
Using Classical Planners for Tasks with Continuous Operators in Robotics

Siddharth Srivastava and Lorenzo Riano and Stuart Russell and Pieter Abbeel
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

Abstract

The need for high-level task planning in robotics is well un-
derstood. However, interfacing discrete planning with contin-
uous actions often requires extensive engineering of the solu-
tion. For instance, picking up an object may require removing
many others that obstruct it. Identifying the exact obstruc-
tions requires geometric reasoning which is prohibitively ex-
pensive to precompute, with results that are difficult to repre-
sent efficiently at the level of a discrete planner. We propose
a new approach that utilizes representation techniques from
first-order logic and provides a method for synchronizing be-
tween continuous and discrete planning layers. We evaluate
the approach and illustrate its robustness through a number
of experiments using a state-of-the-art robotics simulator, ac-
complishing a variety of challenging tasks like picking ob-
jects from cluttered environments, where the planner needs
to figure out which other objects need to be moved first to
be able to reach the target object, and laying out a table for
dinner, where the planner figures out effective tray-loading,
navigation and unloading strategies.

1 Introduction
A robot capable of achieving high-level goals was one of the
original motivations behind the automated planning prob-
lem (Fikes and Nilsson 1971). Since this early work, numer-
ous advances have been made in automated planning. Dis-
crete planners are able to automatically compute effective
problem-specific heuristics for solving planning problems
specified implicitly in terms of parameterized operators with
preconditions and effects (e.g.,(Hoffmann and Nebel 2001;
Helmert, Haslum, and Hoffmann 2007)). Continuous state
space planners have also been developed for solving the
lower level search problems in the configuration space of a
robot to achieve desired motion trajectories (LaValle 2006).
Techniques from both of these areas are required for a real-
world robot to solve a high-level problem like preparing a
table for dinner. However, using classical planners to solve
planning problems encountered by a robot presents several
fundamental challenges.

For instance, consider the task of picking up an object in
blocks-world, a domain that is widely regarded as trivial for
modern classical planners. If the table is cluttered, a contin-
uous planner will fail to find a solution because other objects
will have to be removed first (see Fig. 1). A classical planner
could compute the sequence of operations required to clear

Figure 1: Example scenario with the target object in blue (L) and
the desired solution after removing obstructing objects (R)

a path to the object, but only if it gets the set of obstructions.
Superficially, this seems to be easily resolved by adding a
high-level predicate, obstructs(c, b1, b2) where c ranges over
the robot configurations and bi over objects. However, any
such formulation leads to two major problems. First, the
robot configuration is usually a high dimensional real-valued
vector (11-dimensional for the PR2 using only one gripper).
Representing this problem for a discrete planner requires a
discretization of the possible configurations which in itself is
infeasible for the high dimensional spaces involved. More-
over, a pre-processing step will need to compute the graspa-
bility and obstruction facts specific to the given scenario, for
every combination of discretized configurations and objects
used as arguments to the corresponding predicates. This will
lead to planner input files with thousands of configuration
symbols at the least, making planning infeasible. Even if all
of these representational steps are carried out, it is difficult
to specify in a discrete problem definition how obstructions
change on the application of a pick and place operation, due
to the spatial reasoning involved. Finally, one of the prob-
lems with fixing a discretization a priori is that it may miss
the points required for a solution.

These issues go beyond pick and place tasks and stem
from the following fundamental problems: how to enable
classical planners to efficiently utilize information provided
by a continuous planner, and how to utilize them in situa-
tions where facts and operator effects over continuous vari-
ables are not available a priori. Our main contribution is a
new approach addressing these problems. We show that this
approach can solve number of challenging robot planning
tasks.

Overview of Our Approach We assume that every high-

In ICAPS 2013 Workshop on Planning and Robotics (PlanRob 2013) 
Rome, Italy



level action corresponds to a continuous implementation.
The continuous implementation may use a variety of tech-
niques for accomplishing the post-conditions of the high-
level action. If the preconditions of the high-level action are
satisfied, a trajectory is guaranteed to be found by the con-
tinuous implementation. However, as discussed in the intro-
duction, the preconditions of high-level actions may involve
spatial reasoning and are generally not computable a priori.
Thus, the high-level planner may be wrong in selecting an
action for execution at a certain step. If a solution trajectory
cannot be found, the lower level returns the violated precon-
ditions to the high-level planning layer, which incorporates
the new facts and computes a new high-level solution plan.
Throughout this paper, we will use the terms “discrete plan-
ning” interchangeably with high-level planning and “lower
level” with continuous planning and execution.

While this overall approach is similar to re-planning (Ta-
lamadupula et al. 2010; Yoon, Fern, and Givan 2007), our
focus is on the problem of continuous operator representa-
tions for high-level, discrete planning and communication
between the continuous and discrete planning levels. The
discrete problem is specified by replacing the domains of
real-valued variables (required to express action precondi-
tions and effects, even at the high-level) with finite sets of
Skolem symbols. This translation is described in Sec. 2.1
The lower layer maintains an interpretation of these sym-
bols (e.g., specific robot configurations). Failure messages
from the lower level specify the failed preconditions of ac-
tions in the form of literals over such symbols. This interface
as well as the details of planning methods used is described
in Sec. 3 If the high-level planning layer finds the problem
to be unsolvable, the lower level computes a new interpreta-
tion and the planning process resumes. This way the high-
level planning process never has to deal with the continuous
variables and the lower level does not have to deal with dis-
crete task sequencing. The resulting approach allows easy
modeling of various tasks. We present many experimental
results in a simulated execution scenario developed using
OpenRave (Diankov 2010) for the PR2 robot in Sec. 4 A
summary of related work is presented in Sec. 5

2 Problem Formulation
We assume that a propositional framework like typed
PDDL (Fox and Long 2003) is used for specifying high-
level planning domains and problems. We formalize the rep-
resentation briefly as follows. A planning domain 〈R,A〉
consists of a set of relation symbols R with their arities
and type signatures, and a set A of actions. Let the set of
literals and atoms constructed using a set of relations R
and a set of typed variables or constants V be lit(R, V )
and atoms(R, V ) respectively. An action is defined as
〈Param, Pre, Eff〉, where Param is a sequence of typed pa-
rameter variables; Pre is a first-order logic formula and Eff
is a conjuction, both over lit(R, V ) with only the variables
in Param being free. With some syntactic limitations, such
expressions can be represented in the PDDL input language
used by most classical planners.

Given a finite set U of typed constants (informally consti-
tuting the “objects” in a problem), a state is an assignment of

truth values to each atom in atoms(R, U); for compactness,
we use the closed world assumption to represent states as
sets of true atoms. We define ground actions as a(c̄), where
c̄ denotes a mapping from the parameters of a to appropri-
ately typed constants from U . The preconditions and effects
of a ground action a(c̄) are obtained using the variable as-
signments in c̄ in the usual way.

We consider full observability and deterministic action ef-
fects, so that a ground action ga is applicable in a state s iff
all of its preconditions are true in s.

Finally, a planning problem consists of a planning do-
main 〈R, A〉, a set U of typed constants, an initial state
s0 and a set g ⊆ atoms(R, U) denoting the goal condi-
tion. A solution to a planning problem is a sequence of
ground actions ga1, . . . gak such that gai is applicable in
gai−1(· · · ga1(so) · · · ) and gak(· · · ga1(s0) · · · ) satisfies g.

2.1 Domain Transformation
We introduce the central principle behind using Skolem
symbols with an example. Consider an action like grasp-
ing in a pick and place domain. Its preconditions include
real-valued vectors and preconditions require spatial rea-
soning. For clarity in this description, we consider a sit-
uation where objects are not stacked and assume that the
target location where an object has to be placed is clear.
The high-level grasp action can be specified as follows:

grasp(c, obj1)
precon graspable(c, obj1)∧ robotAt(c)

∧∀obj2¬ obstructs(c, obj2, obj1)
effect in-gripper(obj1)

In this specification, the variable c represents robot con-
figurations. In order to motivate our approach, consider
the effect of this action in a framework like situation calcu-
lus (Levesque, Pirri, and Reiter 1998) but using a timestep
rather than a situation to represent the fluents:
∀t, obj1∀c(graspable(c, obj1, t) ∧ robotAt(c, t) ∧
∀obj2¬obstructs(c, obj2, obj1, t) → inGripper(obj1, t +
1))

Note that this is not the complete successor state axiom
for in-gripper, which will also have to include other actions
that affect it and default conditions under which it doesn’t
change across timesteps. However, this implication is suf-
ficient to illustrate the main representational device we will
use. We first use the clearer, logically equivalent form:
∀t, obj1(∃c(graspable(c, obj1, t) ∧ robotAt(c, t) ∧

∀obj2¬obstructs(c, obj2, obj1, t))→ inGripper(obj1, t)
which asserts more clearly that any value of c that satis-

fies the preconditions allows us to achieve the postcondition.
We can now use the standard technique of Skolemization to
replace occurrences of c with a function of obj1, t:
∀t, obj1((graspable(gp(obj1, t), obj1, t)
∧ robotAt(gp(obj1), t)
∧ ∀obj2¬obstructs(gp(obj1), obj2, obj1, t))

→ inGripper(obj1, t+ 1)
where the Skolem function gp(x, t) is just a symbol of

type location to the discrete planner. Intuitively, it represents
a robot configuration corresponding to the grasping-pose of
x. This representation will allow the discrete planner to treat
the entire problem at a symbolic level, without the need for



creating a problem-specific discretization. A potential prob-
lem however, is that the Skolem functions will depend on
t, or the current step in the plan. In practice however, at
the discrete level, the time argument in a Skolem function
f(x̄, t) can be ignored as long as it is possible to recompute
(or reinterpret) f when an action’s precondition is violated
by its existing interpretation during the execution (as is the
case in our implementation). We therefore drop the t argu-
ment from the Skolem functions in the rest of this paper.

The equivalence with an existential form as described
above can be used for each action effect as long as the con-
tinuous variable being Skolemized is not free in the subfor-
mula on the right of the implication. For instance, we can
add the effect that grasping an object removes all obstruc-
tions that it had created, regardless of robot configurations.
Therefore, to represent the grasp operator for a discrete plan-
ning problem, rather than using a discretized space of con-
figurations, we only need to add symbols of the form f(ō) in
the planning problem specification, for each object argument
tuple ō consisting of the original objects, or constants in the
problem. Since many classical planners don’t support func-
tions, they can be reified as objects of the form f ō with an
associated set of always true relations, e.g. is f(f oi, oi).
The discrete description of grasp thus becomes:

grasp(`, obj1):
precon is gp(`, obj1)∧ graspable(`, obj1)

∧ robotAt(`)
∧∀obj2¬ obstructs(`, obj2, obj1)

effect in-gripper(obj1)
∧∀`2, obj3¬obstructs(`2, obj1, obj3)

Here ` ranges over the finite set of constant symbols of
the form gp obji where obji are the original constant sym-
bols in the problem. In this way, regardless of how many
samples are used in the lower level process for interpreting
these symbol, the discrete planner has a limited problem size
to work with while computing the high-level plan.

Finally, consider the only remaining case for an action ef-
fect, when a continuous variable occurs freely in the subfor-
mula on the right, e.g. ∀x, c(ϕprecon(x, c)→ ϕeffect(x, c)). In
this case we don’t perform Skolemization. The symbol used
for c in this case will be an action argument, and must range
over the original objects in the domain or those already in-
troduced via Skolemization.

Although this exhausts the set of actions commonly used
in PDDL benchmark problems, the accurate description of
an action may involve side-effects on symbols not used as
its arguments. E.g., the putDown(obj1, loc1) action may
deterministically introduce obstructions between a number
of robot configurations and other objects. We don’t encode
such side effects in the high-level planning problem specifi-
cation; these facts are discovered and reported by the lower
level when they become relevant.

The putDown action has a similar specification, with the
Skolem function pdp(targetloc) denoting the pose required
for putting down an object o at location `1 when the robot is
configuration `2.
putDown(o, `l, `2):

precon is pdp(`2, `1)∧ poseForPlacing(`2, o, `1)
InGripper(o) ∧ RobotAt(`2)

effect ¬ InGripper(o) ∧ At(o, `1)

The moveto(c1, c2) action changes the robot’s configura-
tion with the only precondition that it is at c1. We assume
that the environment is not partitioned and the robot can
move between any two collision-free areas. These three ac-
tions constitute the high-level pick and place domain.

To summarize, we transform the given planning domain
with actions using continuous arguments by replacing oc-
currences of continuous variables with symbols represent-
ing Skolem function application terms whenever the con-
tinuous variable occurs in the precondition but not in the
effects. Every continuous variable or the symbol replacing
one, of type τ gets the new type τsym. Planning problems
over the modified domains are defined by adding finite set
of constants for each such τsym in addition to the constants
representing problems in the original domain. The added
constants denote function application terms, e.g. gp obj17,
for each physical object and Skolem function application.
This increases the size of the input only linearly in the num-
ber of original objects if the Skolem functions are unary.
Note that the set of Skolem functions itself is fixed by the
domain and does not vary across problem instances. The
initial state of the problem is described using facts over the
set of declared objects, e.g. “is gp(gp obj17, obj17)” de-
noting that the location name gp obj17 is a grasping pose
for obj17 and “obstructs(gp obj17, obj10, obj17)”, denoting
that obj10 obstructs obj17 when the robot is at gp obj17.

In this formulation, the size of the input problem specifi-
cation is independent of the sampling-based discretization:
we do not need to represent sampled points from the do-
mains of continuous variables.

2.2 Discrete and Continuous States

A low-level state extends a discrete state by associating
actual values (interpretations) with each Skolem symbol.
Thus, every low-level state corresponds to a unique discrete
state representation. Conversely, each discrete state repre-
sents a set of possible low-level states.

Since the low-level has complete information about states,
it can compute (though not efficiently) the truth value of any
atom in the vocabulary at any step, given an interpretation of
every Skolem symbol used in the atom. E.g., the low-level
can compute the truth value of obstructs(cval, obj10,
obj17)where cval is a numeric vector representing a robot
pose. However, we wish to avoid the determining the value
of such predicates as far as possible; the discretization ap-
proach discussed in the introduction is undesirable primarily
due to its requirement that all such facts be precomputed.

If an action is not executable at a certain step in the low-
level, then the low-level execution layer computes and re-
ports a set of truth valuations of atoms showing that the ac-
tion’s preconditions do not hold.

Details of the low-level are presented in 3.3. In the next
section, we present our overall algorithm and its properties.



3 Discrete and Continuous Planning
As noted above, the initial state for a planning problem is
defined using the ground atoms which are true in the ini-
tial state. However, the truth values of ground atoms over
Skolem symbols like obstructs(gp obj17, obj10, obj17) are
not known initially. Domain specific default truth values are
assumed for such atoms. We discuss the relationship be-
tween the choice of defaults and completeness of the ap-
proach in Sec. 3.2.

3.1 Discrete Planning and the Interface
Our overall algorithm is shown in Alg. 1. In line 2, a clas-
sical planner is called with state s, which is initialized with
the input problem state. If no solution is found, the stored
values of Skolem symbols in the lower layer are cleared and
all facts using Skolem symbols are reset to their default val-
ues using clear cache(). The test in lines 3 and 5 ensure that
this is done only once per iteration. If the problem is un-
solvable even after clearing the cache, line 6 terminates the
algorithm.

In line 7, the computed plan π is passed to the low-level,
which uses sampling to estimate the values of Skolem sym-
bols and RRT-based techniques to implement movements
representing each action in the plan. Because the high ini-
tial state in line 2 used default values for facts over Skolem
symbols, π may not be fully executable in the low level. If
this is the case, the low-level reports the step/action of the
plan that failed and the reason for that failure, represented
by an assignment of atoms that violate the action precondi-
tion (a minimal violating assignment is sufficient). These
components of the low-level are described in detail Sec. 3.3.

As noted earlier, the execution of an operator may void
the interpretation of a symbol. E.g., moving an object in-
validates the cached grasping pose. If the operators that in-
validate a symbol’s cached value are known, they can be
provided to execute() within the cache voiding structure C.
The low-level then reinterprets all affected Skolem symbols
after executing an action.

In line 9, the UpdateState() subroutine uses the PDDL de-
scriptions of actions to propagate s forward using π until
errStep and adds violatedPrecons to the resulting state. The
entire iteration then repeats with the resulting state unless a
preset planning time/resource limit is reached.

3.2 Completeness
We now discuss the conditions under which our solution ap-
proach is complete. In doing so we show that under cer-
tain conditions, effective default assignments for atoms can
be ontained easily. We use the notion of probabilistically-
complete (LaValle 2006) to categorize sampling based algo-
rithms that are guaranteed to find a solution with sufficiently
many samples.

The following definition uses the concept of positive and
negative occurrences of atoms in formulas. Intuitively an
occurrence of an atom in a formula is negative (positive) if it
is negated (non-negated) in the negated-normal-form of the
formula. This notion of occurrence is sufficient for our pur-
poses as we deal only with problems with finite universes

Algorithm 1: Discrete-Continuous Interface
Input: PDDL state s & domain D; cache-voiding ops C
repeat1

π ← classicalPlanner(s,D)2
if plan not found & not cleared cache then3

clear cache(); continue4
else if plan not found then5

return “unsolvable”6
end
〈errStep, violatedPrecons〉 ← execute(π, s, C)7
if errStep is null then

return “success”8
else

s = UpdateState(s, π, errStep, violatedPrecons)9
end

until resource limit reached

and all quantifiers can be compiled into conjunctions or dis-
junctions. The following lemma follows from the definition
of positive and negative occurrences:
Lemma 1. Suppose an atom p(c) occurs only positively
(negatively) in a ground formula ϕ. If s is an assignment
under which ϕ is true then it must also be true under an as-
signment s′ that makes p(c) true (false) and is the same as s
for all other atoms.
Definition 1. A planning domain is uniform wrt a goal g
and a set of predicates R if for every r ∈ R,

1. Occurrences of r in action preconditions and goal are ei-
ther always positive, or always negative

2. Actions can only add atoms using r in the form (positive
or negative) used in preconditions and the goal g
Let PS be the set of predicates whose atoms may use

Skolem symbols as one of their arguments, and let D =
〈R,A〉 be a planning domain that is uniform wrt a goal g
and PS . In the following, consider atoms over a fixed set of
constants U . Let spart be an assignment of truth values to
atoms over R\PS . Let sdefault be an assignment of truth val-
ues to atoms over PS , assigning the atoms of each positively
(negatively) occurring predicate the truth value true (false).
Proposition 1. The state spart ∪ sdefault has a solution plan
for a goal g iff there is some assignment s0 of atoms over PS

such that spart ∪ s0 has a solution plan for reaching g.

Proof. Suppose there is an assignment s0 under which
spart ∪ s0 has a solution π and which assigns an atom p(c̄1)
true, while all occurrences of p in action preconditions and
g are negative. Consider the assignment s′0 which assigns
p(c̄1) false, but is otherwise the same as s0.

We show that π solves spart ∪ s′0 as well. Suppose not,
and that a(c̄2) is the first action in π whose preconditions
are not satisfied when π is applied on spart ∪ s′0. In this
failed execution, a(c̄2) must have been applied on a state s′k
that differs only on p(c̄1) from the corresponding state skin
the execution of π on s0. This is because all preceding ac-
tion applications succeded and have the same deterministic
effects in both executions. Let the ground formula represent-
ing the preconditions of this application of a(c̄2) be ϕ. By



Lemma 1, ϕ must be satisfied by s′k, and we get a contradic-
tion: a(c̄2) must be applicable on s′k. The case for positive
defaults is similar.

Thus, in planning problems that are uniform wrt to the
set of predicates which use Skolem symbols, it is easy to
obtain a default truth assignment for atoms over these pred-
icates, under which the problem is solvable if there is any
assignment to those atoms under which it is solvable. The
following result provides sufficient conditions under which
our approach is complete. Let D be a planning domain and
U a set of typed constants. A dead-end for 〈D,U〉 wrt g is a
state over atoms(R, U) which has no path to g.

We say that two low-level states are physically similar if
they differ only on the interpretation of Skolem symbols and
atoms using Skolem symbols. We use the symbol [s] to de-
note the discrete representation of a low-level state s, and
[s]default to represent the version of [s] obtained by using the
default assignment for atoms using Skolem symbols, and the
assignments in [s] for all other atoms.

The following result presents sufficient conditions under
which our approach solves any problem which is solvable
under some evaluation of Skolem symbols.

Theorem 1. Let D be a planning domain, U a set of typed
constants, g a goal, and PS the set of predicates in D that
use Skolem symbols, such that 〈D,U〉 does not have dead-
ends wrt g and D is uniform wrt g and PS .

If the low-level sampling routines for Skolem symbols are
probabilistically complete, then for any low-level state s, if
there exists a physically similar state s′ such that [s′] is solv-
able by the high-level planner then the execution of Alg. 1
with inputs [s]default and D reaches the goal.

Proof. The proof follows from the following two points:
1. For any given interpretation of Skolem symbols repre-
sented by a low-level state s′`, Alg. 1 will eventually either
discover the truth values of all atoms using Skolem symbols
or identify the interpretation as unsolvable.

This is because in every non-final iteration of Alg. 1, line
7 must be executed and will return a non-empty assignment
of atoms constituting a violated precondition. The entire set
of atoms that violated preconditions are generated from is
finite. Once they have been returned by the low level, they
will never be generated again for this interpretation. This is
because the atom is incorporated into the new discrete state
accurately. Subsequent actions can only make it true (false)
when it occurs positively (negatively) in preconditions. As
a result, the discrete planning layer will never consider an
atom that occurs positively to be true if its truth value was
returned as false (true) by the low-level—unless an action
set it to true in which case the low-level also considers it to
be true.

If at any stage a discrete state s with default values for
some atoms using Skolem symbols is unsolvable, then re-
placing them with any other truth values will not make the
problem solvable. Thus, if at any stage the classical planner
call in line 2 fails for a discrete state s with default values
that are inconsistent with the low-level state for some atoms

using Skolem symbols, the problem is indeed unsolvable un-
der that interpretation.
2. As a result of probabilistic completeness, the low-level
will discover all possible interpretations of Skolem symbols.

The uniform property used in this result plays a role sim-
ilar to simple domains defined by Bonet and Geffner (Bonet
and Geffner 2011). Neither categorization is more general
than the other. In contrast to simple domains, uniformity is
less restrictive in not requiring invariants over initially un-
known facts, while simple domains are less restrictive in not
enforcing all occurrences of unknown predicates to be of the
same polarity.

Extension of this result to more general situations is left
for future work.

3.3 Low-Level Execution and Interpretation of
Skolem Symbols

Arbitrary sampling techniques could be used for in-
terpreting Skolem functions. For efficiency, we used
methods that searched for interpretations satisfying re-
quired conditions which cannot be achieved by high-
level planning alone. For instance, the symbol gp(obj1)
needs to satisfy graspable(gp(obj1), obj1) and ∧∀obj2¬
obstructs(gp(obj1), obj2, obj1). Since obstructs facts can be
cleared by high-level actions but graspable is not achieved
by any, we used a sampling process that achieves graspable.

We drew upon the wealth of approaches developed in
the robotics literature for solving navigation, motion plan-
ning and obstacle avoidance problems. In this work we as-
sumed that the continuous planner has complete knowledge
of the state of the world. This can obtained using, for ex-
ample, 3D sensors (Hsiao et al. 2010) and map-making
techniques (Marder-Eppstein et al. 2010). Both arm mo-
tion planning and base movements between poses (i.e. the
moveto action) are performed using Rapidly Exploring Ran-
dom Trees (RRTs) (LaValle and Kuffner Jr 2000).
Interpreting Grasping Pose Symbols A robot pose from
which an object can be grasped (i.e, a grasping pose or
one that satisfies graspable) must satisfy two conditions:
the robot base should be at a collision free configuration
from where the object is reachable, and there must exist
a collision-free trajectory from this configuration to one
that brings the manipulator into the grasping configuration.
Grasping an object requires finding a manipulator config-
uration that allows the robot to robustly hold it. We pre-
calculated and stored the grasping configurations for each
object in OpenRave (these configurations can be computed
on-the-fly if necessary).

Our approach for finding a grasping pose is inspired by
Probabilistic Roadmaps (Kavraki et al. 1996), and summa-
rized in Algorithm 2. The first step in lines 2-3 is to gener-
ate a robot’s base configuration that is within a reachability
area around the object. The presence of obstacles, the non-
linearity of the robot actuators and the high-dimensionality
of the search space render this problem very challenging
(Stulp, Fedrizzi, and Beetz 2009; Berenson, Kuffner, and
Choset 2008). While pre-calculating poses using inverse



Algorithm 2: Find a Grasping Pose
Input: Object o
ikfound← False1
repeat2

p← sampleAround(o)3
t← sampleTorsoHeight()4
gps← generateGrasps(p, t, o)5
for gpi ∈ gps do6

if IKsolution(p, t, gpi) then7
ikfound← True; solnPose← p8
if obstaclesFreeArmPath(p, t, gpi) then9

return (p, t, gpi)10
end

end
end

until max number of attempts reached
/* No soln found, return obstructions */
if ikfound then11

objs← FindObstructingObjects(o, solnPose)12
return CreateObstructionAtoms(objs)13

end

kinematic (IK) caching could have been used, we found that
sampling from a sphere centered around the object yields the
same qualitative results. During sampling, poses outside the
environment’s boundaries or in collision with the environ-
ment are discarded.

Collisions can be efficiently calculated by approximating
the robot’s shape to be either a cube or a cylinder. At line 3
we generate candidate values for the PR2’s torso height and
retrieve the manipulator grasping configurations at line 4.

The conditions for satisfying a grasping pose are checked
in lines 6 & 7. Previously found grasping solutions are
cached and retained until an object is moved or when the dis-
crete planner calls clear cache(). If an IK solution exists but
no obstacle-free solution is found within a maximum num-
ber of iterations then the simulator is used to calculate all the
objects in collision with the robot’s arm for a computed IK
solution. Logical atoms are created using these objects and
returned in line 13. This last step requires a few additional
inputs like the predicate name and ordering of arguments,
but are omitted for readability.

Interpreting Symbols for putDown By substituting the
grasping manipulator poses at line 5 with a set of manipula-
tor poses that lay above a tabletop, Algorithm 2 can be gen-
eralized to find base poses to put down objects on free areas
of a surface. Our current implementation does not take into
account collisions between objects held by the robot and the
environment. Therefore only obstacle free manipulator con-
figurations are considered when looking for an empty area
above a tabletop. Although our simulator provides a real-
istic implementation of robots’ kinematics and collision de-
tection, to speed up the computations we did not simulate
physics. Therefore once the robot opens the gripper holding
an object we forced the object to fall down and rest on the
target surface in a horizontal position.

4 Empirical Evaluation
We tested our proposed approach in two different scenar-
ios, simulated using OpenRave1. The first scenario involves
grasping objects from a cluttered tabletop (see Figure 2).
This problem requires the robot to identify objects that pre-
vent a collision free trajectory to the target object, and mov-
ing them to a separate side table. The second scenario sees
the robot setting up a dining table with three pairs of kitchen
objects (see Figure 3). The robot can make use of a tray to
help carrying more than one object, but there are constraints
on how the objects can be stacked on the tray.

Our approach can be used with any classical planner. For
the first experiment we used a well-established satisficing
planner, FastForward (FF) (Hoffmann and Nebel 2001). The
second experiment required a cost-sensitive planner. We
used FastDownward (FD) (Helmert 2006) and always chose
the second plan that it produced in its anytime mode if it was
produced within 350s, and the first plan otherwise. When
reporting the execution time we did not calculate the time
required to actually perform an action, e.g. move the robot’s
base or the arms. In other words the robot instantaneously
moves all of its joints.

All the experiments discussed below were carried out on
an AMD Opteron dual-core 2GHz machine with 4GB RAM.
Pick and Place Scenario An instance of the pick-and-
place problem is illustrated in Figure 2. To guarantee that
objects in the middle of the table are not easily reachable we
approximated their shape with over-sized bounding boxes.
We modeled this problem as a realistic simulation of a sit-
uation the robot might face, where the robot can make free
use of the available empty space between objects to reach
its goal. Thus a highly cluttered table with 80 objects may
have obstructions from nearly every possible graspable pose,
but the number of obstructions from each may be small. If
grasping fails, the continuous planner returns a list of ob-
structions.

We performed 30 tests over 3 randomly generated envi-
ronments. Each environment has the same configuration of
static objects (tables and walls) but different configuration of
movable objects. Each random environment has between 50
and 80 objects randomly placed on the tabletop. In these
experiments we used 200 samples of base configurations
generated while searching for grasping poses (outer loop of
Alg. 2). Table 1 summarizes the results. Each row in the
table is an average of 10 runs. For each run we randomly
selected a target object with at least one obstruction to be
the grasping goal. As a baseline for comparison we used
the time a classical planner would take to solve a version of
the same problem with all obstructions precomputed and a
discretized set of sampled configurations. For each object in
the environment, we sampled 200 poses and kept only those
from where objects are graspable. This resulted in 80 to 130
configurations for our problems. The last column of Table 1
shows the time required to pre-calculate all these obstruc-
tions, which is significantly higher than the time required
for the computation and execution of the whole plan in our

1Source code is available at https://github.com/
lorenzoriano/OpenRaving



Figure 2: An example execution of a pick and place experiment. From left to right: 1) The initial disposition of the objects on
the table. The blue object is the target, while the green objects are the ones identified as obstructing the target. 2) The robot
selects the first object to remove. 3) The robot puts the object on a free area of an additional table. 4) The robot removes the
second obstruction. 5) The robot removes the third obstruction. 6) The target object is finally reachable.

Figure 3: An example scenario of a dining set-up experiment. From left to right: 1) The initial configuration of the environment.
2) The robot places a plate on the tray. 3) Another plate and a bowl are placed on the tray. 4) The robot carries the tray with four
objects to the dining table. 5) The first objects are removed from the top of the stack on the tray and placed on the appropriate
locations on the table. 6) The final goal configuration is achieved.

approach.
Dining Table Set-Up Scenario The second experiment
illustrates the general applicability of our approach to het-
erogeneous problems. The robot’s task is to move six ob-
jects from an initial location to a dining table, as shown
in Figure 3. The robot can only move objects between the
“kitchen” and “dining” areas by placing them on a tray, mov-
ing the tray to the target table and then placing the objects
from the tray to their desired configuration. Multiple round-
trips are allowed. For this experiment we considered two
sets of plates, bowls and mugs.

Placing objects on the tray is an action that can fail, thus
generating violated preconditions. This simulates dynami-
cal instability between pairs of objects which is difficult to
pre-compute without execution. The lower level enforced
this by not allowing a plate to be stacked over other objects,
and not allowing anything to be stacked over a mug. These
conditions are initially unknown to the high-level planner.
We also made the cost of moving across rooms 100 times
the cost of other actions.

As picking up the tray requires two-arm manipulation
we pre-calculated both manipulators poses for grasping it.
Grasping objects, placing them on the tray or on the table
uses the same primitives described in Sec. 3.3.

Solving the dining table scenario required 230s, including
execution. Given the violations induced by stacking objects
on the tray, the classical planner had been called 3 times.
The solution plans typically attempt to stack a few objects
on the tray and transport them in batches.

5 Related Work
This work is related to, and builds upon a vast history of
research in planning and robotics. The field of discrete

#Objs #Obstrns Time(s) #Replan Precomp(s)
80 2.6 602 2.3 4245
65 2.0 228 2.6 3667
50 1.8 139 2.1 1777

Table 1: Results for the cluttered table scenario. For comparison,
times for precomputing obstruction facts are shown in the last col-
umn. The central 3 columns are averages of 10 independent runs,
showing the number of obstructions, total time for planning and
execution and number of calls made to the classical planner.

planning has made several advances in scope and scalabil-
ity, mainly through the development of efficient methods
for computing heuristic functions automatically from a do-
main definition (Bonet and Geffner 2001; Hoffmann and
Nebel 2001; Helmert, Haslum, and Hoffmann 2007). These
advances are among the main motivations in developing
our approach. An alternate representation of our high-level
problem would be a partially observable problem with non-
deterministic actions (Bonet and Geffner 2000). However,
this is a much harder problem in general (Rintanen 2004)
and an offline contingent planning process would be unfea-
sible in our setting.

Various researchers have investigated the problem of
combining discrete and continuous planning. Alami et
al. (1998) describe a system architecture that uses a trans-
lation module for converting high-level actions into contin-
uous trajectories. Volpe et al. (2001) also use a similar mod-
ule, referred to as “time-line” interaction. However, these
approaches do not discuss specific methods for compiling
away continuous parameters of operators in order to facil-
itate discrete planning. Plaku et al. (2010) propose a sam-
pling based approach for guiding the low-level search pro-
cess with information from a high-level planner. They also



allow non-deterministic actions. However, communication
is only one-way: only the first action in the high-level plan
is used, and only to bias low-level search process. In con-
trast, the low-level search process in our approach provides
information back to the high-level planner which uses it to
generate more relevant plans. Hauser (2010) observes al-
most the same problems in tasks like pick-and-place. His
approach uses a STRIPS like language for specifying ac-
tions, but does not use a classical planner for the high-level
search. Another approach that combines discrete and contin-
uous planning is described in (Choi and Amir 2009). These
authors propose including kinematics constraints among the
information provided to the discrete planner. Their approach
automatically generates logical actions from the output of
a geometric motion planning algorithm. However this ap-
proach also has only one-way communication between the
discrete and continuous planner. Moreover their approach is
difficult to adapt to non-motion planning problems. Wolfe et
al. (2010) use angelic hierarchical planning to define a hier-
archy of high-level actions over primitive actions. However
the high-level actions in their approach have continuous ac-
tion arguments and need to be sampled. In contrast, we de-
fine a whole discrete problem, the size of which is indepen-
dent of the discretization. They also do not model problems
with preconditions like obstructions which require geomet-
ric reasoning. Our approach also includes an angelic inter-
pretation: the skolemized functions in our discrete, high-
level operators are assumed to have a value that satisfies
the preconditions, and is selected by the agent. Kaelbling
et al. (2011) combine discrete and continuous planning by
relying upon a very specific regression-based planner with
task-specific components. Levihn et al. (2012) present an
approach for the problem of navigation among movable ob-
stacles, but unlike our approach, they assume that the effects
of discrete, high level actions on obstructions and geomet-
ric regions are known a-priori. They also do not address
the problem of utilizing general purpose classical planners
in conjunction with motion planning.

Approaches for planning modulo theories (Gregory et al.
2012) (PMT) and planning with semantic attachments (Her-
tle et al. 2012) address similar high level problems of plan-
ning in hybrid domains. However, these approaches use an
extended planning language and require appropriately ex-
tended planners. Both of these approaches require deter-
ministic functions for computing “external” predicates dur-
ing search, and do not address the representational problem
of using a classical planner to plan with actions and fluents
that use continuous arguments. In contrast, our approach
only requires information from the lower level when a high
level plan fails and works with arbitrary classical planners.
Our approach can also be used in situations where a model
of the effects of low level actions is not available, and the
action execution failures cannot be predicted accurately (as
in the stacking problem) and are only known when they oc-
cur. As a consequence of this generality, the completeness of
our approach depends on the problem domain (the presented
analysis provides a sufficient but not necessary condition).

Grasping objects in a cluttered environment is still an
open problem in robotics. In (Dogar and Srinivasa 2011)

an approach is proposed that replaces pick-and-place with
pushing objects away from the desired trajectory. This rep-
resents an interesting solution to the reachability problem
that we aim at exploring as an application of our framework.

6 Conclusions
In this paper we presented an approach for planning in
robotics that relies upon the synergy between a classical and
a continuous planner. One of the advantages of our proposed
approach is that not all the facts need to be pre-computed
before planning, but only the ones that are required by the
execution. The classical planner is also able to efficiently
represent these facts without having to deal with representa-
tions that grow with the sampling process used in the lower
layer. As our experiments show, this is significantly more
efficient than solving precomputed discrete problems with
sampling-based discretizations. Our solution also addressed
a broad underlying problem in robotics: that the truth value
of many predicates can only be found when the robot tries
to perform an action. Both of our test scenarios featured this
problem.

Although we simulated dynamical instability by us-
ing fixed rules, a different implementation could utilize a
physics simulator for predicting if an object is unstable when
placed over a stack. It could thus prune away actions that a
planner alone would not know were wrong. While we con-
ducted our main experiments in a pick-and-place scenario,
the second experiment shows that our proposed approach is
not limited to this particular application. Introducing costs,
handling constraints and plans with heterogeneous actions
are supported by our algorithm through its modularity.

Future work will include a more thorough analysis of op-
timality and termination guarantees on replanning. We also
plan to study situations where action costs, in addition to
facts, are made available during execution. Although our
simulation is extremely faithful in terms of the capabilities
and limitations of the robot and in terms of construction
of the problem scenarios, the most natural next step in this
work will be to test the plans with a real robot.

Acknowledgments
We thank Malte Helmert and Joerg Hoffmann for provid-
ing versions of their planners with verbose outputs that were
very helpful in our implementation. We also thank John
Schulman for helpful comments. This work was supported
by the NSF under Grant IIS-0904672.

References
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand,
F. 1998. An architecture for autonomy. International Jour-
nal Of Robotics Research 17:315–337.
Berenson, D.; Kuffner, J.; and Choset, H. 2008. An op-
timization approach to planning for mobile manipulation.
2008 IEEE International Conference on Robotics and Au-
tomation 1187–1192.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proc. of



the 6th International Conference on Artificial Intelligence
Planning and Scheduling, 52–61.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artif. Intell. 129(1-2):5–33.
Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In IJCAI, 1936–1941.
Choi, J., and Amir, E. 2009. Combining planning and mo-
tion planning. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, 238–244. IEEE.
Diankov, R. 2010. Automated Construction of Robotic Ma-
nipulation Programs. Ph.D. Dissertation, Carnegie Mellon
University, Robotics Institute.
Dogar, M., and Srinivasa, S. 2011. A framework for push-
grasping in clutter. Robotics: Science and Systems VII.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Technical report, AI Center, SRI International. SRI Project
8259.
Fox, M., and Long, D. 2003. PDDL2.1: an extension to
pddl for expressing temporal planning domains. J. Artif. Int.
Res. 20(1):61–124.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning modulo theories: Extending the planning paradigm. In
ICAPS.
Hauser, K. 2010. Task planning with continuous actions and
nondeterministic motion planning queries. In Proc. of AAAI
Workshop on Bridging the Gap between Task and Motion
Planning.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flex-
ible abstraction heuristics for optimal sequential planning.
In Proc. of the 17th International Conference on Automated
Planning and Scheduling, 176–183.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hertle, A.; Dornhege, C.; Keller, T.; and Nebel, B. 2012.
Planning with semantic attachments: An object-oriented
view. In ECAI, 402–407.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hsiao, K.; Chitta, S.; Ciocarlie, M.; and Jones, E. 2010.
Contact-reactive grasping of objects with partial shape in-
formation. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, 1228–1235. IEEE.
Kaelbling, L. P., and Lozano-Pérez, T. 2011. Hierarchical
task and motion planning in the now. In Proc. IEEE Interna-
tional Conference on Robotics and Automation, 1470–1477.
Kavraki, L.; Svestka, P.; Latombe, J.; and Overmars, M.
1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. Robotics and Automa-
tion, IEEE Transactions on 12(4):566–580.
LaValle, S., and Kuffner Jr, J. 2000. Rapidly-exploring ran-
dom trees: Progress and prospects.

LaValle, S. M. 2006. Planning algorithms. Cambridge
University Press.
Levesque, H. J.; Pirri, F.; and Reiter, R. 1998. Founda-
tions for the situation calculus. Electronic Transactions on
Artificial Intelligence 2:159–178.
Levihn, M.; Scholz, J.; and Stilman, M. 2012. Hierarchical
decision theoretic planning for navigation among movable
obstacles. In Workshop on the Algorithmic Foundations of
Robotics, 19–35.
Marder-Eppstein, E.; Berger, E.; Foote, T.; Gerkey, B. P.;
and Konolige, K. 2010. The Office Marathon: Robust Nav-
igation in an Indoor Office Environment. In International
Conference on Robotics and Automation.
Plaku, E., and Hager, G. D. 2010. Sampling-based mo-
tion and symbolic action planning with geometric and dif-
ferential constraints. In IEEE International Conference on
Robotics and Automation, 5002–5008.
Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In Proc. of the 14th International Conference on
Automated Planning and Scheduling, 345–354.
Stulp, F.; Fedrizzi, A.; and Beetz, M. 2009. Action-related
place-based mobile manipulation. 2009 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems 3115–
3120.
Talamadupula, K.; Benton, J.; Schermerhorn, P. W.; Kamb-
hampati, S.; and Scheutz, M. 2010. Integrating a closed
world planner with an open world robot: A case study. In
Proc. of AAAI.
Volpe, R.; Nesnas, I.; Estlin, T.; Mutz, D.; Petras, R.; and
Das, H. 2001. The CLARAty architecture for robotic auton-
omy. In Proc. of IEEE Aerospace Conference, 121–132.
Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined
task and motion planning for mobile manipulation. In Proc.
of the International Conference on Automated Planning and
Scheduling, 254–258.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-replan: A
baseline for probabilistic planning. In Proc. of the Interna-
tional Conference on Automated Planning and Scheduling,
352–.




