
e(

S
)

C
o
st

S
iz

e
T

im
e(

S
)

B
ar

m
an

84
.0

7
7

1
6.

87
1

2
.4

3
6
.8

7
1

2
.0

8
6
.8

7
1

3
.6

1

84
7

2
8.

94
1
.2

2
6
.3

5
8
.9

4
1
.2

2
5
.7

1
9
.9

0
1
.3

9
6
.0

5

90
.7

7
4

17
.1

9
1
.7

7
2
4
.9

9
1
7
.1

9
1
.7

7
2
3
.7

1
8
.4

5
1
.9

7
1
0
.3

4

R
ov

er

16
8.

66
12

1
3.

58
1

7
.8

6
3
.5

8
1

5
.2

2
3
.5

8
1

1
9
.1

8

18
8.

83
12

2
6.

13
1
.4

8
5
1
.3

6
6
.1

2
1
.4

8
3
4
.0

4
6
.2

6
1
.5

2
3
0
.5

19
2.

83
12

4
10

.8
7

2
2
0
3
.8

3
1
0
.8

7
2

1
8
1
.8

7
1
1
.4

2
2
.1

9
4
9
.3

2

S
at

el
li

te

53
.0

1
4

1
18

.7
3

1
2
.2

3
1
8
.7

3
1

1
.9

2
1
8
.7

3
1

1
.4

9

60
.7

7
4

2
32

1
.6

1
7
.2

1
3
2

1
.6

5
.8

6
3
2
.5

3
1
.7

3
.0

4

62
.7

3
4

4
43

.2
7

2
.2

9
1
8
.6

7
4
3
.2

7
2
.2

9
1
6
.4

2
4
3
.8

8
2
.3

9
5
.8

5

W
o
o
d

w
or

k
in

g

15
6.

71
7

1
14

.4
5

1
2
.8

4
1
4
.4

5
1

2
.2

3
1
4
.4

5
1

3
.3

5

14
6.

33
7

2
20

.6
2

1
.2

1
6
.8

8
2
0
.6

2
1
.2

1
4
.9

3
2
1
.3

8
1
.3

8
6
.2

5

15
4

7
4

28
.6

2
1
.6

9
2
4
.7

0
2
8
.6

2
1
.6

9
1
9
.4

9
3
0
.4

1
2

1
2
.1

3

S
ok

ob
an

22
0.

6
3

1
51

.2
1

1
1
.5

1
5
1
.2

1
1

1
.3

5
5
1
.2

1
1

1
.2

8

15
1.

72
3

2
94

.5
2

1
.5

5
3
.9

3
9
4
.5

2
1
.5

5
3
.3

5
9
8
.3

1
1
.7

3
2
.5

9

22
0.

69
3

4
13

6.
41

2
.2

2
8
.7

5
1
3
6
.4

1
2
.2

2
8
.3

1
4
1
.9

3
2
.3

7
5
.2

3

T
a
b
le

1
:

T
a
b
le

sh
ow

in
g

ru
n
ti

m
e/

co
st

fo
r

ex
p
la

n
a
ti

o
n
s

g
en

er
a
te

d
fo

r
st

a
n
d
a
rd

IP
C

d
o
m

a
in

s.
C

o
lu

m
n
|P
|r

ep
re

se
n
ts

n
u
m

b
er

o
f

p
re

d
ic

a
te

s

th
a
t

w
er

e
u
se

d
in

g
en

er
a
ti

n
g

th
e

la
tt

ic
e,

w
h
il
e
C

E P
re

p
re

se
n
ts

th
e

co
st

o
f

a
n

ex
p
la

n
a
ti

o
n

th
a
t

tr
ie

s
to

co
n
cr

et
iz

e
a
ll

p
ro

p
o
si

ti
o
n
s

in
P

a
n
d

p
ro

v
id

es
a
n

u
p
p

er
b

o
u
n
d

o
n

ex
p
la

n
a
ti

o
n

co
st

.

30

Figure 4: An example explanation generated by our system for IPC rover domain.

The human incorrectly believes that the rover can communicate sample information

without explicitly collecting any samples. While the abstraction lattice in this example

was generated by projecting out upto 12 predicates, the search correctly identifies

concretizations related to (have soil analysis ?r - rover ?w - waypoint) as the cheapest

explanation (CE
E = 2 as opposed to CE

P = 55)

search in almost every problem and generates near-optimal solutions (Blind

search always generates the minimal explanation). Further, we saw that greedy

search outperformed heuristic search in most cases barring a few exceptions.

The greedy search was able to make significant gains especially for higher foil

set sizes. This is entirely expected due to the fact that step 8 in Algorithm

1 can be expensive for problems with long plans (but still polynomial). This

expensive pre-computation pays off as we move to cases where Emin consists

of multiple propositions. Additionally, we found out that greedy solutions were

quite comparable to the optimal solutions with respect to their costs. For exam-

ple in |F | = 4 for satellite domain, while the greedy solution cost took a penalty

of ∼ 1.4% the search time was reduced by ∼ 68%. Figure 3 plots the compari-

son between the time saved by the greedy search versus any loss in optimality

incurred by the greedy search.

31

5.2. Empirical Evaluations on Explanation Generation for Sub-optimal Foils

Next, we wanted to evaluate the empirical performance of the approach for

domains with state dependent cost. For this setting, since we don’t have stan-

dard benchmark domains with this property, we chose standard IPC domains

and modified them to include conditional cost updates. In particular, we chose

blocksworld, zenotravel, gripper and rover. For blocksworld, we introduced

three new predicates, namely heavy, light and unsteady each of which takes a

block as an argument. For each problem instance, we assigned each block to be

either heavy or light and set some of the blocks as unsteady. We also updated

the stack action so that stacking a heavy block on a light one or an already

unsteady one cause the block to be unsteady. We also set a high cost penalty

for stacking any block on an unsteady one. For zenotravel, we came up with

three binary predicates near, farther and farthest that takes cities as arguments.

We also assigned a higher cost for traveling between far away cities than nearby

ones (so the optimal plan may involve the plane making a lot more stops). For

gripper, we again mark a ball to be heavy or light and now each robot can also

pick up two balls at the same time. We assign a high cost to picking up heavy

balls and picking up the second ball in a gripper that is already holding a ball.

We also provide the robot with a push action, that allows for it to move heavy

balls without accruing large cost.Finally in the case of rover domains, we set

some of the waypoints as being hilly area and communicating from these way-

points are assigned higher costs. Table 2 presents the explanation generation

time and average explanation sizes for the modified domains. For each domain,

we generated five problems and the test was run using systems of the same con-

figuration as Section 5.1. For Blocksworld we considered instances where the

number of blocks spanned from four blocks to 20, for Gripper all problems had

two rooms and up to 12 balls and for Rover domain problems had upto three

objectives and four waypoints. Finally, in Zenotravel all problems considered

traveling between 10 cities and the number of passengers ranged from 20 to

60. The fact plan being explained were generated using optimal planners when

possible and the foils were generated either using a satisficing planner (Metric-

32

Domain Average Explanation Size Runtime

BLOCKS 4.4 8.319

Gripper 5.4 7.368

Rover 4 9.690

Zeno 6.6 8.905

Table 2: The sample runtime and average explanation size for five problem instances

from the modified domains.

FF [19]) or hand written using knowledge about the domain. As expected, the

search was able to find the minimal number of predicates to be included into

the problem to resolve the foils, for example in Blocksworld, the approach was

able to correctly identify the predicate unsteady as being enough to explain the

foils in the example.

In addition to the empirical results discussed in this paper on classical plan-

ning problems, the approaches discussed have also shown to be useful in model-

ing explanatory dialogue in the context of Task and Motion Planning (as shown

in [20]).

5.3. User Study to Evaluate Role of Abstractions in Explanation

In this section, we will consider one of the assumptions that we made

throughout the work, namely that providing the explanations at an abstract

level would help reduce the cognitive burden on the user’s end. Specifically, we

will test the following hypothesis

Hypothesis 1. Given two models M1 and M2, such that M1 @M2 and M2

is formed using methods presented in Section 2.1, a user would find it easier to

work with the more abstract model M2 when compared to M1

We will evaluate this hypothesis over two different dimensions. One with

respect to the subjective workload the user may experience when working with

such a model to achieve some task, and then with respect to the actual ability

of the user to successfully complete the task. For the former, we will employ

33

NASA-Task Load Index (NASA-TLX) survey [21], while for the latter we mea-

sure the time taken by the user to complete the task. NASA-TLX is a very

influential and widely used method to gauge the subjective workload experi-

enced by the user. NASA-TLX, divides the workload of a task over six different

dimensions; namely, Mental Demand, Physical Demand, Temporal Demand,

Effort, Performance, and Frustration. The users are first asked to rate the task,

across these dimensions on a 20 point scale (with larger value denoting higher

workload). They are then required to provide relative weights across these di-

mensions, by making pairwise choices between these different dimensions. A

weighted average of the ratings provided across these dimensions is then used

as a measure of the workload.

For the actual study, we relied on a between-subject study design, wherein

the study participants are divided into two groups. All study participants were

students from ASU. One received abstract explanations and the other group was

given concrete domain model information as explanations. As the task in ques-

tion, we used a variation of the Sokoban domain, that involves the agent pushing

a box to a pre-specified domain. Unlike the common versions of Sokoban, this

variant involved the robot needing to first turn on a switch before pushing the

boxes. Each participant in the study was allowed to play the game through a

web-interface (which is shown in Figure 5, along with a sample explanation).

While they were told the actions they can perform, they weren’t told what

each of the action achieves or their preconditions. Each player was allotted a

total time of five minutes to complete the game. As the users play the game

and if they perform an invalid action, they were provided with an explanation

appropriate for their group.

For both groups, the current action sequence being executed was treated as

the foil and the explanation consisted of the following information; the state at

which the sequence failed, the specific action that failed, the expected set of pre-

conditions, the failed precondition, and lifted model information about relevant

actions. While one group of users were shown the information with respect to

the concrete model, i.e., they were shown the full state, all the preconditions,

34

Figure 5: Screenshots from the user interface exposed to the end user. (A) The par-

ticipant is shown the current state of the game, they are allowed to control the agent

via their keyboard and whenever they perform an invalid action, they are shown a

possible explanation. (B) and (C) presents a sample explanation provided to partic-

ipants who were exposed to abstract explanations. Here the current state shown to

the participant is empty as none of the facts are true in that state.

all failed preconditions, and the entire model of the task, the second group

was shown the abstracted version of each of the above-mentioned information.

The level of abstraction for this group is identified based on the foil failure. To

make sure the explanation generation time is symmetric between the groups, we

avoided search to identify the best level of abstraction and rather we simulated

the failing foil in the most concrete model and randomly selected the predicate

corresponding to one of the failing precondition to generate the abstract models.

While this may result in a more detailed model than required, as we will see,

even with this simple approach we did see a significant difference between the

two groups. We also carried over predicates from consecutive failures, so the

users of the second group saw increasingly more concrete models if they failed

repeatedly (though still more abstract compared to the first group).

35

Scale Concrete-Explanation Group Abstract-Explanation Group

Effort 1.595 1.252

Frustration 2.5 2.19

Mental Demand 2.9 1.414

Performance 1.186 1.705

Physical Demand 0.038 0.152

Temporal Demand 1.929 1.719

Table 3: The weighted average workload reported by the participants of the user study

across the individual scales used in NASA-TLX.

In total, we collected responses from 28 participants, 14 of whom had access

to concrete explanation (henceforth referred to as Concrete-explanation group),

and the remaining 14 were provided with abstract explanation (i.e the Abstract-

explanation group). While the Concrete-explanation group on average took

200.857 secs to finish the task, the abstraction group only took 163.5 seconds.

In terms of the weighted average workload for the Concrete-explanation group,

we saw 10.147 and for the Abstract-explanation group, we found it to be 8.433.

The distribution across the six scales are presented in Table 3. As seen from the

table, in all but Performance and Physical demand, people reported a higher

workload for the concrete explanation group. We see a particularly significant

difference across the mental demand dimension, which was the main focus of

the assumptions made by our work. Thus the results from both the subjective

workload study, and the performance of the user (measure in terms of the time

taken by the user to finish the task), conform to our original hypothesis and

we see that the use of abstractions provides a distinct advantage over providing

complete details.

6. Related Work

There is increasing interest within the automated planning community to

solve the problem of generating explanations for plans ([22, 23]). Earlier works

36

like [3, 4, 24] looked at explanations as a way of describing the effects of plans,

while works like [25, 26] looked at plans itself as explanations for a set of obser-

vations. Another approach that has received a lot of interest recently is to view

explanations as a way of achieving model reconciliation [27]. Such explanations

are seen as a solution to a model reconciliation problem (referred to as MRP)

and this approach postulates that the goal of an explanation is to update the

model of the observer so they can correctly evaluate the plans in question. The

methods discussed in this paper can be seen as performing a type of model-

reconciliation, but one could also leverage the methods discussed here to relax

some of the assumptions made by model-reconciliation works for certain condi-

tions We discuss the relationship between model-reconciliation and the methods

studied in this paper in more detail in Section 7.1

As noted, our work is closely related to the well studied method of counter-

example guided refinement or CEGAR that was originally developed for Model

checking [5]. Many planning works have successfully used CEGAR based meth-

ods to generate heuristics for plan generation [8, 28]. The idea of foil resolution

set for a given concretization is also closely related to the process of identifying

spurious counter examples employed by CEGAR based methods (cf. [29, 9, 30]).

One major difference between our work and standard CEGAR based methods

is the fact that in our setting the abstract model producing the foil (or counter-

example) is unknown. Since we are exclusively dealing with spurious counter-

examples we are also not bound to testing our foils (in other words identifying

faults or pivot states) in the most concrete model (which could be quite ex-

pensive). Further, traditional CEGAR methods are generally not as focused on

identifying the cheapest refinements.

Many abstraction schemes have been proposed for planning tasks (starting

with [7]), but in this paper, we mainly focused on state abstractions and based

our formulation on previous works like [13] and [12]. It would be interesting

to see how we can extend the approaches discussed in this paper to handle

temporal and procedural abstractions (e.g., HLAs [31]).

There exists a rich body of literature that has debated and discussed the role

37

of abstraction in Social sciences (cf. [32, 33] for arguments towards abstraction,

while [34] argues for adding more details provided the task constraints allow

for it). Unlike these works that study explanation in everyday scenarios, expla-

nation in the context of AI systems have a markedly different flavor, in so far

that the explainer may be representing and reasoning about the task at levels of

details that may be too hard for the users to understand. Thus abstraction can

be a powerful tool in identifying just the required level of information to allow

people to achieve their goals. This is an intuition being leveraged by more and

more works to help generate explanations or even decisions that are easier to

understand. For example, state abstractions have been leveraged by [35] to gen-

erate simpler models that generate easier to understand policies, and [36] uses

abstraction to simplify policies. Even in the realm of machine learning explana-

tions, abstractions have been considered as a way to generate multi-resolution

explanations [37]. The importance of adjusting the level of details for different

users have also been considered and argued in [38], where they propose three

levels of explanations, namely, high-level, low-level, and co-created level expla-

nations. While high and low-level explanations focus on generating summaries

and detailed descriptions respectively, co-created explanations use the user in-

teraction to determine the contents of the explanation. Our specific methods

could be considered closely related to the co-created explanation studied in the

paper.

There have also been recent works that have looked at generating contrastive

explanations for planning. Some significant examples for these include works

like [39] and [40]. Both these cases treat the cause of user’s confusion to be

their limited computational capabilities and the explanations tend to help them

realize the consequences of following the foil without worrying about model

reconciliation.

A closely related but distinct form of explanations is the one where the

explanan (i.e. the information provided to the explainee) constitutes a counter-

factual example [41]. Such explanations are particularly popular in classification

settings, where when queried about an inexplicable classification, the system re-

38

sponds with a counterfactual example where the desired decision may have been

made. Note that in such cases, the system needs to focus on generating counter-

factual instances that the user would find acceptable. Many recent works have

looked at identifying desirable properties for such counterfactual explanations

(cf. [41, 42]), and some of the prominent ones identified in the literature include,

making sure the counterfactual example is close enough to the decision-point in

question and the counterfactual is plausible, in terms of not only being a plau-

sible datapoint but also that it is actionable. Actionability can be particularly

important in domains like loan approval, wherein the counterfactual represents

the changes the user needs to make to achieve the desired outcomes. Note that

in our method, it is the user who is responsible for generating the counterfac-

tual example and as such is guaranteed to come up with foil they believed to

be most likely or most useful. Thus our focus has been on ensuring that the

explanations generated in response meet the desired properties discussed in the

literature. As discussed above, our explanations do meet many of the important

requirements discussed in the literature including being selective and social.

7. Conclusion and Discussion

In this paper, we investigated the problem of generating explanations when

the explainee understands the task model at a higher level of abstraction. We

looked at how we can use explanations as concretization for such scenarios and

proposed algorithms for generating minimal explanations. One unique aspect

of our approach is the use of foils as a way of capturing human confusion about

the problem. This not only helps us formulate more efficient explanation gen-

eration methods but also aligns with the widely held belief that human expect

contrastive explanations (cf. [43, 44]). Moreover, in most real-world scenarios

humans usually include the foil in the request for explanations unless the foil

is quite apparent from the context. The use of state abstractions in explana-

tions also allows us to reduce the cognitive burden imposed on the user for

understanding the explanations. Below we have provided some more detailed

39

discussion on the nature of explanation generated by the methods discussed in

the paper and some future work.

7.1. HELM and Model Reconciliation Explanation

As mentioned earlier, the methods discussed in this case could be seen as a

special case of model reconciliation [27]. Here the model updates are limited to

model concretization and the human’s model is an abstraction of the original

model. Rather than assuming that we are given an explicit human model,

we assume that the human model belongs in the set of possible models that

corresponds to the various abstractions of the robot model. In this sense, this

method is also comparable to the work done on generating explanations for a set

of possible models [45], and in particular to the conformant explanations studied

in that paper. Though unlike [45], in this setting we can guarantee that the

conformant explanation is also minimal for the unknown human model (provided

all model updates and hence explanations are restricted to model concretizations

over fluents). Our use of minimal abstractions for explanations also allows the

methods to handle cases where the user questions arise due to a mismatch in

the inferential capabilities and not just a mismatch in the knowledge about the

task. While the original model reconciliation work focused on explanations that

address all possible foils, our work specifically tries to address foils raised by the

user. This allows us to provide more concise explanations and allows us to scale

to larger problems as compared to the original MRP approaches.

Another way to connect this work with model reconciliation is to leverage

the insights from Section 4.3, to show that the method described in this pa-

per can also be used in the more general model-reconciliation setting. Section

4.3 shows that for the class of planning problems studied in this paper, even

when the human model may not meet the assumption that it is, in fact, an ab-

straction of the original robot model, we can still generate an explanation that

refutes the given set of foil using abstractions formed from the robot model.

Provided we use a complete abstraction lattice which contains a single maximal

node formed by projecting out all the propositions. This means for explana-

40

tory queries related to just refuting alternate plans, abstraction lattices give us

a way to circumvent one of the most restrictive assumptions made in model-

reconciliation works, namely the need to know or learn the human model. As

discussed in Section 4.3, the explanations generated over abstraction lattices

will remain valid model-reconciliation explanations regardless of how the hu-

man model may be different from the robot model (provided it is still of the

form described in Section 2 and doesn’t contain any fluents absent from the

robot model). Though compared to model-reconciliation techniques like those

studied in [27, 45], the methods discussed in this paper could generate much

larger explanations. For one, the explanations here involve providing informa-

tion about all the uses of the explanatory fluents in the robot model, many

of which the user may already know. This approach can also be extended to

generate explanations of unsolvability and for partial foils of the type discussed

in [46].

7.2. Properties of Explanations

The prior work on explanation as model reconciliation [27] mainly used four

properties to characterize the various types of explanations that were introduced

in the paper. These properties were Completeness, Monotonicity, Conciseness,

and Computability. We too can use these properties to describe the explanations

we have looked at (with small updates to meet our specific setting).

Any explanation generated by our methods will be complete and monotonic.

While [27] defines a complete explanation as one that guarantees optimality

of the plan under question. For our scenario, a complete explanation can be

redefined as one that resolved all the given foils (|RF (Π′, E)| = |F |). [27]

considers an explanation monotonic if no future explanation can invalidate it.

In our setting, this means that once a foil has been resolved by an explanation,

no future explanation (or model concretizations) can reintroduce it. Which is

satisfied by any explanation as concretization.

As for the remaining two properties (Conciseness and Computability), the

definitions laid out in the original MRP paper directly applies for our setting

41

as well. Similar to MRP explanations, computability and conciseness remains

incompatible properties for explanations in our case too. The explanations that

are easier to compute end up being neither concise nor easy to understand. For

example, one simple strategy to provide explaining a plan would be to provide

enough details to the explainee that the human model completely converges

to the robot model, but this strategy could be extremely expensive and even

unnecessary.

In addition to properties discussed in [47], works in social sciences have also

prescribed some essential characteristics for what would be considered useful

explanations by people [2]. Chief among them is generating contrastive expla-

nations, which remains the central thrust of the methods discussed in this work.

The other two properties usually cited by such sources are selectiveness and be-

ing social. An explanation is considered selective if it chooses to focus only on

the aspects relevant to the current explanatory query. As such this is directly

related to the minimality of explanation and thus the methods discussed in this

paper can be considered to be selective. On the other hand, an explanation is

considered social if it is tailored to the user’s background. Our method supports

this property in two distinct ways, one by explicitly trying to localize the user’s

model on the abstraction lattice, and by allowing the abstraction lattice itself

to be tailored to reflect the preferences of the users.

7.3. Other Explanatory Queries

The explanatory approaches discussed in this paper have mostly focused on

helping users resolve their confusion about foils, but it may also be possible

that they have questions about the original robot plan. For the robot plan

πR = 〈a1, ..., an〉, user could raise questions of the following types

1. Why perform action ai? (where ai ∈ πR)

2. How can action ai be performed when the precondition p is not met?

(where ai ∈ πR and p ∈ prec+
ai or p ∈ prec−ai in the human model MH)

Question (1) captures the user’s concerns regarding the use of any particular

action in the plan, while question (2) captures their concerns regarding the

42

validity of the plan. Other questions, such as achievement of goals and questions

about the overall plan can be cast in terms of these more basic questions. For

answering questions of the first type, we can easily adapt approaches discussed

in works like [3]. For a given action, these approaches try to find causal links

that capture the specific action’s contributions. We can leverage the hierarchy

specified by the abstraction lattice to identify causal links consisting of higher-

level concepts.

For Question (2), it is possible to view such questions as another type of foil.

While in earlier sections we tried to find abstract models where a particular foil

can be refuted, here we just need to find the level at which the specified pre-

conditions can be met. In the absence of disjunctive preconditions, we wouldn’t

need to perform a search to find such models, but rather choose the first ab-

stract model where fluents corresponding to the preconditions in question is

introduced.

This paper mostly focuses on cases where foils are fully specified. Such fully

specified foils may not always be available and the human may instead be only

ready to specify certain parts of the foil. In such cases, the exact foil set would

consist of all plans that could potentially satisfy the plan level constraints being

specified by the user question. In [46], the methods discussed in this paper have

been extended to handle such cases. The work tries to handle such partial foil

specifications by compiling it directly into each model in the abstraction lattice

without generating the complete set of foils. Though the work only looks at

employing blind search to generate such explanations. Such abstraction based

explanations have also been used to generate explanations in the context of

providing assistance for domain-authoring tools [48].

Acknowledgement. This research is supported in part by ONR grants N00014-

16-1-2892, N00014-18-1-2442, N00014-18-1-2840, N00014-9-1-2119, AFOSR grant

FA9550-18-1-0067, DARPA SAIL-ON grant W911NF-19-2-0006, NSF grants

1936997 (C-ACCEL), 1844325 and 1909370, NASA grant NNX17AD06G, and

a JP Morgan AI Faculty Research grant.

43

References

[1] T. Chakraborti, S. Sreedharan, S. Kambhampati, The emerging landscape

of explainable automated planning & decision making, in: Proceedings of

the Twenty-Ninth International Joint Conference on Artificial Intelligence,

IJCAI-20, 2020, pp. 4803–4811.

[2] T. Miller, Explanation in artificial intelligence: Insights from the social

sciences, CoRR abs/1706.07269 (2017). URL: http://arxiv.org/abs/

1706.07269.

[3] B. Seegebarth, F. Müller, B. Schattenberg, S. Biundo, Making hybrid

plans more clear to human users-a formal approach for generating sound

explanations, in: Twenty-Second International Conference on Automated

Planning and Scheduling, 2012.

[4] P. Bercher, S. Biundo, T. Geier, T. Hoernle, F. Nothdurft, F. Richter,

B. Schattenberg, Plan, repair, execute, explain-how planning helps to as-

semble your home theater., in: ICAPS, 2014.

[5] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided

abstraction refinement, in: International Conference on Computer Aided

Verification, Springer, 2000, pp. 154–169.

[6] S. Sreedharan, S. Srivastava, S. Kambhampati, Hierarchical expertise-level

modeling for user specific contrastive explanations, in: IJCAI, 2018.

[7] E. D. Sacerdoti, Planning in a hierarchy of abstraction spaces, Artificial

intelligence 5 (1974) 115–135.

[8] J. Seipp, M. Helmert, Counterexample-guided cartesian abstraction refine-

ment., in: ICAPS, 2013.

[9] E. R. Keyder, J. Hoffmann, P. Haslum, et al., Semi-relaxed plan heuristics.,

in: ICAPS, 2012.

44

[10] J. C. Culberson, J. Schaeffer, Pattern databases, Computational Intelli-

gence 14 (1998) 318–334.

[11] S. Edelkamp, Planning with pattern databases, in: ECP, 2000.

[12] C. Backstrom, P. Jonsson, Bridging the gap between refinement and heuris-

tics in abstraction, in: Twenty-Third International Joint Conference on

Artificial Intelligence, 2013.

[13] S. Srivastava, S. J. Russell, A. Pinto, Metaphysics of planning domain

descriptions., in: AAAI, 2016, pp. 1074–1080.

[14] International Planning Competition, IPC Competition Domains, https:

//goo.gl/i35bxc, 2011.

[15] K. Bernhard, J. Vygen, Combinatorial optimization: Theory and algo-

rithms, Springer, Third Edition, 2005. (2008).

[16] P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the heuristic de-

termination of minimum cost paths, IEEE transactions on Systems Science

and Cybernetics 4 (1968) 100–107.

[17] N. E. Young, Greedy set-cover algorithms, in: Encyclopedia of algorithms,

Springer, 2008, pp. 1–99.

[18] F. Geißer, T. Keller, R. Mattmüller, Abstractions for planning with state-

dependent action costs, ICAPS (2016).

[19] J. Hoffmann, The metric-ff planning system: Translating“ignoring delete

lists”to numeric state variables, Journal of artificial intelligence research

20 (2003) 291–341.

[20] S. Sreedharan, M. P. Madhusoodanan, S. Srivastava, S. Kambhampati,

Plan Explanation Through Search in an Abstract Model Space: Extended

Results, in: ICAPS XAIP Workshop, 2018.

45

[21] S. G. Hart, L. E. Staveland, Development of nasa-tlx (task load index):

Results of empirical and theoretical research, in: Advances in psychology,

volume 52, Elsevier, 1988, pp. 139–183.

[22] M. Fox, D. Long, D. Magazzeni, Explainable Planning, in: IJCAI XAI

Workshop, 2017.

[23] P. Langley, B. Meadows, M. Sridharan, D. Choi, Explainable Agency for

Intelligent Autonomous Systems, in: AAAI/IAAI, 2017.

[24] S. Kambhampati, A classification of plan modification strategies based on

coverage and information requirements, in: AAAI 1990 Spring Symposium

on Case Based Reasoning, Citeseer, 1990.

[25] S. Sohrabi, J. A. Baier, S. A. McIlraith, Preferred explanations: Theory

and generation via planning., in: AAAI, 2011.

[26] B. L. Meadows, P. Langley, M. J. Emery, Seeing beyond shadows: Incre-

mental abductive reasoning for plan understanding., in: AAAI Workshop:

Plan, Activity, and Intent Recognition, volume 13, 2013, p. 13.

[27] T. Chakraborti, S. Sreedharan, Y. Zhang, S. Kambhampati, Plan expla-

nations as model reconciliation: Moving beyond explanation as soliloquy,

in: IJCAI, 2017.

[28] J. Seipp, M. Helmert, Diverse and additive cartesian abstraction heuristics.,

in: ICAPS, 2014.

[29] P. Haslum, J. Slaney, S. Thiébaux, et al., Incremental lower bounds for

additive cost planning problems., in: ICAPS, volume 12, 2012, pp. 74–82.

[30] M. Steinmetz, J. Hoffmann, Towards clause-learning state space search:

Learning to recognize dead-ends., in: AAAI, 2016, pp. 760–768.

[31] B. Marthi, S. J. Russell, J. A. Wolfe, Angelic semantics for high-level

actions., in: ICAPS, 2007, pp. 232–239.

46

[32] A. Garfinkel, Forms of explanation: Rethinking the questions in social

theory, Yale University Press, 1982.

[33] C. Hitchcock, J. Woodward, Explanatory generalizations, part ii: Plumbing

explanatory depth, Noûs 37 (2003) 181–199.

[34] C. Bechlivanidis, D. A. Lagnado, J. C. Zemla, S. Sloman, Concreteness

and abstraction in everyday explanation, Psychonomic bulletin & review

24 (2017) 1451–1464.

[35] J. Ferrer-Mestres, T. G. Dietterich, O. Buffet, I. Chadès, Solving k-mdps,

in: Proceedings of the International Conference on Automated Planning

and Scheduling, volume 30, 2020, pp. 110–118.

[36] N. Topin, M. Veloso, Generation of policy-level explanations for reinforce-

ment learning, in: Proceedings of the AAAI Conference on Artificial Intel-

ligence, volume 33, 2019, pp. 2514–2521.

[37] D. Bayani, S. Mitsch, Fanoos: Multi-resolution, multi-strength, interactive

explanations for learned systems, in: IJCAI XAI Workshop, 2020.

[38] K. Martin, A. Liret, N. Wiratunga, G. Owusu, M. Kern, Developing a

catalogue of explainability methods to support expert and non-expert users,

in: International Conference on Innovative Techniques and Applications of

Artificial Intelligence, Springer, 2019, pp. 309–324.

[39] R. Eifler, M. Cashmore, J. Hoffmann, D. Magazzeni, M. Steinmetz, A new

approach to plan-space explanation: Analyzing plan-property dependencies

in oversubscription planning, AAAI, 2020.

[40] M. Cashmore, A. Collins, B. Krarup, S. Krivic, D. Magazzeni,

D. Smith, Towards explainable ai planning as a service, arXiv preprint

arXiv:1908.05059 (2019).

[41] M. T. Keane, B. Smyth, Good counterfactuals and where to find them: A

case-based technique for generating counterfactuals for explainable ai (xai),

CBR, 2020.

47

[42] R. M. Byrne, Counterfactuals in explainable artificial intelligence (xai):

Evidence from human reasoning., in: IJCAI, 2019, pp. 6276–6282.

[43] T. Lombrozo, Explanation and abductive inference, Oxford handbook of

thinking and reasoning (2012) 260–276.

[44] T. Lombrozo, The structure and function of explanations, Trends in Cog-

nitive Sciences 10 (2006) 464 – 470.

[45] S. Sreedharan, S. Kambhampati, et al., Handling model uncertainty and

multiplicity in explanations via model reconciliation, in: Proceedings of

the International Conference on Automated Planning and Scheduling, vol-

ume 28, 2018.

[46] S. Sreedharan, S. Srivastava, D. Smith, S. Kambhampati, Why can’t you

do that hal? explaining unsolvability of planning tasks, in: Proc. IJCAI,

2019.

[47] T. Chakraborti, S. Kambhampati, M. Scheutz, Y. Zhang, AI Challenges in

Human-Robot Cognitive Teaming, arXiv preprint arXiv:1707.04775 (2017).

[48] S. Sreedharan, T. Chakraborti, C. Muise, Y. Khazaeni, S. Kambhampati,

D3wa+: A case study of xaip in a model acquisition task, in: Proc. ICAPS,

2020.

48

