
Abstract

This paper addresses the problem of inventing and using hierar-
chical representations for stochastic robot-planning problems.
Rather than using hand-coded state or action representations
as input, it presents new methods for learning how to cre-
ate a high-level action representation for long-horizon, sparse
reward robot planning problems in stochastic settings with
unknown dynamics. After training, this system yields a robot-
specific but environment independent planning system. Given
new problem instances in unseen stochastic environments, it
first creates zero-shot options (without any experience on the
new environment) with dense pseudo-rewards and then uses
them to solve the input problem in a hierarchical planning
and refinement process. Theoretical results identify sufficient
conditions for completeness of the presented approach. Ex-
tensive empirical analysis shows that even in settings that go
beyond these sufficient conditions, this approach convincingly
outperforms baselines by 2× in terms of solution time with
orders of magnitude improvement in solution quality.

1 Introduction
Recent work on robot planning and learning has led to strong
progress on problems with short horizons, dense rewards,
and/or deterministic dynamics encoded in simulators such as
MuJoCo. While state-of-the-art methods perform well in such
settings this progress has been difficult to translate to per-
vasive robotics problems that feature long-horizons, sparse
rewards, and stochastic dynamics. In these settings, their per-
formance falls rapidly. E.g., Fig. 1 shows that recent advances
fail to scale for robot motion planning in a large office space
with stochastic dynamics. In fact, their performance drops
below that of naïve approaches such as continual re-planning.
Such settings constitute a massive departure from the short,
dense and/or deterministic settings that has been the focus of
much recent work on the topic.

This paper addresses the problem of robot planning in
the relatively under-studied long horizon, sparse reward and
stochastic setting with unknown system dynamics. Solving
such problems is challenging: stochasticity implies that de-
terministic motion planning is not sufficient: the robot can
reach unexpected states and thus we need solutions in the
form of policies rather than motion plans. Furthermore, the

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Robot: Husky

Figure 1: Performance of the two state-of-the-art approaches
as a measure of fraction of problems solved (y-axis) in the
given time (x-axis). The blue line presents the lower perform-
ing variant of the approach developed in this paper. Existing
approaches for robot planning show limited scalability in
stochastic environments. As the environment size increases,
performance falls below that of naïve RRT-Replan.

absence of well-defined dynamics models typically requires
reinforcement learning (RL) based approaches, but RL algo-
rithms are difficult to scale in long-horizon, sparse-reward
settings (as also evidenced in Fig. 1).

We address these technical problems using a novel ap-
proach for hierarchical planning and learning that learns
how to invent neuro-symbolic abstractions of stochastic robot
planning problems in terms of useful high-level actions rep-
resented as options (Sutton, Precup, and Singh 1999) or com-
posable sub-policies. A training phase adapts our general
approach to a given robot-class, and yields a robot-attuned,
environment-independent planning system (Sec. 3). In other
words, this approach learns how to transform an input contin-
uous problem into a discrete symbolic search problem over
the identified options, which is then solved and refined using
a hierarchical planning and refinement algorithm (Sec. 4).

After training, when given a new robot planning prob-
lem in an unseen, stochastic environment, this approach in-
vents zero-shot options (without any new experience) in the
form of desirable pairs of initiation and termination sets, and
zero-shot, dense pseudo-reward that can be used to carry

Hierarchical Planning and Learning for Robots in Stochastic Settings
Using Zero-Shot Option Invention

Naman Shah, Siddharth Srivastava
School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

shah.naman, siddharths@asu.edu

In Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI 2024) 
Vancouver, BC, Canada



Figure 2: Our overall approach for automatically inventing high-level options. (a) shows the input to our system. (b) shows
the zero shot abstraction process along with the raster scan of the input environment (left), critical regions predicted by the
learned network (center) and the zero-shot state abstraction (right). The top image in (c) shows a subset of automatically invented
interface options and the bottom image shows a subset of automatically invented centroid options. Lastly, these learned options
are used for hierarchical planning and learning. Red arrows in (d) shows an example of a high-level plan over centroid options
given an initial configuration (orange area) and a goal configuration (green area). Policies for these options are learned using
deep reinforcement learning and the auto-generated dense pseudo-reward function.

out RL for learning policies for the invented options (Fig 2).
Short horizons and dense pseudo-rewards computed for zero-
shot options make option-policy learning significantly more
sample-efficient than end-to-end policy learning.

Our main contributions are (a) a unified hierarchical learn-
ing, planning and refinement approach for learning how to
solve new long-horizon, stochastic problems in sparse reward
settings by abstracting them into a space with discrete states
and actions; (b) algorithms for learning how to zero-shot
invent high-level actions for a given robot for stochastic plan-
ning problems in test environments not encountered during
training; and (c) zero-shot invention of dense pseudo-reward
functions for the invented options.

To our knowledge, this paper presents the first approach
for learning how to zero-shot invent a hierarchical represen-
tation for stochastic robot planning problems not seen during
training. Unlike prior work on the topic, our approach does
not require input state or action abstractions, and requires
only a kinematic robot specification and a problem generator.
This results in robust transferability of learning. If multiple
test problems come from the same environment, options can
be re-used across instances. Furthermore, robots used during
testing or deployment need not be the same as the robots used
while training the option invention pipeline, as long as they
have similar kinematic constraints.

Theoretical results characterize the formal properties of
this approach such as sufficient conditions for completeness
(Sec. 4.1), and show that this approach ensures downward-
refinability of the invented options for a class of robots. Exten-
sive empirical analysis (Sec. 5) shows that even in situations
that go beyond our currently defined sufficient conditions,
this approach provides ∼ 2× improvement over existing
approaches in terms of computational efficiency and order-
of-magnitude improvements in solution quality.

2 Background
Let X ⊆ Rd = Xfree ∪ Xobs be the configuration space
(C-space) of a robot R and let O be a set of obstacles in
a given environment. Given a collision function f : X →
{0, 1}, Xfree represents the set of configurations that are not in
collision with any obstacle o ∈ O such that f(x) = 0 and let
Xobs = X \ Xfree. Let xi ∈ Xfree be the initial configuration
of the robot and xg ∈ Xfree be the goal configuration of the
robot. The motion planning problem can be defined as:

Definition 1. A motion planning problem M is defined as
a 4-tuple ⟨X , f, xi, xg⟩, where X is the C-space, f is the col-
lision function, xi and xg are initial and goal configurations.

A solution to a motion planning problem is a motion plan τ .
A motion plan is a sequence of configurations ⟨x0, . . . , xn⟩
such that x0 = xi, xn = xg, and ∀x ∈ τ, f(x) = 0. Robots
use controllers that accept sequenced configurations from
the motion plan and generate controls that take the robot
from one configuration to the next configuration. In prac-
tice, environment dynamics can be noisy, which introduces
stochasticity in the problem.

We define stochastic motion planning (SMP) problems
in a manner similar to stochastic shortest path prob-
lems (SSPs) (Bertsekas and Tsitsiklis 1991). Formally, a
stochastic motion planning problem P is defined as P =
⟨X ,U , T, x0, xg⟩ where X ⊆ Rd is a d-dimensional con-
figuration space. U ⊆ Rd is the uncountably infinite set of
stochastic control actions defined in terms of the intended
change in each degree of freedom of the robot. Each u ∈ U
follows a stochastic transition function Tu : x 7→ µ(x + u)
where µ(x+u) is a probability measure parameterized using
the intended target x+u of the control action. x0 is the initial
configuration and xg is the goal configuration. A solution
to a stochastic motion planning problem is a partial policy
π : X → U that maps each reachable configuration in the
configuration space (when starting with x0 and following π)



to a control action from the set of controls (actions) U .

Options Options provide temporal action abstractions over
primitive robot actions. Sutton, Precup, and Singh (1999)
define an option o as a 3-tuple o = ⟨Io, βo, πo⟩. Here, Io
defines an initiation set, i.e., the set of states where the option
o can be executed; βo defines a termination set, i.e., the set of
states where execution of the option o ends; πo defines a local
option policy. We say two options oi and oj are composable
iff Ioj ⊆ βoi , i.e., initiation set of an option is a subset of the
termination set of another option.

2.1 State Abstractions

In this work we use the notion of state abstractions as a
finite partitioning of a continuous state space. Formally, a
state abstraction from a concrete state space X to a finite,
discrete state space S is a function that maps each x ∈ X
to an element of S. State abstractions created by domain
experts have been used extensively to speed up planning and
learning. Recent work also presents approaches for learning
state abstractions (e.g., (Konidaris, Kaelbling, and Lozano-
Perez 2018; Shah and Srivastava 2022)). In this work we
utilize the critical-region based state abstraction technique
developed by Shah and Srivastava (2022) since it allows zero-
shot state abstractions for new problems. We present here a
brief summary of this approach to highlight the properties
and input requirements that are utilized in the current paper.

In this approach, critical regions of a configuration space
characterize regions that tend to have a high solution density
and thus are essential for solving problem instances using
sampling based motion planners. This concept generalizes
and unifies notions of hubs (e.g., the center of a room from
which multiple locations are accessible) and bottlenecks (e.g.,
a doorway that forces the robot to follow a narrow path).
Given the kinematic model of a robot, it is possible to train
a deep neural network to predict critical regions for new
environments. A critical region prediction can, in turn be
used to define an abstraction of the configuration space:

Definition 2. Given a configuration space X , let dc define
the minimum distance between a configuration x ∈ X and
a region ϕ ⊆ X . Given a set of critical regions Φ and a
robot R, a region-based Voronoi diagram (RBVD) Ψ is a
partitioning of X such that for every Voronoi cell ψi ∈ Ψ
there exists a region ϕi ∈ Φ such that forall x ∈ ψi and forall
ϕj ̸= ϕi, dc(x, ϕi) < dc(x, ϕj) and each ψi is connected.

In this framework, abstract states are defined using a bi-
jective function ℓ : Ψ → S that maps each Voronoi cell
ψ ∈ Ψ to an abstract state s ∈ S. The RBVD Ψ induces an
abstraction function α : X → S such that α(x) = s iff there
exists a Voronoi cell ψ such that x ∈ ψ and ℓ(ψ) = s. A
configuration x ∈ X is said to be in the high-level abstract
state s ∈ S (denoted by x ∈ s) if α(x) = s. A neighborhood
function V : S × S → {0, 1} such that for a pair of states
s1, s2 ∈ S , V(s1, s2) = 1 iff s1 and s2 are neighbors. We
say a pair of abstract states s1 and s2 are neighbors iff there
exists a pair of configuration x1 ∈ s1 and x2 ∈ s2 such that
there exists a motion plan between x1 and x2.

Algorithm 1: OptionInventor
Input: robot R, training environments Etrain, test

environment Etest
Output: set of option O, cost function C

1 Θ← get_critical_region_predicter(R);
2 if Θ is not trained then
3 train Θ using Etrain

4 Φ← predict_critical_regions(Etest,Θ);
5 Ψ, S, V ← construct_RBVD(Etest,Φ);
6 O, C ← construct_options(Ψ,S ,V);
7 foreach o ∈ O do
8 mpo← compute_motion_plan(o);
9 Go← compute_option_guide(o,mpo);

10 return O, C

Critical regions predictor We must first identify critical
regions in an environment in order to synthesize state ab-
stractions as discussed above. Shah and Srivastava (2022)
provide an approach for learning generalizable critical region
predictors in the form of a deep neural network. These predic-
tors are environment independent and generalizable across
robots to a large extent. They are only trained once per the
kinematic charecteristics of a robot and reused for similar
robots. E.g., the non-holonomic robots used to evaluate our
approach (details in Sec. 5) are different from the robots used
by Shah and Srivastava (2022), however, we used the critical
regions predictor developed and made available by them for a
rectangular holonomic robot without any additional training.
We now briefly highlight the training process.

The training data is generated using a set of training envi-
ronments and a random problem generator for these environ-
ments. The predictors used for this work are learned using
20 training environments. The random goal generator is used
to generated 100 different initial and goal configurations and
each problem was solved 50 times using a sampling-based
motion planner to generate training labels. A UNet (Ron-
neberger, Fischer, and Brox 2015) was trained using these
labels and occupancy matrix of the environment as input. The
trained neural network can then be used to predict critical
regions in any unseen test environment.

3 Zero-Shot Option Inventors
Our overall approach for solving long-horizon, stochastic
robot planning problems is to zero-shot invent a set of op-
tions for the given problem (Alg. 1), and then to carry out
hierarchical planning using these options (Alg. 2). In this
section we outline our approach for automatically identifying
options (OptionInventor, Alg. 1) for a given environment.

Given a stochastic motion planning problem, Alg. 1 creates
a zero-shot state abstraction (lines 1-5) using the methods
presented above (Sec. 2.1). Fig. 2(a) and (b) show this pro-
cess in an example environment. Once abstract states are
constructed, we define abstract actions as options (line 6)
with their initiation set in one abstract state and the termina-
tion set in a different abstract state (discussed in Sec. 3.1).
These options (action abstractions) are independent of prob-
lem instances, i.e., they are constructed once per environment



and robot and reused for different problems (pairs of initial
and goal configurations). However, we still need to learn
policies for executing such options. As defined, option ter-
mination sets turn out to be insufficient for efficiency: they
result in a sparse-reward setting, which makes it difficult
to scale RL algorithms for policy learning. To address this
limitation, lines 7-9 also create in zero-shot fashion (without
collecting additional experience from the environment), an
option guide: a dense pseudo-reward function for the invented
options (discussed in Sec. 3.2).

3.1 Zero-Shot Option Endpoints
Given a set of zero-shot abstract states S created using the
predicted critical regions for a new environment (Def. 2),
a neighborhood function V , and an abstraction function α,
we define two types of options: (1) centroid options that
take the robot from the centroid of one critical region to
another, and (2) interface options that take the robot across
an abstract state, i.e., from the boundary between si and sj to
the boundary between si and sk. Both forms of options can
be composed to solve long-horizon problems (this process is
discussed in the next section).

First, we discuss centroid options. Intuitively, these options
define abstract actions that transition between a pair of critical
regions. Formally, they are defined as follows:

Definition 3. Let si ∈ S be an abstract state in the RBVD
Ψ with the corresponding critical region ϕi ∈ Φ. Let d be
the Euclidean distance measure and let t define a threshold
distance. Let ci be the centroid of the critical region ri. A
centroid region of the critical region ri with the centroid ci is
defined as a set of configurations: {x|x ∈ si ∧ d(x, ci) < t}.

We use this definition to define the endpoints for the cen-
troid options as follows:

Definition 4. Let si, sj ∈ S be neighboring abstract states
such that V(si, sj) = 1 in an RBVD Ψ constructed using the
set of critical regions Φ. Let ϕi, ϕj ∈ Φ be the critical regions
for the abstract states si and sj and let ci and cj be their
centroids regions. The endpoints for a centroid option are
defined as a pair ⟨Iij , βij⟩ such that Iij = ci and βij = cj .

Interface options serve as a dual to centroid options. Rather
than defining high-level actions that move from the “center”
of one abstract state to the “center” of another, they define
high-level actions for going across an abstract state, from one
boundary to another. To formally define interface options,
we first need to define “interface” regions between a pair of
neighboring abstract states:

Definition 5. Let si, sj ∈ S be a pair of neighboring states
such that V(si, sj) = 1 and ϕi and ϕj be their corresponding
critical regions. Let dc(x, ϕ) define the minimum Euclidean
distance between configuration x ∈ X and some point in a
region ϕ ⊂ X . Let p be a configuration such that dc(p, ϕi) =
dc(p, ϕj) that is, p is on the border of the Voronoi cells that
define si and sj . Given the Euclidean distance measure d
and a threshold distance t, an interface region for a pair
of neighboring states (si, sj) is defined as a set {x|(x ∈
si ∨ x ∈ sj) ∧ d(x, p) < t}.

We use this definition of interface regions to define end-
points for the interface options as follows:

Definition 6. Let si, sj , sk ∈ S be abstract states such that
V(si, sj) = 1 and V(sj , sk) = 1. Let ϕ̂ij and ϕ̂jk be the
interface regions for pairs of high-level states (si, sj) and
(sj , sk). The endpoints for an interface option are defined as
a pair ⟨Ioijk , βoijk⟩ such that Ioijk = ϕ̂ij and βoijk = ϕ̂jk.

We can now utilize these definitions to define, in zero-shot
fashion, the complete set of centroid options and interface
options for a new environment. Recall that the RBVD Ψ
induces a neighborhood function V : S × S → {0, 1}. The
set of centroid options is defined as Oc = {oij |∀si, sj ∈
S, V(si, sj) = 1∧Iij = ci∧βij = cj}, where ci represents
the centroid of the critical region ri for the abstract state si.

Similarly, the set of interface options is defined as Oi =
{oijk|∀si, sj , sk ∈ S, V(si, sj) = 1∧V(sj , sk) = 1∧Iij =
ϕ̂ij∧βij = ϕ̂jk}, where ϕ̂ij represents an interface region for
a pair of neighboring abstract states si and sj . Fig. 2(c) shows
an example of automatically invented centroid and interface
options for the environment shown in Fig. 2(a). This options
can be used for hierarchical planning and learning as shown
in Fig. 2(d) (explained in Sec. 4).

3.2 Zero-Shot Option Guides
Given an option defined using the methods discussed above,
we define an option guide as a dense pseudo-reward function.
We will use the option guide to improve sample efficiency
while learning policy for an option in sparse reward settings.

Intuitively, option guides are defined using conceptual
envelopes around deterministic motion plans that can be com-
puted relatively easily using existing methods. Formally, we
define an ϵ-clear motion plan as a motion plan in which every
configuration has an ϵ-neighborhood that is collision free.
With a slight abuse of notation we use the abstraction func-
tion with a set of low-level configurations rather than a single
configuration such that for a set A, α(A) = {α(x)|∀x ∈ A}.

Let oi be an option with endpoints ⟨Ii, βi⟩, and centroids
cIi

and cβi
for Ii and βi respectively.

Given a threshold distance t, an arbitrary neighborhood
radius ϵ, and a Euclidean distance measure d, an ϵ-clear
motion plan G for an option o is defined as G = ⟨p0, . . . , pn⟩
such that p0 = cI , pn = cβ , every point in pi ∈ G has an
ϵ-clear neighborhood, and for every pair of points pi, pi+1 ∈
G, d(pi, pi+1) < t(< 2ϵ). In practice, we found that any
sampling-based motion planner with ϵ-inflated obstacles can
be used to construct such motion plans.

We define the option guide for oi as a dense pseudo-reward
defined using Gi as follows. Intuitively, the option guide is
a dense pseudo-reward function that provides the robot with
a large positive reward when it reaches the termination set
of the goal, a penalty for drifting to a different abstract state,
and a smoothened reward for making progress on the option
guide. Formally, this is defined as follows:

Definition 7. Let oi be an option with endpoints ⟨Ii, βi⟩ and
let Gi = ⟨p1, . . . , pm⟩ be an ϵ-clear motion plan for a given
ϵ. Given a configuration x ∈ X , let n(x) = pi define the



Algorithm 2: Stochastic Hierarchical Abstraction-
guided Robot Planner (SHARP)

Input: Training environments Etrain, test environment Etest,
initial and goal configurations xi and xg

Output: A policy Π composed of options
1 if abstraction is not constructed then
2 O, C ← OptionInventor(R,Etrain,Etest);

3 si, sg ← get_abstract_states(xi,xg);
4 while not refined do
5 p← get_new_high_level_plan(si,sg ,O,C);
6 if p = ∅ then
7 break;

8 Π = empty_list;
9 π0 ← lear_ll_policy(xi,Io1 );

10 Π.add(π0);
11 foreach o ∈ p do
12 if πo does not exist then
13 if Go = ∅ then
14 flag o infeasible;
15 break;

16 πo ← learn_ll_policy(Io,βo,Go);
17 adjust the option cost Co;

18 Π.add(πo);

19 refined← True;

20 if refined then
21 πn+1 ← learn_ll_policy(βon ,xg);
22 Π.add(πn+1);
23 return Π;

24 else
25 return failure;

closest point on Gi. The option guide Ri(x) is defined as:

Ri(x) =



rt if x ∈ βi
if α(x) ∈

rp S/{α(Ii), α(βi)}
−(d(x, n(x))

+d(n(x), pm))
otherwise

The next section uses these concepts to present our ap-
proach for solving a stochastic motion planning problem.

4 Hierarchical Stochastic Motion Planning
Using Zero-Shot Options

The SHARP algorithm (Alg. 2) presents our overall approach
for using the zero-shot options defined above for hierarchical
motion planning under uncertainty. It takes as input an SMP
problem P = ⟨X ,U , xi, xg⟩, a simulator, and an occupancy
matrix of the environment, and produces a partial policy
Π : X → U that maps each reachable robot configuration
to a control action. The algorithm starts by invoking the
OptionInventor in line 2 to construct zero-shot state and
action abstractions (in the form of options) if they have not
been constructed for the given robot R and the environment
Etest pair (Sec. 3).

Lines 4-19 use these options as high-level actions for com-
puting high-level plans. Line 5 uses an incremental plan
generator that takes the set of invented options along with
the abstract initial and goal states as input and generates a
high-level plan using A∗ search. This module considers the
initiation and termination sets of the invented options as pre-
conditions and effects. It uses the Euclidean distance between
the termination set of the option and the goal configuration
as the heuristic and the Euclidean distance between the initia-
tion and termination sets as an initial approximation to the
cost of the option.

Once a plan in the form of a sequence of options is obtained
in line 5, SHARP starts refining each option in the plan by
computing option policies. However, before computing the
policy for the first option in the plan, it generates an additional
option o0 such that Io0 = xi and βo0 = Io1 and learns its
policy (line 9). If a policy exists for the option from the
previous invocation of the algorithm, then our approach uses
the same policy. Before computing a policy for an option,
Alg. 2 checks for its option guide. If an option guide does not
exist, the option is marked as infeasible and a new high-level
plan is computed from the initial abstract state (line 14). Once
an option guide is computed for an option, line 16 uses an
off-the-shelf low-level policy learner to compute a policy for
it. After computing (or reusing) policies for all the options
in the plan, line 21 generates an additional option on+1 such
that Ion+1

= βon and βon+1
= xg and learns its policy.

Finally, we compute a composed policy by composing
policies for every option in this high-level plan (lines 18 and
22). A composed policy Π for a high-level plan is an finite
state controller with one state for each option in the plan. For
a controller state qi, Π(x) = πi(x) where πi represents the
policy for option oi ∈ O. The controller makes a transition
qi → qi+1 when the robot reaches a configuration x ∈ Ioi+1

.
In order to aid transferability, SHARP only synthesizes

options once per each environment and robot. It efficiently
transfers the learned option policies by updating the option
costs (C) using the average number of steps from initiation
sets to the termination sets of the options in multiple rollouts
of the learned option policies (line 17).

4.1 Theoretical Results
We now present theoretical properties of Alg. 2. Let Bδ(x)
for δ > 0 define the δ-neighborhood of x ∈ X under the Eu-
clidean metric. Recall that each controller implicitly defines a
transition function with a probability distribution µ(x+u) for
the control action u (see Sec. 2). A δ-compliant controller is
defined as one whose set of support for µ(x+u) isBδ(x+u).
Our formal guarantees do not require knowledge of µ other
than an upper bound on the support radius. Here, we refer to
δ as the support radius for the given controller.

The following theoretical results characterize formal prop-
erties of the presented approach. We present the results below;
proofs are included in extended version of our paper (Shah
and Srivastava 2024).

Thm. 4.1 shows that the construction process of the options
ensures that the zero-shot options are indeed composable and
can be used for high-level deterministic planning.



Figure 3: Our test environments and robots.

Theorem 4.1. For a given stochastic motion planning prob-
lem P = ⟨X ,U , x1, xn⟩, let Φ be the set of identified critical
regions and Ψ be the RBVD that induces the set of abstract
state S and a neighborhood function V . If there exists a
sequence of distinct abstract states ⟨s1, . . . , sn⟩ such that
V(si, si+1) = 1 then there exists a composed policy Π such
that the resulting configuration after the termination of every
option in Π would be the goal configuration xn.

Thm. 4.2 asserts that when used with an optimal low-
level policy learner, SHARP is probabilistically complete for
holonomic robots.
Theorem 4.2. Given a stochastic motion planning problem
P = ⟨X ,U , xi, xg⟩ for a holonomic robot R using a con-
troller with a support radius δc < δ, a motion planner that
can compute δ-clear motion plans, and an optimal low-level
policy learner, if there exists a δ-clear motion plan for the
robot R from x1 to xn that forms a sequence of distinct ab-
stract states, then Alg. 2 will find a proper policy for the given
stochastic motion planning problem.

These results provide the foundations for analyzing such
approaches and show a completeness result for the presented
approach. However, our approach generalizes beyond the suf-
ficient (and not necessary) conditions used in the theorems
above. In fact our empirical evaluation (Sec. 5) is conducted
on non-holonomic robots that violate the premises of these re-
sults. Furthermore, we use default controllers with unknown
support radii.

5 Empirical Results
We present the salient aspects of our implementation, setup,
and observations here; additional results, code, and data are
available in the supplementary material.

Our evaluation is organized to address the following key
questions: (1) Does the presented approach of zero-shot op-
tion invention followed by hierarchical planning and refine-
ment improve performance in terms of computational effi-
ciency and solution quality?; and (2) Can zero-shot options
be transferred to new problems in the same environment?

Results across an extensive evaluation suite indicate that
the presented approach creates and uses zero-shot options
effectively. In larger environments (L1-L3), ours is the only
approach that shows significant learning, and it achieves a
significantly higher solution quality than all baselines. We
now present our evaluation framework and results in detail.
Evaluation framework and metrics We organized the
overall evaluation of the presented approach as follows. Given

a previously unseen environmentEtest and a problem instance
⟨xi, xg⟩, SHARP (Alg. 2) zero-shot invents options for Etest
and uses them to compute a policy for the test problem in-
stance. The total solution time recorded for SHARP includes
the time taken to run OptionInventor (which includes pre-
dicting critical regions, creating state abstractions, inventing
option signatures, and computing option guides), and to ex-
ecute hierarchical planning and refinement process listed
under the SHARP algorithm (Alg. 2).

We evaluated the computational efficiency of all considered
approaches in terms of the number of problems solved in
a given amount of time. For learning-based approaches, a
problem is considered to be solved in these experiments when
the current learned policy yields an average reward of +500
over 10 rollouts. For RRT-replan, a problem is considered
to be solved when the robot reaches the 0.2m neighborhood
of the goal configuration. All approaches were assigned a
uniform timeout per problem of 2400 or 9000 seconds.

In addition, we use two metrics to evaluate solution quality
since it is often easy to compute meaningless policies in a
short time frame: The average solution cost is defined as the
average number of steps taken while executing a computed
solution; solution reliability is defined as the likelihood of
solving the given problem by executing the computed solu-
tion. Both metrics are computed over 20 independent trials
of the computed solution on the input problem instance.

Figs. 4, 5, and 6 summarize the results of our evaluation in
terms of these metrics across a wide range of robots, environ-
ments and test problems. We discuss the details of this eval-
uation including notes on our implementation, environment
and baseline selection, and our main observations below.
Our implementation We implemented two variants of
our approach: SHARP-centroids and SHARP-interfaces,
which invent and use centroid options and interface op-
tions, respectively. Both implementations use PyBullet and
PyTorch (Paszke et al. 2019). PyBullet does not feature
stochasticity robot movements. We introduced stochastic-
ity by adding random perturbations (unknown to Alg. 2) in
control targets of actions during training and execution. We
used default robot controllers to evaluate the learned policies.
We used HARP (Shah and Srivastava 2022) with ϵ = 0 for
computing zero-shot option guides.

We used 2−layered neural networks with 256 neurons in
each layer for representing local policies for the learned op-
tions. Inputs to these networks were the current configuration
of the robot and a vector to the nearest point on the option
guide for the current option. We used +1000 as a pseudo
reward for reaching the termination set of each option and
-100 as a penalty for drifting to a different abstract state. We
use SAC (Haarnoja et al. 2018) as a low-level policy learner
in lines 9, 16, and 21 of Alg. 2.
Test environments and robots We evaluated our approach
across 7 test environments (Fig. 3) (not included in train-
ing the critical region predictor), 3 non-holonomic robots
(Fig. 3) and a total of 60 navigation and manipulation prob-
lems. Dimensions of the environments are as follows: S1,
S2: 15m× 15m; L1, L2, L3: 75m× 75m. Problem specific
timeouts were set at 2400s for small environments and manip-
ulation problems and 9000s for larger environments. For each



Figure 4: (Higher values are better) Times taken (averaged over 5 trials) by our approach (SHARP) and baselines to compute
solutions in the test environments. X-axis shows the time and y-axis shows the fraction of the problems solved in the given time.

Figure 5: (Contd. from Fig. 4 with same setup) Results for
manipulation problems with the Fetch robot.

environment, we generated 5 problem instances by randomly
sampling different initial and goal configuration pairs. We
used the following robots: the ClearPath Husky (3-DOF), the
AgileX Limo (3-DOF), and the Fetch manipulator robot (7-
DOF). Details of these robots are presented in the extended
version of our paper (Shah and Srivastava 2024).
Baseline selection We considered and evaluated several
learning and planning approaches (LaValle 1998; Haarnoja
et al. 2018; Kulkarni et al. 2016; Lillicrap et al. 2016; Levy
et al. 2019; Bagaria and Konidaris 2020) as potential base-
lines for this work. Of these, only RRT-Replan (LaValle 1998)
and SAC (Haarnoja et al. 2018) solved any problem instances
within the timeouts discussed above. Therefore, we com-
pared our approach against SAC and RRT-Replan. SAC is an
off-policy deep reinforcement learning approach that learns
a single policy for the overall stochastic motion planning
problem. We used the same network architecture as ours for
SAC’s neural policy. We used a terminal reward of +1000
and a step reward of −1 to train the SAC agent. RRT-Replan
is a version of the popular RRT algorithm that recomputes a
plan from the robot’s current configuration if the robot fails
to successfully reach the goal after executing the initial plan.
All approaches considered used the same input robot models,
simulators, and low-level controllers as our approach.

5.1 Analysis of Results
Computational Efficiency Figs. 4 and 5 show the frac-
tion of problem instances solved in a given amount of time

by both variants of SHARP and the baselines. In our case,
this includes the time taken to create the abstract states and
actions as well as to compute the solutions. Each subsequent
problem uses learned high-level actions (policies and op-
tions) from the previous problem instances when available.
Results show SHARP shows significantly greater scalability
and computational efficiency. In most cases, baselines take
2× the time taken by SHARP to compute a solution. These
differences increase for larger environments, where baselines
were able to solve less than 50% of the environments that
SHARP solved within the same timeouts.

These results illustrate the impact of learning to zero-shot
invent and utilize options: even when the time for predicting
critical regions, building abstractions, computing high-level
plans, and learning low-level policies is included, SHARP
significantly outperforms the baselines. Manipulation envi-
ronments show a relatively smaller difference between perfor-
mance of all the approaches owing to smaller horizons. This
reinforces the key contribution of our approach of creating
problems with smaller horizons using options in order to
solve problems with significantly large horizons.
Solution quality Fig. 6 shows solution cost and solution
reliability (as defined above) for solutions computed by all
considered approaches. These results show that SHARP’s
planning over zero-shot options results in lower cost solu-
tions: they require significantly fewer steps during execution
compared to baselines, with the differences frequently span-
ning orders of magnitude. We acknowledge that RRT-Replan
is not an optimal planning approach. However, the solution
quality also represents the amount of time RRT-Replan had
to re-compute and re-execute the solution.

Computing policies that account for stochasticity makes
SHARP’s solution reliability uniformly above 90%, nearly
3× that of RRT-Replan (the best performing baseline) on
the larger test environments. RRT-Replan’s solutions had an
execution success rate of ∼50% in the smaller navigation
(S1, S2) and manipulation (M1, M2) environments, and a
success rate of less than 33% in the larger environments (L1-
L3). SAC’s solution reliability was lower, indicating limited
scalability of end-to-end learning in long-horizon problems.
Zero-shot option invention and reuse The extended ver-



Figure 6: (Smaller bars and darker circles are better) Average number of steps taken in successful executions of the learned
policies and success rates for our approach and the baselines. The pie chart over each bar represents the success rate (shaded
black area) while executing the learned policy.

sion of the paper (Shah and Srivastava 2024) shows the pre-
dicted critical regions, 2D projections of the RBVDs, and
synthesized option endpoints for our test environments. These
results show that our approach is able to zero-short invent op-
tions for new, unseen test environments. When new problem
instances come from a common environment, our approach
is able to transfer these zero-shot options and their policies
to new problem instances. Centroid options showed greater
reuse rates on average across all environments (52%) than
interface options (45%). Details can be found in the extended
version of the paper (Shah and Srivastava 2024).

6 Related Work
We discuss the relationship of our work with the most closely
related approaches here and present a broader discussion
in the extended version of the paper (Shah and Srivastava
2024). To the best of our knowledge, this is the first approach
for zero-shot option invention and hierarchical planning and
refinement for stochastic robot planning problems that does
not require hand-coded abstractions or options as input. In
addition, it can be applied to problems and environments not
seen during training.

Approaches for stochastic motion planning (Du et al. 2010;
Kurniawati, Bandyopadhyay, and Patrikalakis 2012; Vitus,
Zhang, and Tomlin 2012; Huynh, Karaman, and Frazzoli
2016; Berg, Patil, and Alterovitz 2017; Hibbard et al. 2022)
utilize analytical dynamical models of the robot while this
paper addresses problems where such models may not be
available.

Another direction of research aims to learn task-specific
subgoals in the given test environment (Kulkarni et al. 2016;
Bacon, Harb, and Precup 2017; Nachum et al. 2018, 2019;
Czechowski et al. 2021). These approaches utilize interac-
tions with the test environments to learn useful subgoals
which can then be utilized for learning options and other
forms of high-level actions. A related direction of research
focuses on learning task-specific options while interacting
in the target environment (Stolle and Precup 2002; Şimşek,
Wolfe, and Barto 2005; Brunskill and Li 2014; Eysenbach,
Salakhutdinov, and Levine 2019; Bagaria and Konidaris
2020; Bagaria, Senthil, and Konidaris 2021). In contrast, this
paper focuses on zero-shot options that are created without
interacting with the test environments or tasks to improve
efficiency and scalability.

Finally, there has been a lot of progress on short-horizon
(∼ 5 seconds) dense-reward problems where the robot re-
ceives frequent feedback for its actions from the environment.
These approaches include conventional control approaches as
well as DRL approaches for visual model predictive control
(MPC) (Watter et al. 2015; Levine et al. 2016; Finn et al.
2016; Gal, McAllister, and Rasmussen 2016; Henaff, Whit-
ney, and LeCun 2017; Tamar et al. 2017; Kurutach et al.
2018; Ebert et al. 2018; Amos et al. 2018; Hafner et al. 2019).
While this paper’s focus is on long-horizon sparse-reward
planning problems with unknown stochastic dynamics, (vi-
sual) MPC techniques can be used for learning low-level
policies in conjunction with our approach (Alg. 2, line 22).

7 Conclusion
This paper presents the first approach that uses a data-driven
process to learn to create state and action abstractions for
unseen environments and problem instances. We provide the-
oretical results as well as a thorough empirical evaluation for
the presented methods. These results show that the presented
approach effectively learns to create abstractions that provide
strong performance and quality advantages on a broad set
of problems that are currently beyond the scope of known
methods.

Acknowledgments
We thank Kiran Prasad for helping to implement the initial
version of the approach. The work is funded by NSF under
the grant IIS 1942856.

References
Amos, B.; Jimenez, I.; Sacks, J.; Boots, B.; and Kolter, J. Z.
2018. Differentiable MPC for end-to-end planning and con-
trol. In Proc. NeurIPS.

Bacon, P.-L.; Harb, J.; and Precup, D. 2017. The option-critic
architecture. In Proc. AAAI.

Bagaria, A.; and Konidaris, G. 2020. Option discovery using
deep skill chaining. In Proc. ICLR.

Bagaria, A.; Senthil, J. K.; and Konidaris, G. 2021. Skill dis-
covery for exploration and planning using deep skill graphs.
In Proc. ICML.



Berg, J. v. d.; Patil, S.; and Alterovitz, R. 2017. Motion
planning under uncertainty using differential dynamic pro-
gramming in belief space. Intertational Journal of Robotics
Research, 473–490.
Bertsekas, D. P.; and Tsitsiklis, J. N. 1991. An analysis of
stochastic shortest path problems. Mathematics of Operations
Research, 16(3): 580–595.
Brunskill, E.; and Li, L. 2014. Pac-inspired option discovery
in lifelong reinforcement learning. In Proc. ICML.
Czechowski, K.; Odrzygóźdź, T.; Zbysiński, M.; Zawal-
ski, M.; Olejnik, K.; Wu, Y.; Kuciński, Ł.; and Miłoś, P.
2021. Subgoal search for complex reasoning tasks. In Proc.
NeurIPS.
Du, Y.; Hsu, D.; Kurniawati, H.; Sun, W.; Sylvie, L.; Ong, C.;
and Png, S. W. 2010. A POMDP approach to robot motion
planning under uncertainty. In Proc. ICAPS, Workshop on
Solving Real-World POMDP Problems. Citeseer.
Ebert, F.; Finn, C.; Dasari, S.; Xie, A.; Lee, A.; and Levine,
S. 2018. Visual foresight: Model-based deep reinforcement
learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568.
Eysenbach, B.; Salakhutdinov, R. R.; and Levine, S. 2019.
Search on the replay buffer: Bridging planning and reinforce-
ment learning. In Proc. NeurIPS.
Finn, C.; Tan, X. Y.; Duan, Y.; Darrell, T.; Levine, S.; and
Abbeel, P. 2016. Deep spatial autoencoders for visuomotor
learning. In Proc. ICRA.
Gal, Y.; McAllister, R.; and Rasmussen, C. E. 2016. Improv-
ing PILCO with Bayesian neural network dynamics models.
In Data-efficient machine learning workshop, ICML.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In Proc. ICML.
Hafner, D.; Lillicrap, T.; Fischer, I.; Villegas, R.; Ha, D.; Lee,
H.; and Davidson, J. 2019. Learning latent dynamics for
planning from pixels. In Proc. ICML.
Henaff, M.; Whitney, W. F.; and LeCun, Y. 2017. Model-
based planning with discrete and continuous actions. arXiv
preprint arXiv:1705.07177.
Hibbard, M.; Vinod, A. P.; Quattrociocchi, J.; and Topcu,
U. 2022. Safely: safe stochastic motion planning un-
der constrained sensing via Duality. arXiv preprint
arXiv:2203.02816.
Huynh, V. A.; Karaman, S.; and Frazzoli, E. 2016. An in-
cremental sampling-based algorithm for stochastic optimal
control. The International Journal of Robotics Research,
35(4): 305–333.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Perez, T. 2018.
From skills to symbols: Learning symbolic representations
for abstract high-level planning. Journal of Artificial Intelli-
gence Research, 61: 215–289.
Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenenbaum,
J. 2016. Hierarchical deep reinforcement learning: Integrat-
ing temporal abstraction and intrinsic motivation. In Proc.
NeurIPS.

Kurniawati, H.; Bandyopadhyay, T.; and Patrikalakis, N. M.
2012. Global motion planning under uncertain motion, sens-
ing, and environment map. Autonomous Robots, 33(3): 255–
272.
Kurutach, T.; Tamar, A.; Yang, G.; Russell, S. J.; and Abbeel,
P. 2018. Learning plannable representations with causal
InfoGANs. In Proc. NeruIPS.
LaValle, S. M. 1998. Rapidly-exploring random trees: A new
tool for path planning. Technical Report 9811, Iowa State
University.
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016. End-
to-end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1): 1334–1373.
Levy, A.; Konidaris, G.; Platt, R.; and Saenko, K. 2019.
Learning multi-level hierarchies with hindsight. In Proc.
ICLR.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous
control with deep reinforcement learning. In Proc. ICLR.
Nachum, O.; Gu, S.; Lee, H.; and Levine, S. 2019. Near-
optimal representation learning for hierarchical reinforce-
ment learning. In Proc. ICLR.
Nachum, O.; Gu, S. S.; Lee, H.; and Levine, S. 2018.
Data-efficient hierarchical reinforcement learning. In Proc.
NeurIPS.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Proc. NeurIPS.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-Net:
convolutional networks for biomedical image segmentation.
In Proc. MICCAI.
Shah, N.; and Srivastava, S. 2022. Using deep learning to
bootstrap abstractions for hierarchical robot planning. In
Proc. AAMAS.
Shah, N.; and Srivastava, S. 2024. Hierarchical Planning and
Learning for Robots in Stochastic Settings Using Zero-Shot
Option Invention (Extended Version). In Proc. AAAI.
Şimşek, Ö.; Wolfe, A. P.; and Barto, A. G. 2005. Identifying
useful subgoals in reinforcement learning by local graph
partitioning. In Proc. ICML.
Stolle, M.; and Precup, D. 2002. Learning options in rein-
forcement learning. In International Symposium on abstrac-
tion, reformulation, and approximation, 212–223. Springer.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2): 181–
211.
Tamar, A.; Thomas, G.; Zhang, T.; Levine, S.; and Abbeel,
P. 2017. Learning from the hindsight plan—episodic MPC
improvement. In Proc. ICRA.
Vitus, M. P.; Zhang, W.; and Tomlin, C. J. 2012. A hierar-
chical method for stochastic motion planning in uncertain
environments. In Proc. IROS.



Watter, M.; Springenberg, J.; Boedecker, J.; and Riedmiller,
M. 2015. Embed to control: A locally linear latent dynamics
model for control from raw images. In Proc. NeurIPS.




