
From the Real World to Logic and Back:
Learning Symbolic World Models for

Long-Horizon Planning

Naman Shah1,2, Jayesh Nagpal1, and Siddharth Srivastava1
1School of Computing and Augmented Intelligence, Arizona State University, USA

2Department of Computer Science, Brown University, USA

Abstract:
Robots still lag behind humans in their ability to generalize from limited ex-
perience, particularly when transferring learned behaviors to long-horizon tasks
in unseen environments. We present the first method that enables robots to au-
tonomously invent symbolic, relational concepts directly from a small number of
raw, unsegmented, and unannotated demonstrations. From these, the robot learns
logic-based world models that support zero-shot generalization to tasks of far
greater complexity than those in training. Our framework achieves performance
on par with hand-engineered symbolic models, while scaling to execution hori-
zons far beyond training and handling up to 18× more objects than seen during
learning. The results demonstrate a framework for autonomously acquiring trans-
ferable symbolic abstractions from raw robot experience, contributing toward the
development of interpretable, scalable, and generalizable robot planning systems.
Project website and code: https://aair-lab.github.io/r2l-lamp.

Keywords: Learning symbolic abstractions, symbolic world model learning,
learning for task and motion planning, learning for planning

1 Introduction

The ability to learn from simple examples or demonstrations, and to generalize and transfer that
knowledge to solve more complex problems (a hallmark of learning in humans) is a challenging
robot learning problem. For instance, all the concepts necessary for clearing a table cluttered with
cups are present in one robot trajectory that picks up and places a cup (with no annotations or seg-
mentation). It should therefore be possible to clear a table scattered with cups, given a handful of
demonstrations for picking and placing a single cup. Yet, this problem remains a difficult gener-
alization task in robotics — in large part due to the lack of methods for autonomously inventing
generalizable, abstract concepts and world models that can be transferred to more complex set-
tings. Recent advances in robot learning address complementary problems of learning tasks with
short horizons (e.g., closing a door) [1] and of learning to imitate demonstrations in scenarios with
minimal differences from training tasks (e.g., tying shoelaces or chopping fruits) [2, 3, 4, 5, 6] .

Core contribution This paper presents the first approach for learning to invent abstract logic-
based concepts and world models from raw demonstrations in the form of of kinematic trajectories
of the robot without any human annotation, segmenting, or guidance about primitive controllers,
actions, or concepts. Fig. 1 shows an overview of our approach. Our input is a small set of raw
training trajectories over kinematic states from simple tasks. The output is a set of auto-invented
logical concepts with concrete semantic definitions, a set of high-level actions with auto-generated
pose-generators for refinement, and a logic-based world model. No human annotation is required
in the entire process. Extensive empirical analysis in a range of mobile manipulation settings in

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://aair-lab.github.io/r2l-lamp

Auto-Invent Symbolic
Representation

(Relations, Actions, and Action
Model)

Unannotated, unsegmented
trajectories

Learning
Planning with learned

representations

Complete set of Training structures
used for inventing abstractions

Construct more complicated structures

Few selected test structures
and test robot

Training: Test:

Relations:

Parallel(?p1 - plank, ?p2 - plank)
OnTop(?p1 - plank, ?p2 - plank)
…
Holding (?g1 - gripper, ?p2 - plank)

Actions:

Grasp (?g1 - gripper, ?p2 - plank)
Requires: Empty (?g1), ¬Holding (?g1, ?p2)
Causes: ¬Empty (?g1), Holding (?g1, ?p2)

Overall objective
Given unannotated and unsegmented training trajectories in simple environments,

learn generalizable knowledge to be able to zero-shot solve significantly larger and more complex problems.

(a) (b) (c)

Figure 1: Example of transfer achieved in this paper. (a) shows the complete set of training tasks for
one of our experiment domains; (b) shows the automatically invented symbolic concepts and world
models by our approach; (c) shows some of the test tasks zero-shot solved using the learned model
despite significantly greater numbers and complexity. Interpretable relation names are provided for
clarity, not learned by the method.

simulation and in the real world show that the learned concepts enable the robot to solve tasks it
has never encountered before, with up to 18× in the number of objects that need to be manipulated,
novel goal configurations and significantly larger horizons.

Related work Typically, logic-based concepts are hand-crafted by human experts [7, 8]. This
requires extensive domain engineering efforts limiting the applicability of autonomous robots to
tasks envisaged prior to deployment. Other related work shows that unary predicates and actions
can be learned for motion planning [9, 10] but not for mobile manipulation. Foundation models
have been used for composing high-level robot skills provided as Python APIs [11], for translating
natural language instructions to logic-based formulas [12], and for planning [13, 14]. These methods
rely on expert-provided knowledge about high-level robot actions and the procedures for executing
these actions. Recent work indicates that logical concepts are learnable given a-priori knowledge of
high-level robot skills or actions [15], and that more complex concepts can be learned from an input
set of concepts [16, 17]. However, the problem of learning logical concepts and actions without
prior knowledge of either kind has remained understudied at best. We show for the first time that it
is possible to solve this problem, and to learn symbolic world models that support complex reasoning
for solving significantly larger tasks than the ones that are encountered in training demonstrations.
Detailed comparison with other related work is presented in Appendix E .

2 Problem Setting

We represent the set of possible configurations as X , where each state x ∈ X specifies 6-dimensional
poses (positions and orientations) of objects in the environment, links of the robot, and the set of
objects attached to the robot. The set of primitive actions (A) represents actions that induce mi-
nor changes in the robot pose that are small enough for a native robot controller to execute. Such
actions are typically executed in under a second and affect pose changes of at most a few millime-
ters. However, there are uncountably many infinite primitive actions, many of which transform the
configuration space (such as closing the gripper around an object to obtain a stable grasp); tasks of
interest in this paper comprise of composing tens of thousands of such actions. This makes naı̈ve
planning via optimization over all possible sequences of primitive actions infeasible. Formally, this
planning problem can be expressed as an optimization of a utility function over the space of all
possible policies as follows:

argmax
π

{J (π, x0, H) such that π : X → A; J is a utility function}

2

Here, we use a satisficing formulation for J that assigns a positive utility to policies meeting a goal
condition G within H time steps. However, the same method is valid for optimization models where
J accounts for action costs. Solving this optimization problem in a deterministic setting would yield
a motion plan i.e., a sequence of primitive actions starting from x0 and reaching a state that fulfills
the goal condition G.

Abstract world models Since solving the planning problem at the level of detail of primitive ac-
tions is intractable even for simple tasks, the conventional approach is to use hand-crafted abstract
logical concepts and create abstract world models for solving multiple tasks in a domain. These
concepts include state abstractions in terms of relationships such as “On(obj, table)” and temporal
abstractions or conceptual, high-level actions such as “pickup(obj)” and “place(obj, loc)”. Thus
world models consist of three components: a logical concept vocabulary V with semantics (func-
tions determining when each predicate is true), a set of high-level actions Ā, and action interpreters,
or methods for translating high-level actions into a robot’s primitive actions. Each high-level action
in Ā is defined using a precondition (a logical formula over V describing when the action can be
executed) and an effect (a logical formula over V describing the effects of the action). Each high-
level action needs action interpreters that “refine” it into motion plans that can be executed by the
robot. Such world models represent knowledge about the world while abstracting away the specifics
of robot and object poses, which may change with changes in goals and problem situations [18].
This yields significant generalizability, as the conceptual relations and actions are task agnostic.

The use of abstract concepts changes the formal planning problem to an optimization over abstract
policies defined as follows:

argmax
[π]

{J(π, [x0], H) such that [x0] = α(x0) and [π] : α(X) → β(A) and α, β satisfy κ}

Here, α and β are hand-coded state and action abstractions respectively that satisfy refinability
constraints κ often crafted by expert roboticists based on their experience with the expected tasks and
domains of deployment. This is the task and motion planning (TMP) setting [19, 8, 20, 7] (described
more in App. A). However, this formulation introduces dependency on hand-crafted knowledge, and
it can result in incorrect solutions because it is difficult to design α and β that satisfy refinability.

Critical regions Our approach builds on the notion of critical regions [21, 9], which generalizes
and unifies the concepts of hubs and bottlenecks. Earlier work defines critical regions in a goal-
agnostic manner, however, in this work we consider goal-conditioned critical regions. Intuitively,
as the name suggests, goal-conditioned critical regions learn critical regions for a specific training
problem. We learn goal-conditioned critical regions for each training task and combine them in order
to compute the set of critical regions. Given a robot with a configuration space X , goal-conditioned
regions are defined as follows.

Definition 1 Given a set of solutions for a robot planning problem T , the measure of criticality of a
Lebesgue-measurable open set ρ ⊆ X , µ(ρ), is defined as limsn→+ρ

f(ρ)
v(sn)

where f(r) is a fraction
of observed motion plans solving the task T that pass through sn, v(sn) is the measure of sn under a
reference density (usually uniform), and →+ denotes the limit from above along any sequence {sn}
of sets containing ρ (ρ ⊆ sn, ∀n).

3 Our Approach

The objective of this work is to enable robots to create well-founded conceptual world models by
inventing abstract concepts. It turns out that by including the abstraction as a parameter in the
optimization objective, the agent can learn to perform better as it no longer depends on human-
crafted abstractions. Formally, this changes the problem to:

argmax
π,α,β

{J(π, x0, H) such that π : α(X) → β(A) and α, β satisfy κ}

3

Training Demonstations

Relational Critical Region
(RCR)

(b)

Relational Critical Region Predictor

Pick(?Gripper, ?X_OBJ)
Place(?Gripper, ?X_OBJ)

(e)

(a)

Pick(Gripper, Can)

(d)
¬Holding(Gripper, Can) Holding(Gripper, Can)

Place(Gripper, Can)

Zero-Shot Generalization

Lifted symbolic relation
(Holding(?Gripper, ?Can))

 Generative model

New Unseen Test Task

Action Inventor

Relation Inventor

(c)

World-Model Learning

Auto-Generated World Model Task and Motion Plan

(f)

Initial State

Goal State

Pick(?Gripper, ?X_OBJ) Place(?Gripper, ?X_OBJ)

Figure 2: Overview of LAMP. From unlabeled, unsegmented demonstrations (a), LAMP learns
relational critical region predictors (b), each defining relations between object pairs (c). These re-
lations form abstract states, with learned actions as transitions (d), together constituting a symbolic
world model learned from scratch. For new tasks with more objects or obstructions, LAMP predicts
new relations to build the abstract state space and goal, then uses the model to synthesize behaviors
that achieve it (f).

where the abstractions become a part of the parameters to be optimized.

Our approach -- Learning Abstract Models for Planning (LAMP) -- automatically learns these ab-
stractions from kinematic demonstrations and represents them as world models in the planning do-
main definition language (PDDL [18]). LAMP consists of the following steps (App. B): (i) learn
to predict a general, relational form of critical regions called relational critical regions that char-
acterize salient regions in the relative state spaces among objects (Sec. 3.1), (ii) invent a symbolic
relational vocabulary based on predicted relational critical regions (Sec. 3.2), and (iii) invent high-
level actions and learn symbolic world models (Sec. 3.3). The resulting knowledge, i.e. a symbolic
world model, is then used to zero-shot solve new tasks. We now present these components in detail.

3.1 Learning Proto-Relations

We postulate that high-level robot actions currently crafted by experts are effectively transitions to
and from salient regions within the environment and that such regions can be automatically dis-
cerned. E.g., Fig. 2 illustrates a task where the gripper needs to pick up a can. The area from which
the can can be grasped constitutes a salient region. Classically hand-crafted “Pick” and “Place” ac-
tions transition the gripper into and out of this salient region, respectively. Thus, if we automatically
identify such salient regions, high-level actions can also be invented autonomously, subsequently
enabling autonomous formulations of generalizable world models for long-horizon problems.

Relational critical regions We formalize the notion of salient regions as relational critical re-
gions (RCRs). Critical regions (CRs, Def. 1) help identify these regions in the robot’s configuration
space [22]. However, for long-horizon planning involving multiple objects, salient regions occur not
in the robot’s absolute configuration space but in the space of relative poses among objects. E.g., in
Fig 2(a) grasping poses for the can constitute a relational critical region (shaded red in Fig. 2(b)),
regardless of the can’s location. Intuitively, a relational critical region for object x w.r.t. object y is a
region in the set of poses of x relative to y that has a high density of solutions for a given distribution
of tasks. We thus generalize critical regions to define relational critical regions as follows.

4

Definition 2 Let T be a robot planning problem and DT be a set of solution trajectories for the
planning problem T. Let o1, o2 ∈ O be a pair of objects, and let X o1

o2 define the set of relative poses
for object o2 in the frame of o1. The measure of the criticality of a Lebesgue-measurable open
set ρ ⊆ X o1

o2 , µ(ρ), is defined as limsn→+ρ
f(ρ)
v(sn)

where f(ρ) is the fraction of observed solution
trajectories solving for the planning problem T that contains a relative pose P o1

o2 such that, P o1
o2 ∈ ρ

v(sn) is the measure of sn under a reference density (usually uniform); and →+ denotes the limit
from above along any sequence {sn} of sets containing ρ (ρ ⊆ sn, ∀n). A region ρ ⊆ X o1

o2 is a
relational critical region (RCR) iff µ(ρ) is greater than a predefined threshold θ.

LAMP takes demonstrations of simple tasks in the form of kinematic-state trajectories and converts
them into trajectories of relative poses between object pairs. These trajectories are clustered into
pairwise occupancy matrices between object-type pairs (τi, τj), and Def. 2 is applied to identify
clusters with high criticality. LAMP then applies the label1 function from the OpenCV package to
extract connected components from each occupancy matrix. Let Γ denote the set of all connected
components, and Γij ⊂ Γ the subset associated with object-type pair (τi, τj).

From each connected component γ ∈ Γ, LAMP uniformly samples poses and fits a Gaussian mix-
ture model (GMM) using GaussianMixture2 from scikit-learn, parameterized by (µγ ,Σγ). The
number of Gaussian components is chosen according to the number of connected components within
γ. Each resulting mixture model defines a relational critical region (RCR) ψγ . A relative pose po2o1
is classified into ψγ (i.e., ψγ(p

o2
o1) = 1) iff its likelihood under (µγ ,Σγ) exceeds a threshold ϵ. For

brevity, we omit the subscript γ when clear from context.

Once trained, these mixture models act as generative predictors, enabling zero-shot inference of
relational critical regions in novel environments, given the object configurations and occupancy
matrix of the environment.

We now discuss our approach for learning symbolic relational vocabulary from the predicted RCRs.

3.2 Inventing Semantically Well-Founded Concepts for Logic

Relational critical regions represent salient regions in the environment. However, they are insuffi-
cient for generalizable long-horizon reasoning; high-level reasoning requires abstract actions, and
a relational vocabulary for expressing the pre- and post-conditions of these actions. Therefore, for
each relational critical region predicted by the learned multivariate Gaussian predictors between a
pair of objects, LAMP’s Relation Inventor (Alg. 2, App. C) creates a unique binary relation between
the corresponding object types. E.g., the RCR shown in Fig. 2(a) constitutes the extent of a newly in-
vented relation (a concept equivalent to Holding(Gripper, Can)), and it is true when the gripper
is in the shaded red region around the can.

Formally, let Oτi and Oτj be the set of objects of type τi and τj , respectively, and let Ψij be a set
of RCR predictors between Oτi and Oτj . The Relation Inventor defines a unique binary relation
Rk

ij : Oτi ×Oτj → {⊤,⊥} for each relation region predictor ψk ∈ Ψij such that Rk
ij(oi, oj) = ⊤

iff for the relative pose pojoi , ψk(p
oj
oi) = 1, where pojoi is the pose of the object oi relative to the oj .

Next, the Relation Inventor (RI) defines two additional sets of Boolean relations. First, given the sets
of objects Oτi and Oτj , it defines a relation R′

ij : Oτi ×Oτj → {⊤,⊥} such that R′
ij(oi, oj) ⇐⇒

∀k
[
¬Rk

ij(oi, oj)
]
. Second, it defines a relation for each relational critical region predictor indicating

whether multiple objects can occupy that RCR or not. Intuitively, this models the free volume in
the predicted region. E.g., the RCR for gripper w.r.t. can (Fig. 2(b), red) can be only occupied by
a single can but the RCR for the placed cans w.r.t. table (Fig. 2(e), yellow) can be occupied by
multiple cans. Formally, given the sets of objects Oτi and Oτj , relational regions predictors Ψij , the
RI defines a Boolean relation for each relational region predictor ψk ∈ Ψij , Rfreek

ij : Oτi → {⊤,⊥}

1https://github.com/opencv/opencv-python
2https://scikit-learn.org/1.5/modules/mixture.html

5

https://github.com/opencv/opencv-python
https://scikit-learn.org/1.5/modules/mixture.html

such that it is true iff for oi ∈ Oτi and oj ∈ Oτj , ρfree(ψ
k, oi) > ρ(oj). Here, ρfree(ψ

k) is the free
volume of the predicted region ψk and ρ(oj), the volume of the object oj .

Given a new task T and its set of objects OT , LAMP uses the automatically learned relational region
predictors to predict the RCRs for objects and generate the relational vocabulary VT for the new task.

We now discuss our approach for autonomously inventing symbolic actions and world models.

3.3 Learning High-Level Actions and Logical World Models from Raw Data

The last step in the overall LAMP algorithm is to synthesize generalizable and transferrable actions,
models, and action interpreters. Recall that we hypothesized that high-level actions are transitions
to and from RCRs. E.g., the transitions in and out from the red RCR in Fig. 2(a) induce high-
level actions Pickup(Gripper, Object) and Place(Gripper, Object) respectively. There-
fore, LAMP’s High-Level Action Inventor (HLAI) (App. D) use the predicted relational critical re-
gions in training tasks to invent high-level actions. However, using the exhaustive enumeration of
the set of predicted regions may lead to a large number of actions, most of which may be infeasible
to realize. Instead, HLAI creates high-level actions corresponding to transitions between abstract
states in the input training demonstrations, ensuring that all actions are executable by the robot.

More precisely, HLAI uses the invented relational vocabulary V to first convert each state tra-
jectory ⟨x0, . . . xn⟩ of a demonstration to abstract states ⟨s′0, . . . , s′n⟩, and then lifts it to lifted
states ⟨s0, . . . , sn⟩ by replacing object identities with placeholder variables of the original ob-
ject types. Given the relational vocabulary V invented by RI (Sec. 3.2), each abstract state
s′i = {Rk(oi, oj)|∀oi, oj ∈ O,∀Rk ∈ V, x |= Rk(oi, oj)}.

Next, for each lifted transition Cij = si → sj , HLAI computes sets of added and deleted relations
such that C+

ij = sj \ si and C−
ij = si \ sj and identifies the set of all transitions from the training

demonstrations that induce the same ⟨C+
ij , C

−
ij ⟩. Each of these sets induces a high-level action āij .

It repeats this process for every identified set and build the set of high-level actions Ā. HLAI then
uses associative action model learning to learn symbolic models for these actions (App. D).

𝑝𝑝!(𝑝𝑙𝑎𝑛𝑘!, 𝑝𝑙𝑎𝑛𝑘", 𝑝𝑙𝑎𝑛𝑘#)
<Plank-On-Two-Planks>

𝑟𝑡!(𝑟𝑜𝑏𝑜𝑡, 𝑡𝑎𝑏𝑙𝑒)
<Robot-Near-Table>

𝑔𝑐!(𝑔𝑟𝑖𝑝𝑝𝑒𝑟, 𝑐𝑎𝑛)
<Gripper-At-Can-Grasp>

Delivering Items in a Cafe

𝑔𝑝"(𝑔𝑟𝑖𝑝𝑝𝑒𝑟, 𝑝𝑙𝑎𝑛𝑘!)
<Gripper-Holding-Plank>

Building Keva Structures

Action: Place-Cup
Parameters: ?r- robot, ?c - cup, ?t - table
Requires:

(Robot-Holding-Cup ?r ?c)
(Robot-Near-Table ?r ?t)

¬(Cup-On-Table ?c ?t)
(Empty-Space-On-Table ?t ?c)

Effects:
(Cup-On-Table ?c ?t)

¬(Robot-Holding-Cup ?r ?c)
(Robot-At-Cup-Grasp ?r ?c)

Figure 3: Examples of relations and an invented
action with their critical regions. (a) Each image
shows a binary predicate with its semantic interpre-
tation; red dots indicate sampled poses within the
relational critical region. (b) An auto-invented ac-
tion is shown with parameters, preconditions, and
effects. Relation names in blue reflect author-
provided interpretations.

Each action invented in this manner can
have spurious preconditions corresponding to
static relations that do not change when the
action is applied, but hold true in states where
the action is executed. Therefore, the AI re-
moves relations from the learned precondi-
tion that (i) are not parameterized by any of
the objects that are changed by the action and
(ii) that are not changed at any point in any
of the demonstrations. This removes spu-
rious preconditions with respect to the ob-
served data.

To execute learned symbolic actions, robots
require interpreters that convert abstract ac-
tions into sequences of primitive actions.
LAMP autonomously constructs these inter-
preters using learned multivariate Gaussian
predictors, whose generative properties en-

able sampling feasible configurations. Formally, for a grounded symbolic relation R′, let ΓR′ =
{x ∈ X | R′(x) = 1} denote its interpretation region. Then, the interpreter for an abstract action
ā′ with effects R′1 ∧ · · · ∧ R′k is defined as Γā′ = ΓR′1 ∩ · · · ∩ ΓR′k . We build on STAMP [7] for
task and motion planning using learned representations. We mitigate inaccuracies in learning using
predicate abstraction [23] and a top-k planner [24]. App. F discusses this in detail.

6

Selected Test Tasks
(10-18x objects than training)

D
inner Table (D

T)

Training Tasks
(1-3 objects)

(c) (d)(b)

(a)

K
eva and Jenga

B
ox Packing

Figure 4: Empirical evaluation of LAMP. (a) Generalization achieved by our approach, with the
x-axis denoting domain and the y-axis the generalization factor. The red dotted line marks the 1×
generalization zone typical of imitation learning or behavior cloning. (b) Robustness comparison
with Code-as-Policies and STAMP, where the x-axis shows the number of training demonstrations
and the y-axis the proportion of solved test tasks; shaded regions indicate standard deviation over
10 runs. (c) Training tasks used to learn symbolic world models. (d) Test tasks used to evaluate
generalization.

4 Empirical Evaluation

We evaluated LAMP across five realistic settings in simulation and the real world: (i) packing cans
into a small box (Box Packing, 200 demos, one can); (ii) assembling free-standing structures with
Keva planks (Keva, 160 demos, up to three planks); (iii) stacking Jenga planks (Jenga, 160 demos,
up to three planks) using YuMi and Fetch robots; (iv) autonomous food delivery in a café (Café, 200
demos, one item); and (v) setting a dining table with cups and bowls (Dinner Table, 200 demos,
one object). Across all domains, LAMP trained on at most 200 demonstrations of simpler tasks–of
which only half were successful.

We show that the robot can invent concepts that generalize to larger, more complex tasks unseen
during training—in simulation (Café, Keva, Box Packing) and in the real world (Dinner Table,
Jenga). Figure 3 illustrates examples of these invented relations and a high-level action.

Goal specification Our implementation supports a variety of goal specification methods: (i) In
tasks where goal poses are not anchored to a world-frame (e.g., Keva, Jenga) the system is given
a goal structure that it automatically transcribes in terms of learned high-level predicates; (ii) For
tasks where goal poses are broader regions (e.g., Café, Box Packing) the goal is specified manually
using invented predicates; (iii) For tasks where the goal requires specific world-frame poses (e.g.,
Dinner Table) the goal is defined using AtGoal(x) predicates which are defined to be true iff object
x is in its goal location.

7

Learning beyond imitation: generalization factors We define the generalization factor as the
ratio of the maximum number of objects in test tasks to the maximum number of objects in training
tasks. Since the number of relevant objects characterizes the size of the state space X that the robot
must plan over, this is an effective proxy for the complexity of a task; it is directly correlated with
the planning horizon, i.e., the number of decision-making steps that the robot needs to consider. We
used a maximum of three objects in demonstrations across all test problems.

Fig. 4(a) shows the generalization factors for LAMP (blue bar) compared to the zone of generaliza-
tion for contemporary approaches that use expert demonstrations for imitation (red line), computed
using 12 distinct test tasks for each domain with varying numbers of objects or problem settings.
Contemporary imitation learning approaches use expert demonstrations to learn to imitate and there-
fore only perform tasks that were trained on, leading to a generalization factor of 1. On the other
hand, LAMP achieves a generalization factor of upto 18. In the café domain, LAMP was able
to solve problems with 18 (8) objects in simulation (real-world) based on demonstrations with 1
(simulated) or 2 (real-world) objects, yielding a generalization factor of 18× (4×) in simulated
(real-world) tasks. Similarly, for Keva and Jenga domains, LAMP invented its world models from
demonstrations with three planks and successfully built structures with 30 Keva planks in simulated
settings (generalization factor of 10×) using the YuMi robot and 18 Jenga planks in real-world set-
tings (generalization factor of 6×) using the Fetch robot. The maximum possible generalization
factor for box packing was 4× as the box can only accommodate four cans, and LAMP achieved
this generalization factor.

Zero-shot transfer: LAMP vs. symbolic and foundation model baselines To evaluate trans-
ferability, we test LAMP on new tasks with no prior knowledge–using only demonstrations from
simpler tasks with fewer objects (Fig. 4(b)–and compare its performance to robots with hand-crafted
models and with foundation model–based reasoning [25, 26, 11, 13]. We used prior work on stochas-
tic task and motion planning (STAMP) [7] as a baseline approach for the former and Code as Policies
(CoP) [11] for the latter approach. LAMP solved 100% of the unseen test tasks in our evaluation
reaching similar performance of STAMP, which used expert-provided abstractions. CoP solved only
the simpler tasks, with under 35% overall success. We remark that although popular, these base-
lines solve fundamentally simpler problems as they require manually crafted inputs for the concepts
our agent needs to invent on its own: STAMP requires complete world models, while CoP requires
Python APIs for actions, interpreters, detailed goal descriptions with hand-crafted predicates, and
sample solution code. Additionally, CoP was given 25 attempts per problem with a single successful
execution required for the problem considered solved (pass @25).

Sample efficiency and robustness Sample efficiency is a critical factor in robot learning. Modern
approaches typically require tens of thousands of demonstrations, which can be difficult to obtain
due to the substantially higher cost of obtaining demonstrations in robotics as compared to learning
in other domains such as text and images. We observed that enabling the robot to learn generalizable
concepts substantially reduces the burden of facilitating demonstrations. Figure 4(b) shows how this
approach scales as the number of demonstrations is reduced further, illustrating that LAMP can
effectively learn effective world models using as few as 40 goal-achieving demonstrations.

5 Conclusion

This paper presents the first approach for learning symbolic concepts and world models directly from
kinematic demonstration trajectories, enabling generalization across robots and unseen problem set-
tings. Extensive evaluation in simulated and real-world settings shows that the learned abstractions
are both efficient and interpretable. Future work will leverage these autonomously learned abstrac-
tions to make robot re-tasking accessible to non-experts. We also aim to extend our approach to
handle stochastic environments with stronger theoretical guarantees.

8

6 Limitations

Despite the substantial gains in generalization and sample efficiency, further work is needed on prob-
lems not addressed in this work. First, the current formulation assumes near-perfect kinematic state
estimation during training and deployment. Learning good state estimators is an active and orthogo-
nal direction of research (e.g., using point cloud data [27]). We handle these limitations as follows:
(i) By using training data collected in a simulator with perfect state estimation, and (ii) by using a
motion capture system at test time. However, reliably bridging this gap will require tighter integra-
tion with robust state-estimation pipelines or explicit treatment of perceptual uncertainty inside the
abstraction-learning loop.

Second, we restrict the scope of this paper to deterministic world models. However, most real-
world settings are stochastic and require stochastic world models for safe and reliable planning [7].
This foundational work presents a step in the direction of learning more general world models for
stochastic, and eventually, partially observable settings.

Third, in this paper, we limit our experiments of generalization to novel goals that use the same
known object types. This includes scenarios with additional instances of these objects and with new
positions and orientations. Future work will extend our approach to generalize learned concepts to
entirely new object categories and novel geometries.

Finally, our approach is currently restricted to learning actions where dynamics do not play a sig-
nificant role and the quasi-static assumption of motion planning is valid. Tasks requiring force-
controlled contact, or closed-loop reactive policies lie outside the scope of the current work and
constitute promising directions for research.

Acknowledgments

We thank the CoRL reviewers for their useful and constructive feedback. We thank Pulkit Verma for
his help with the preliminary version of the presented work. We also thank Prof. George Konidaris
with his helpful suggestions and discussions. The work was partially funded by NSF under the
grants IIS 2451108 and IIS 1942856, and by ONR under the grant N00014-23-1-2416.

References
[1] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world

models. arXiv preprint arXiv:2301.04104, 2023.

[2] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. In Conference on Robot Learning (CoRL), 2024.

[3] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. J. Joshi,
R. Julian, D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manju-
nath, I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao,
M. Ryoo, G. Salazar, P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran,
V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. RT-1:
Robotics transformer for real-world control at scale. arXiv:2212.06817, 2022.

[4] T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S. Ghasemipour, C. Finn, and A. Wahid.
Aloha unleashed: A simple recipe for robot dexterity. In Proc. CoRL, 2024.

[5] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,
B. Ichter, et al. pi 0: A vision-language-action flow model for general robot control. arXiv
preprint arXiv:2410.24164, 2024.

[6] J. Barreiros, A. Beaulieu, A. Bhat, R. Cory, E. Cousineau, H. Dai, C.-H. Fang, K. Hashimoto,
M. Z. Irshad, M. Itkina, et al. A careful examination of large behavior models for multitask
dexterous manipulation. arXiv preprint arXiv:2507.05331, 2025.

9

[7] N. Shah, D. K. Vasudevan, K. Kumar, P. Kamojjhala, and S. Srivastava. Anytime integrated
task and motion policies for stochastic environments. In Proc. ICRA, 2020.

[8] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated task and motion planning. Annual Review of Control, Robotics, and Autonomous
systems, 4:265–293, 2021.

[9] N. Shah and S. Srivastava. Using deep learning to bootstrap abstractions for hierarchical robot
planning. In Proc. AAMAS, 2022.

[10] N. Shah and S. Srivastava. Hierarchical planning and learning for robots in stochastic settings
using zero-shot option invention. In Proc. AAAI, 2024.

[11] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as
policies: Language model programs for embodied control. In Proc. ICRA, 2023.

[12] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone. LLM+P: Empowering
large language models with optimal planning proficiency. arXiv:2304.11477, 2023.

[13] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke,
K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence. PaLM-E: An
Embodied Multimodal Language Model. In Proc. ICML, 2023.

[14] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.
Ruano, K. Jeffrey, S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,
S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,
P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,
M. Yan, and A. Zeng. Do as I can, not as I say: Grounding language in robotic affordances. In
Proc. CoRL, 2023.

[15] G. Konidaris, L. P. Kaelbling, and T. Lozano-Pérez. From skills to symbols: Learning symbolic
representations for abstract high-level planning. JAIR, 61:215–289, 2018.

[16] T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-Pérez, and L. P. Kaelbling. Learning neuro-
symbolic skills for bilevel planning. In Proc. CoRL, 2022.

[17] T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Pérez, L. P. Kaelbling, and J. Tenen-
baum. Predicate invention for bilevel planning. In Proc. AAAI, 2023.

[18] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. S. Weld, and
D. Wilkins. PDDL – The Planning Domain Definition Language. Technical Report CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

[19] S. Cambon, R. Alami, and F. Gravot. A hybrid approach to intricate motion, manipulation and
task planning. The International Journal of Robotics Research, 28(1):104–126, 2009.

[20] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined task and
motion planning through an extensible planner-independent interface layer. In Proc. ICRA,
2014.

[21] D. Molina, K. Kumar, and S. Srivastava. Learn and link: Learning critical regions for efficient
planning. In Proc. ICRA, 2020.

[22] S. M. LaValle. Planning Algorithms. Cambridge University Press, USA, 2006. ISBN
0521862051.

[23] S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In Proc. CAV, 1997.

10

[24] M. Katz, S. Sohrabi, O. Udrea, and D. Winterer. A novel iterative approach to top-k planning.
In Proc. ICAPS, 2018.

[25] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suenderhauf. SayPlan: Ground-
ing large language models using 3D scene graphs for scalable robot task planning. In Proc.
CoRL, 2023.

[26] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-T. L. Chiang, T. Erez,
L. Hasenclever, J. Humplik, B. Ichter, T. Xiao, P. Xu, A. Zeng, T. Zhang, N. Heess, D. Sadigh,
J. Tan, Y. Tassa, and F. Xia. Language to rewards for robotic skill synthesis. In Proc. CoRL,
2023.

[27] B. Wen, W. Yang, J. Kautz, and S. Birchfield. Foundationpose: Unified 6d pose estimation and
tracking of novel objects. In Proc. CVPR, 2024.

[28] X. Wang. Learning planning operators by observation and practice. In Proc. AIPS, 1994.

[29] R. Stern and B. Juba. Efficient, safe, and probably approximately complete learning of action
models. In Proc. IJCAI, 2017.

[30] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki. An incremental constraint-
based framework for task and motion planning. IJRR, 37(10):1134–1151, 2018.

[31] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. PDDLStream: Integrating symbolic
planners and blackbox samplers via optimistic adaptive planning. In Proc. ICAPS, 2020.

[32] U. A. Mishra, S. Xue, Y. Chen, and D. Xu. Generative skill chaining: Long-horizon skill
planning with diffusion models. In Proc. CoRL, 2023.

[33] S. Cheng, C. Garrett, A. Mandlekar, and D. Xu. NOD-TAMP: Multi-step manipulation plan-
ning with neural object descriptors. In CoRL 2023 LEAP Workshop, 2023.

[34] X. Fang, C. R. Garrett, C. Eppner, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. DiMSam:
Diffusion models as samplers for task and motion planning under partial observability. In
CoRL 2023 LEAP Workshop, 2023.

[35] G. Konidaris, L. P. Kaelbling, and T. Lozano-Pérez. Constructing symbolic representations for
high-level planning. In Proc. AAAI, 2014.

[36] E. Ugur and J. Piater. Bottom-up learning of object categories, action effects and logical rules:
From continuous manipulative exploration to symbolic planning. In Proc. ICRA, 2015.

[37] G. Konidaris, L. P. Kaelbling, and T. Lozano-Pérez. Symbol acquisition for probabilistic high-
level planning. In Proc. IJCAI, 2015.

[38] G. Andersen and G. Konidaris. Active exploration for learning symbolic representations. In
Proc. NeurIPS, 2017.

[39] B. Bonet and H. Geffner. Learning first-order symbolic representations for planning from the
structure of the state space. In Proc. ECAI, 2019.

[40] S. James, B. Rosman, and G. Konidaris. Learning portable representations for high-level plan-
ning. In Proc. ICML, 2020.

[41] A. Ahmetoglu, M. Y. Seker, J. Piater, E. Oztop, and E. Ugur. DeepSym: Deep symbol gener-
ation and rule learning for planning from unsupervised robot interaction. JAIR, 75:709–745,
2022.

[42] M. Asai, H. Kajino, A. Fukunaga, and C. Muise. Classical planning in deep latent space. JAIR,
74:1599–1686, 2022.

11

[43] J. Liang and A. Boularias. Learning category-level manipulation tasks from point clouds with
dynamic graph cnns. In Proc. ICRA, 2023.

[44] Q. Yang, K. Wu, and Y. Jiang. Learning action models from plan examples using weighted
MAX-SAT. AIJ, 171(2-3):107–143, 2007.

[45] S. Cresswell, T. McCluskey, and M. West. Acquisition of object-centred domain models from
planning examples. In Proc. ICAPS, 2009.

[46] H. H. Zhuo and S. Kambhampati. Action-model acquisition from noisy plan traces. In Proc.
IJCAI, 2013.

[47] D. Aineto, S. J. Celorrio, and E. Onaindia. Learning action models with minimal observability.
AIJ, 275:104–137, 2019.

[48] P. Verma, S. R. Marpally, and S. Srivastava. Asking the right questions: Learning interpretable
action models through query answering. In Proc. AAAI, 2021.

[49] M. Čertický. Real-Time Action Model Learning with Online Algorithm 3SG. Applied AI, 28
(7):690–711, Aug. 2014.

[50] L. Lamanna, A. Saetti, L. Serafini, A. Gerevini, and P. Traverso. Online Learning of Action
Models for PDDL Planning. In Proc. IJCAI, 2021.

[51] D. Bryce, J. Benton, and M. W. Boldt. Maintaining evolving domain models. In Proc. IJCAI,
2016.

[52] R. K. Nayyar, P. Verma, and S. Srivastava. Differential assessment of black-box AI agents. In
Proc. AAAI, 2022.

[53] T. Silver, R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-Pérez. Learning symbolic
operators for task and motion planning. In Proc. IROS, 2021.

[54] P. Verma, S. R. Marpally, and S. Srivastava. Discovering user-interpretable capabilities of
black-box planning agents. In Proc. KR, 2022.

[55] R. Chitnis, T. Silver, J. B. Tenenbaum, T. Lozano-Pérez, and L. P. Kaelbling. Learning neuro-
symbolic relational transition models for bilevel planning. In Proc. IROS, 2022.

[56] N. Kumar, W. McClinton, R. Chitnis, T. Silver, T. Lozano-Pérez, and L. P. Kaelbling. Learning
efficient abstract planning models that choose what to predict. In Proc. CoRL, 2023.

[57] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Proc. NeurIPS,
1988.

[58] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39):1–40, 2016.

[59] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. RVT: Robotic view transformer
for 3D object manipulation. In Proc. CoRL, 2023.

[60] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Proc. CoRL, 2023.

[61] Q. Vuong, S. Levine, H. R. Walke, K. Pertsch, A. Singh, R. Doshi, C. Xu, J. Luo, L. Tan,
D. Shah, C. Finn, M. Du, M. J. Kim, A. Khazatsky, J. H. Yang, T. Z. Zhao, K. Goldberg,
et al. Open X-Embodiment: Robotic learning datasets and RT-X models. In CoRL 2023 TGR
Workshop, 2023.

[62] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In Proc. ICML, 2022.

12

[63] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2Motion: From natural language
instructions to feasible plans. Autonomous Robots, Nov 2023.

[64] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine, K. Hausman, and B. Ichter.
Inner monologue: Embodied reasoning through planning with language models. In Proc.
CoRL, 2023.

[65] K. Valmeekam, M. Marquez, S. Sreedharan, and S. Kambhampati. On the planning abilities
of large language models–A critical investigation. In Proc. NeurIPS, 2023.

13

Appendix

A Formal Framework

We consider a setting where the environment comprises objects and robots. Each object’s state is
represented by a 6D pose. A robot, considered a distinct object, is structured as a kinematic chain of
links and joints, and its state is ⟨Pbase,Θ⟩, where Pbase indicates the 6D pose of the initial link, and Θ
corresponds to the values for each joint. In an environment with objects O = ⟨o1, . . . on, r1, . . . rm⟩,
the state space is denoted by X = Xri ×Xoj for every robot ri ∈ O and object oj ∈ O. A collision
function c categorizes the state space X into two subsets: Xfree (states without collisions) and Xobs

(colliding states).

Primitive robot actions allow robots to alter their state, including configuration and base link pose,
enabling movement and object manipulation within the environment. A primitive action a is charac-
terized by a deterministic function a : x 7→ x′. Given environment states x ∈ X and x′ ∈ X , taking
action a in state x leads to state x′. We describe a robot planning problem as follows:

Definition 3 A robot planning domain is characterized as a tuple ⟨O, T ,X ,A, xi,Xg⟩ where O
represents a collection of objects, T is a set of object types, X denotes a state space, and A is an
uncountably infinite set of deterministic native actions. The initial state of the environment, xi ∈
Xfree is an initial state of the environment, and Xg ⊆ X is a set of goal states. Solving a planning
problem involves finding a sequence of native actions a0, . . . , an such that an(. . . (a0(xi))) ∈ Xg .

Our approach extensively uses relative poses. Every object in the environment also defines a frame
of reference. A relative pose defines the pose of an object in the reference frame of another object.
Basis transformations from linear algebra can be used to compute relative transformations of objects
w.r.t to other objects in the environment. We refer to the pose of an object o1 relative to an object o2
as P o2

o1 . Let X̃ o2
o1 define a relative state-space for the pair of objects o1 and o2, i.e., the set of all poses

of the object o1 in the relative frame of the object o2, and X̃ define the set of relative state spaces
such that X̃ = {X̃ oi

oj |oi, oj ∈ O∧ oi ̸= oj}. Lastly, we define a transformation function ξ : X → X̃
that computes the relative state for each absolute state of the environment.

Symbolic World Models We treat symbolic world models as first-order logic frameworks and
use PDDL [18] to express these models. The PDDL domain encompasses two key components:
⟨V, Ā⟩. Here, V represents a collection of symbolic relationships, while Ā comprises high-level
actions performed by robots. The relations R ∈ V , defined by typed parameters, establish how
objects of one type relate to one another type. These relations R ∈ V can be instantiated with
specific objects, termed R when uninstantiated and R′ when instantiated. Instantiated relations R′

serve as Boolean classifiers, meaning they are true in a low-level state x (indicated by R′
x = 1) if

the relation is valid for the objects in question within the state x. The abstraction function α : x 7→ s
evaluates all instantiated relations in a low-level state x ∈ X , resulting in an abstract grounded state
s′ ∈ 2V

′
(or s ∈ α(X)). This symbolic grounded state s′ comprises the relations that hold true in

low-level state x, whereas the symbolic lifted state is denoted by s (s ∈ 2V).

Ā outlines symbolic lifted actions using lifted relations V . Each action ā ∈ Ā has typed symbolic
parameters. ā is defined as a tuple ⟨preā, effā⟩, where preā is a conjunctive formula of parameterized
relations V . The action’s effect effa is a tuple effā = ⟨addā, delā⟩ adding relations addā and remov-
ing relations delā from the state once the action ā is executed. Actions ā can be grounded to specific
objects, resulting in grounded actions ā′, generating grounded precondition preā′ and effect effā′ . A
grounded action ā′ is applicable in a state s only if preā′ |= s. Every deterministic grounded action
ā′ ∈ Ā′ maps each symbolic state si to a new state sj .

The set Ā delineates symbolic lifted actions utilizing the lifted relations V . Each action ā ∈ Ā
has typed symbolic parameters and is defined using a tuple ⟨preā, effā⟩. Here, preā represents a
precondition of the action ā as a conjunction of parameterized relations V . The effect of the action,
effa, is detailed as effā = ⟨addā, delā⟩, which involves adding addā and removing delā relations
from the state upon execution of action ā. These actions ā can be instantiated with specific objects

14

to obtain grounded actions ā′, thus producing a grounded precondition preā′ and effect effā′ . An
instantiated action ā′ applies in a state s′ only if the precondition preā′ |= s′. Each deterministic
grounded action ā′ ∈ Ā′ defines a deterministic function a′ : s′i 7→ s′j that transitions a symbolic
state s′i to another state s′j .

Symbolic plans cannot be executed by a robot. It needs to be converted to a sequence of primitive
actions that a robot can execute. Task and motion planning approaches use abstract symbolic models
along with pose generators for computing a sequence of primitive actions for planning problems.
A pose generator defines an inverse abstraction function. Let γp be a pose generator for a lifted
symbolic predicate p ∈ P . For a grounded predicate p′, a pose generator γp′ = {x|x ∈ X ∧p′x = 1}.
A pose generator for a grounded state s′ is defined as

⋂
∀p′∈s′ γp′ .

B Overview of the LAMP

New Test Tasks
(Need longer horizons, more complex

reasoning than training tasks)

𝓓𝒕𝒓𝒂𝒊𝒏

Training
Demonstrations

(Easy Tasks)

Relation Inventor

Relational
Vocabulary
(Symbolic)

Action Inventor

Conceptual
Actions

(Symbolic)

Semantics
(Continuous
Interpreters)

Predictive
Action Models

(Symbolic)

Hybrid Planning
(Discrete + Continuous)

Transfer Using Relational Semantics + Action Models

Zero-Shot
Goal-Achieving Behavior

on Test Tasks

Input Concept Invention, World Modeling and Planning

Figure 5: Overview of the proposed algorithm. The approach comprises of two core components: (i) “Relation
Inventor” that uses training demonstrations and generates novel relational vocabularies for robots, and (ii)
“Action Inventor” that invents high-level symbolic actions. Together, they enable zero-shot goal-achieving
behavior by integrating relational semantics, predictive action models, and hybrid planning.

Algorithm 1: LAMP: Learning Abstract Model for Planning
Input: A set of demonstrations Dtrain for training tasks Ttrain, a set of objects O, a set of types of objects

T , test tasks Ttest

Output: Symbolic world modelM
/* Use Alg. 2 to invent relations */

1 V ← Relation Inventor(Dtrain);
/* Use Alg. 3 to invent actions */

2 Ā ← Action Inventor(Dtrain,V);
3 M = ⟨V, Ā⟩;
/* Solve new unseen task with task and motion planning (App. F) */

4 ΠDtest ← task and motion planning(Ttest,M);
5 returnM;

15

C Relation Inventor

Algorithm 2: Relation Inventor
Input: Training Demonstrations Dtrain, set of objects O, set of object types T
Output: Set of relations V
/* Prepare data */

1 D̃train ← ξ(Dtrain,O)
/* Learn relational critical region predictor */

2 Ψ← learn relational critical regions predictor(D̃train)
/* Identify binary relations */

3 Vbin ← invent binary relations(Ψ)
/* Identify additional relations */

4 Vadd ← invent additional relations(Vbin,Ψ)
5 V ← Vbin ∪ Vadd

6 return V

D Action Inventor

Algorithm 3: Inventing Symbolic Actions
Input: Set of demonstrations Dtrain, learned relations V
Output: Set of lifted actions Ā

1 D̄′
train ← get abstract demonstrations(Dtrain,V);

2 D̄train ← lift demonstrations(D̄′
train);

3 changed predicates← [];
4 foreach dk ∈ D̄ do
5 foreach consecutive state si, sj ∈ dk do
6 +Ck

ij ← sj \ si; −Ck
ij ← si \ sj ;

7 Ck
ij ← ⟨+Ck

ij ,
− Ck

ij⟩;
8 changed predicates.add(Ck

ij);

9 C ← create clusters(D̄train, changed predicates);
10 Ā ← [];
11 foreach (Si → Sj), C ∈ C do
12 eff← ⟨add = +C, del = −C⟩;
13 pre← ∩s∈Sis;
14 pre←prune precondition(pre);
15 param← extract params(Si → Sj);
16 Ā.add(create action(param, pre, eff));

17 return Ā

After identifying a group of high-level actions denoted by Ā we employ associative learning along
with the training demonstrations Dtrain to develop a symbolic representation for each action ā ∈ Ā.
The symbolic model of an action is described through its symbolic effects, symbolic preconditions,
and parameters.

Learning effects As noted earlier, in our setting, effect of an action ā is represented as effā =
⟨addā, delā⟩. Each cluster ci ∈ C is generated by clustering transitions the sets of changed relations.
These changed relations correspond to added and removed relations as an effect of executing the
action induced by the cluster. Therefore, for an action āi induced by the cluster ci with a set of
changed relations Ci = ⟨+Ci,

− Ci⟩, addāi =
+Ci and delāi =

−Ci.

Learning preconditions To learn the precondition of an action, we take the intersection of all
states where the action is applicable. Given a set of relations, this approach generates a maximal

16

precondition that is conservative yet sound [28, 29]. We learn the precondition of an action ā ∈ Ā
corresponding to a cluster c = ⟨Si → Sj , Cij⟩ preā = ∩s∈Sis.

Each action can have spurious preconditions corresponding to static relations that do not change
when the action is applied, but are still true in all the pre-states. Therefore, we remove relations
from the learned precondition that (i) are not parameterized by any of the objects that are changed
by the action and (ii) are not changed at any point in any of the demonstrations. This removes any
predicate from the precondition that is spurious with respect to the data.

Learning parameters Once the precondition and effect of an action are learned, the final step
is to learn the parameters of the action that can be replaced with objects in order to ground the
action. In this step, the relations in precondition and effect are processed in order. These relations
are processed in alphanumeric order and each of their parameters is added to the action’s parameter
list, if not already added. This process leads to an ordered list of parameters of the action, which can
be grounded with compatible objects.

D.1 Example of Action Model Learning

Let the set of predicates invented in Sec. 3.2 be the following:

• (table-can0 ?table ?can): Can is not on the table.

• (table-can1 ?table ?can): Can is on the table.

• (can-gripper1 ?can ?gripper): Gripper is at grasp pose (not holding/grasping yet).

• (can-gripper2 ?can ?gripper): Gripper has grasped the object.

• (base-gripper0 ?base ?gripper): Robot’s base link and robot’s gripper link does not
have any relation.

• (base-gripper1 ?base ?gripper): Robot’s arm is tucked so there is a specific relative
pose between the robot’s base link and the robot’s gripper link.

• (base-table1 ?base ?table): Robot’s base link is located in a way such that the
robot’s arm can reach objects on the table.

𝑆!": Gripper in grasp pose and
 not holding the yellow cup.

𝑆#" : Gripper in grasp pose and
 holding the yellow cup.

𝑆$" : Gripper holding the yellow
 cup, which is not on table.

𝑆%" : Gripper holding the yellow
 cup. Robot’s arm is tucked.

t=1 t=2 t=3 t=4

Figure 6: Trajectory T1 = ⟨S′

1, S
′

2, S
′

3, S
′

4⟩ corresponding to the process of picking up a yellow cup
from the table. The state description below each image explains that image in English. These state
descriptions are added here for ease of understanding only.

Now, consider the two trajectories T1 and T2 as shown in Fig. 6 and Fig. 7, respectively. Here T1
corresponds to the Fetch robot picking a yellow cup, and T2 corresponds to the robot picking up a
green cup (kept at a different location on the table compared to that of the yellow cup). Here these
two trajectories are expressed in terms of grounded objects. These are converted to a lifted form
using line 2 of Alg. 3 in terms of the predicates shown earlier. For T1 and T2 both, the lifted states
will be:

• S1 : {(table-can1 ?table ?can), (can-gripper1 ?can ?gripper), (base-gripper0
?base ?gripper), (base-table1 ?base ?table)}.

17

𝑆!": Gripper in grasp pose and
 not holding the green cup.

𝑆#" : Gripper in grasp pose and
 holding the green cup.

𝑆$" : Gripper holding the green
 cup, which is not on table.

𝑆%" : Gripper holding the green
 cup. Robot’s arm is tucked.

t=1 t=2 t=3 t=4

Figure 7: Trajectory T2 = ⟨S′

1, S
′

2, S
′

3, S
′

4⟩ corresponding to the process of picking up a green cup
from the table. The state description below each image explains that image in English. These state
descriptions are added here for ease of understanding only.

• S2 : {(table-can1 ?table ?can), (can-gripper2 ?can ?gripper), (base-gripper0
?base ?gripper), (base-table1 ?base ?table)}.

• S3 : {(table-can0 ?table ?can), (can-gripper2 ?can ?gripper), (base-gripper0
?base ?gripper), (base-table1 ?base ?table)}.

• S4 : {(table-can0 ?table ?can), (can-gripper2 ?can ?gripper), (base-gripper1
?base ?gripper), (base-table1 ?base ?table)}.

Note that we only show partial states here for brevity. The actual states will also have predicates
like (table-can1 ?table ?can2), (table-can1 ?table ?can3), (table-can1 ?table

?can4), (table-can1 ?table ?bowl1), (table-can1 ?table ?bowl2), (table-can1

?table ?bowl3), etc. corresponding to other objects kept on the table.

Learning effects Alg. 3 creates the following three clusters (lines 4-9) based on these states.

• C12 = ⟨+C12 = {(can-gripper2 ?can ?gripper)},− C12 = {(can-gripper1 ?can

?gripper)}⟩.
• C23 = ⟨+C23 = {(table-can0 ?table ?can)},− C23 = {(table-can1 ?table ?can)}⟩.
• C34 = ⟨+C34 = {(base-gripper1 ?base ?gripper)},− C34 = {(base-gripper0 ?base

?gripper)}⟩.

Learning preconditions Learning preconditions involve taking intersection of states in which
all the actions in the same cluster were executed. Here S1 to S3 mentioned below will
remain the same for the three clusters. E.g., precondition of C12 = {(table-can1
?table ?can), (can-gripper1 ?can ?gripper), (base-gripper0 ?base ?gripper),
(base-table1 ?base ?table)}. Alg. 3 will prune out (base-table1 ?base ?table) from
the precondition as (i) it is unchanged between S1 and S2, and (ii) none of its parameters (?base
and ?table) are part of any other predicate that is changed. Using this, the precondition for each
action will be:

• pre(C12) = {(table-can1 ?table ?can), (can-gripper1 ?can ?gripper),
(base-gripper0 ?base ?gripper)}.

• pre(C23) = {(table-can1 ?table ?can), (can-gripper2 ?can ?gripper),
(base-gripper0 ?base ?gripper), (base-table1 ?base ?table)}.

• pre(C34) = {(table-can0 ?table ?can), (can-gripper2 ?can ?gripper),
(base-gripper0 ?base ?gripper), (base-table1 ?base ?table)}.

Learning parameters Learning parameters from an action’s precondition and effect is straight-
forward. All the unique parameters in predicates in the precondition and effect are added to the
parameter list of an action representing a cluster. Using this notion, the parameters for the three
clusters will be the following:

18

• param(C12) =(?table ?can ?gripper ?base).

• param(C23) =(?table ?can ?gripper ?base).

• param(C34) =(?table ?can ?gripper ?base).

E Related Work

The presented approach directly relates to various concepts in task and motion planning, model
learning, and abstraction learning. However, to the best of our knowledge, this is the first work that
automatically invents generalizable symbolic predicates and high-level actions simultaneously using
a set of low-level trajectories.

Task and motion planning Task and motion planning approaches [20, 30, 31, 7] develop ap-
proaches for autonomously solving long-horizon robot planning problems. These approaches are
complementary to the presented approach as they focus on using provided abstractions for efficiently
solving the robot planning problems. Shah and Srivastava [9, 10] learn state and action abstractions
for long-horizon motion planning problems. Orthogonal research [32, 33, 34] learn implicit abstrac-
tions (action interpreters or abstract actions) for TAMP in the form of generative models. However,
these approaches do not learn generalizable relational representations as well as complex high-level
relations and actions which is the focus of our work.

Learning symbolic abstractions Several approaches invent symbolic vocabularies given a set of
high-level actions (or skills) [35, 36, 37, 38, 15, 39, 40]. Ahmetoglu et al. [41], Asai et al. [42], Liang
and Boularias [43] learn symbolic predicates in the form of latent spaces of deep neural networks and
use them for high-level symbolic planning. However, these approaches assume high-level actions to
be provided as input. On the other hand, the approach presented in this paper automatically learns
high-level actions along with symbolic predicates.

Numerous approaches [44, 45, 46, 47, 48] have focused on learning preconditions and effects for
high-level actions, i.e., action model. A few approaches [49, 50] have also focused on contin-
ually learning action models while collecting experience in the environment. Bryce et al. [51]
and Nayyar et al. [52] focus on updating a known model using inconsistent observations. How-
ever, these approaches require a set of symbolic predicates and/or high-level action signatures
as input whereas our approach automatically invents these predicates and actions. Several ap-
proaches [53, 54, 55, 16, 56, 17] have been able to automatically invent high-level actions that are
induced by state abstraction akin to the presented approach. However, unlike our approach, these
approaches do not automatically learn symbolic predicates and/or low-level samplers and require
them as input.

Behavior Cloning for Robotics Behavior cloning (BC) has been widely explored in robotics as a
method for learning control policies from expert demonstrations. Early work by Pomerleau [57] in-
troduced the concept of imitation learning through supervised learning, where a model maps sensor
inputs to control actions. Recent years have seen renewed interest in behavior cloning approaches
due to the rise in applicability of deep neural networks [58, 3, 2, 4, 5]. These appraoches have
shown remarkable advancements in dexterous manipulation capabilities (e.g., tying shoelaces and
chopping fruits) and ability to manipulate deformable objects (e.g., folding laundry). However, these
approaches are only limited to tackling problems in their training demonstrations as well as often
require huge amounts of training demonstrations (in the order of 1000s of demonstrations per task),
reducing the applicability of such approaches in real-world settings where the distribution of tasks
is not known a priori.

LLMs for robot planning Recent years have also seen significantly increased interest in using
foundational models such as LLM (large language model), VLM (visual language model), and
transformers for robot planning and control owing to their success in other fields such as NLP, text
generation, and vision. Several approaches [3, 59, 60, 61] use transformer architecture for learning

19

reactive policies for short-horizon robot control problems. Problems tackled by these approaches
are analogous to individual actions learned by our approach.

Several directions of research explore the use of LLMs for utilizing LLMs as high-level planners
to generate sequences comprising of high-level, expert crafted actions [26, 11, 62, 25, 63, 64, 14].
These methods make progress on the problem of near-natural language communication with robots
and are complementary to the proposed work. However, there is a strong evidence against the
soundness of LLMs as planners. Valmeekam et al. [65] show that LLMs are only ∼ 36% accurate
as planners even in simple block stacking settings not involving more than 5 object.

F Task and Motion Planning with Learned World Models

Task and motion planning [20, 31, 7] combines symbolic world representations and action inter-
preters to develop an interleaved planning approach. This approach seeks a valid sequence of high-
level actions each accompanied by legitimate primitive action refinement. We apply a deterministic
form of STAMP [7] for task and motion planning relying on learned world representations. STAMP
utilizes the acquired relational vocabulary along with high-level robotic actions to generate a high-
level action sequence, subsequently refining these actions using learned interpreters into executable
primitive actions.

One of the major challenges in TAMP with automatically learned world models is the overly pes-
simistic or conservative nature of these models, often leading the planner to a failed search even in
the presence of potential plans. To address this, we incorporate predicate abstractions [23] to sys-
tematically create a relaxed high-level planning problem that STAMP can work to refine. However,
the use of predicate abstractions may result in inaccurate world models, thus permitting high-level
plans lacking viable refinements. To counteract this, we enhance the STAMP high-level planner
to a top-k [24] version, generating multiple high-level plans. We then progressively refine these k
plans until we achieve a plan supporting valid primitive action refinements for each high-level robot
activity.

G Code and Data

Code and data is available with the supplementary material. It would be made publicly available
with the accepted paper.

H Learned Word Models

H.1 Delivering Items in a Cafe

(define (domain CafeWorld)
(:requirements :strips :typing :equality :conditional-effects

:existential-preconditions :universal-preconditions)↪→

(:types
freight
can
gripper
surface

)

(:constants
)

(:predicates
(freight_surface_0 ?x - freight ?y - surface)
(freight_surface_1 ?x - freight ?y - surface)
(gripper_can_0 ?x - gripper ?y - can)
(gripper_can_1 ?x - gripper ?y - can)
(gripper_can_2 ?x - gripper ?y - can)

20

(freight_gripper_0 ?x - freight ?y - gripper)
(freight_gripper_1 ?x - freight ?y - gripper)
(can_surface_0 ?x - can ?y - surface)
(can_surface_1 ?x - can ?y - surface)
(freight_can_0 ?x - freight ?y - can)
(freight_can_1 ?x - freight ?y - can)
(clear3_gripper_can_1 ?x - gripper)
(clear3_freight_can_1 ?x - freight)
(clear3_freight_gripper_1 ?x - freight)
(clear3_freight_surface_1 ?x - freight)
(clear3_can_surface_1 ?x - can)
(clear3_gripper_can_2 ?x - gripper)

)

(:action a1
:parameters (?can_p1 - can ?freight_p1 - freight ?surface_extra_p1 -

surface ?gripper_p1 - gripper)↪→

:precondition (and
(can_surface_1 ?can_p1 ?surface_extra_p1)
(freight_can_0 ?freight_p1 ?can_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(gripper_can_2 ?gripper_p1 ?can_p1)
(clear3_gripper_can_1 ?gripper_p1)

)
:effect (and

(gripper_can_1 ?gripper_p1 ?can_p1)
(not (gripper_can_0 ?gripper_p1 ?can_p1))
(not (gripper_can_2 ?gripper_p1 ?can_p1))
(clear3_gripper_can_2 ?gripper_p1)
(not (clear3_gripper_can_1 ?gripper_p1))

)
)

(:action a2
:parameters (?surface_extra_p4 - surface ?can_p1 - can ?gripper_p1 -

gripper ?surface_extra_p1 - surface ?freight_p1 - freight)↪→

:precondition (and
(not (= ?surface_extra_p4 ?surface_extra_p1))
(can_surface_0 ?can_p1 ?surface_extra_p4)
(freight_can_0 ?freight_p1 ?can_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(freight_surface_0 ?freight_p1 ?surface_extra_p4)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(gripper_can_2 ?gripper_p1 ?can_p1)
(clear3_freight_can_1 ?freight_p1)
(clear3_freight_gripper_1 ?freight_p1)

)
:effect (and

(freight_can_1 ?freight_p1 ?can_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(not (freight_can_0 ?freight_p1 ?can_p1))
(not (freight_gripper_0 ?freight_p1 ?gripper_p1))
(not (clear3_freight_can_1 ?freight_p1))
(not (clear3_freight_gripper_1 ?freight_p1))

)
)

(:action a3

21

:parameters (?can_p1 - can ?gripper_p1 - gripper ?surface_extra_p1 -
surface ?freight_p1 - freight)↪→

:precondition (and
(can_surface_1 ?can_p1 ?surface_extra_p1)
(freight_can_0 ?freight_p1 ?can_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(gripper_can_1 ?gripper_p1 ?can_p1)
(clear3_gripper_can_2 ?gripper_p1)

)
:effect (and

(gripper_can_0 ?gripper_p1 ?can_p1)
(not (gripper_can_1 ?gripper_p1 ?can_p1))
(not (gripper_can_2 ?gripper_p1 ?can_p1))
(clear3_gripper_can_1 ?gripper_p1)

)
)

(:action a4
:parameters (?can_p1 - can ?gripper_p1 - gripper ?surface_extra_p1 -

surface ?freight_p1 - freight)↪→

:precondition (and
(freight_can_1 ?freight_p1 ?can_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(gripper_can_2 ?gripper_p1 ?can_p1)

)
:effect (and

(freight_can_0 ?freight_p1 ?can_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(not (freight_can_1 ?freight_p1 ?can_p1))
(not (freight_gripper_1 ?freight_p1 ?gripper_p1))
(clear3_freight_can_1 ?freight_p1)
(clear3_freight_gripper_1 ?freight_p1)

)
)

(:action a5
:parameters (?gripper_extra_p1 - gripper ?can_p1 - can ?freight_extra_p1

- freight ?surface_p1 - surface)↪→

:precondition (and
(can_surface_0 ?can_p1 ?surface_p1)
(freight_can_0 ?freight_extra_p1 ?can_p1)
(freight_gripper_0 ?freight_extra_p1 ?gripper_extra_p1)
(freight_surface_1 ?freight_extra_p1 ?surface_p1)
(gripper_can_2 ?gripper_extra_p1 ?can_p1)
(clear3_can_surface_1 ?can_p1)

)
:effect (and

(can_surface_1 ?can_p1 ?surface_p1)
(not (can_surface_0 ?can_p1 ?surface_p1))
(not (clear3_can_surface_1 ?can_p1))

)
)

(:action a6
:parameters (?gripper_p1 - gripper ?surface_extra_p1 - surface

?freight_p1 - freight)↪→

:precondition (and

22

(freight_gripper_1 ?freight_p1 ?gripper_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)

)
:effect (and

(freight_gripper_0 ?freight_p1 ?gripper_p1)
(not (freight_gripper_1 ?freight_p1 ?gripper_p1))
(clear3_freight_gripper_1 ?freight_p1)

)
)

(:action a7
:parameters (?can_p1 - can ?gripper_p1 - gripper ?surface_extra_p1 -

surface ?freight_p1 - freight)↪→

:precondition (and
(can_surface_1 ?can_p1 ?surface_extra_p1)
(freight_can_0 ?freight_p1 ?can_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(gripper_can_1 ?gripper_p1 ?can_p1)
(clear3_gripper_can_2 ?gripper_p1)

)
:effect (and

(gripper_can_2 ?gripper_p1 ?can_p1)
(not (gripper_can_0 ?gripper_p1 ?can_p1))
(not (gripper_can_1 ?gripper_p1 ?can_p1))
(clear3_gripper_can_1 ?gripper_p1)
(not (clear3_gripper_can_2 ?gripper_p1))

)
)

(:action a8
:parameters (?gripper_p1 - gripper ?surface_extra_p1 - surface

?freight_p1 - freight)↪→

:precondition (and
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(clear3_freight_gripper_1 ?freight_p1)

)
:effect (and

(freight_gripper_1 ?freight_p1 ?gripper_p1)
(not (freight_gripper_0 ?freight_p1 ?gripper_p1))
(not (clear3_freight_gripper_1 ?freight_p1))

)
)

(:action a9
:parameters (?can_p1 - can ?freight_p1 - freight ?surface_extra_p1 -

surface ?gripper_p1 - gripper)↪→

:precondition (and
(can_surface_1 ?can_p1 ?surface_extra_p1)
(freight_can_0 ?freight_p1 ?can_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(gripper_can_0 ?gripper_p1 ?can_p1)
(clear3_gripper_can_1 ?gripper_p1)
(clear3_gripper_can_2 ?gripper_p1)

)
:effect (and

(gripper_can_1 ?gripper_p1 ?can_p1)

23

(not (gripper_can_0 ?gripper_p1 ?can_p1))
(not (gripper_can_2 ?gripper_p1 ?can_p1))
(not (clear3_gripper_can_1 ?gripper_p1))

)
)

(:action a10
:parameters (?gripper_p1 - gripper ?surface_p1 - surface ?freight_p1 -

freight)↪→

:precondition (and
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(freight_surface_0 ?freight_p1 ?surface_p1)
(clear3_freight_surface_1 ?freight_p1)

)
:effect (and

(freight_surface_1 ?freight_p1 ?surface_p1)
(not (freight_surface_0 ?freight_p1 ?surface_p1))
(not (clear3_freight_surface_1 ?freight_p1))

)
)

(:action a11
:parameters (?gripper_extra_p1 - gripper ?can_p1 - can ?freight_extra_p1

- freight ?surface_p1 - surface)↪→

:precondition (and
(can_surface_1 ?can_p1 ?surface_p1)
(freight_can_0 ?freight_extra_p1 ?can_p1)
(freight_gripper_0 ?freight_extra_p1 ?gripper_extra_p1)
(freight_surface_1 ?freight_extra_p1 ?surface_p1)
(gripper_can_2 ?gripper_extra_p1 ?can_p1)

)
:effect (and

(can_surface_0 ?can_p1 ?surface_p1)
(not (can_surface_1 ?can_p1 ?surface_p1))
(clear3_can_surface_1 ?can_p1)

)
)

(:action a12
:parameters (?gripper_p1 - gripper ?surface_p1 - surface ?freight_p1 -

freight)↪→

:precondition (and
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(freight_surface_1 ?freight_p1 ?surface_p1)

)
:effect (and

(freight_surface_0 ?freight_p1 ?surface_p1)
(not (freight_surface_1 ?freight_p1 ?surface_p1))
(clear3_freight_surface_1 ?freight_p1)

)
))

H.2 Setting Up a Dinner Table

(define (domain DinnerTable)
(:requirements :strips :typing :equality :conditional-effects

:existential-preconditions :universal-preconditions)↪→

(:types
bowltargetLoc

24

gripper
glass
bowl
glasstargetLoc
glassinitLoc
freight
bowlinitLoc

)

(:constants
)

(:predicates
(glass_glasstargetLoc_0 ?x - glass ?y - glasstargetLoc)
(glass_glasstargetLoc_1 ?x - glass ?y - glasstargetLoc)
(freight_bowl_0 ?x - freight ?y - bowl)
(freight_bowl_1 ?x - freight ?y - bowl)
(freight_bowlinitLoc_0 ?x - freight ?y - bowlinitLoc)
(freight_bowlinitLoc_1 ?x - freight ?y - bowlinitLoc)
(bowl_bowlinitLoc_0 ?x - bowl ?y - bowlinitLoc)
(bowl_bowlinitLoc_1 ?x - bowl ?y - bowlinitLoc)
(gripper_bowl_0 ?x - gripper ?y - bowl)
(gripper_bowl_1 ?x - gripper ?y - bowl)
(gripper_bowl_2 ?x - gripper ?y - bowl)
(freight_bowltargetLoc_0 ?x - freight ?y - bowltargetLoc)
(freight_bowltargetLoc_1 ?x - freight ?y - bowltargetLoc)
(freight_glass_0 ?x - freight ?y - glass)
(freight_glass_1 ?x - freight ?y - glass)
(bowl_bowltargetLoc_0 ?x - bowl ?y - bowltargetLoc)
(bowl_bowltargetLoc_1 ?x - bowl ?y - bowltargetLoc)
(glass_glassinitLoc_0 ?x - glass ?y - glassinitLoc)
(glass_glassinitLoc_1 ?x - glass ?y - glassinitLoc)
(freight_gripper_0 ?x - freight ?y - gripper)
(freight_gripper_1 ?x - freight ?y - gripper)
(freight_glassinitLoc_0 ?x - freight ?y - glassinitLoc)
(freight_glassinitLoc_1 ?x - freight ?y - glassinitLoc)
(freight_glasstargetLoc_0 ?x - freight ?y - glasstargetLoc)
(freight_glasstargetLoc_1 ?x - freight ?y - glasstargetLoc)
(gripper_glass_0 ?x - gripper ?y - glass)
(gripper_glass_1 ?x - gripper ?y - glass)
(gripper_glass_2 ?x - gripper ?y - glass)
(clear3_freight_bowltargetLoc_1 ?x - freight)
(clear3_gripper_glass_1 ?x - gripper)
(clear3_gripper_bowl_2 ?x - gripper)
(clear3_freight_bowlinitLoc_1 ?x - freight)
(clear3_freight_bowl_1 ?x - freight)
(clear3_freight_glass_1 ?x - freight)
(clear3_gripper_glass_2 ?x - gripper)
(clear3_bowl_bowlinitLoc_1 ?x - bowl)
(clear3_gripper_bowl_1 ?x - gripper)
(clear3_bowl_bowltargetLoc_1 ?x - bowl)
(clear3_freight_glassinitLoc_1 ?x - freight)
(clear3_glass_glasstargetLoc_1 ?x - glass)
(clear3_freight_gripper_1 ?x - freight)
(clear3_freight_glasstargetLoc_1 ?x - freight)
(clear3_glass_glassinitLoc_1 ?x - glass)

)

(:action a1

25

:parameters (?bowl_extra_p1 - bowl ?freight_p1 - freight ?bowlinitLoc_p1
- bowlinitLoc ?gripper_p1 - gripper)↪→

:precondition (and
(freight_bowl_1 ?freight_p1 ?bowl_extra_p1)
(freight_bowlinitLoc_1 ?freight_p1 ?bowlinitLoc_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(gripper_bowl_2 ?gripper_p1 ?bowl_extra_p1)
(clear3_freight_bowltargetLoc_1 ?freight_p1)
(clear3_freight_glass_1 ?freight_p1)
(clear3_freight_glassinitLoc_1 ?freight_p1)
(clear3_freight_glasstargetLoc_1 ?freight_p1)

)
:effect (and

(freight_bowlinitLoc_0 ?freight_p1 ?bowlinitLoc_p1)
(not (freight_bowlinitLoc_1 ?freight_p1 ?bowlinitLoc_p1))
(clear3_freight_bowlinitLoc_1 ?freight_p1)

)
)

(:action a2
:parameters (?bowltargetLoc_extra_p1 - bowltargetLoc ?bowl_p1 - bowl

?gripper_p1 - gripper ?freight_p1 - freight)↪→

:precondition (and
(freight_bowl_1 ?freight_p1 ?bowl_p1)
(freight_bowltargetLoc_1 ?freight_p1 ?bowltargetLoc_extra_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(gripper_bowl_2 ?gripper_p1 ?bowl_p1)
(clear3_freight_bowlinitLoc_1 ?freight_p1)
(clear3_freight_glass_1 ?freight_p1)
(clear3_freight_glassinitLoc_1 ?freight_p1)
(clear3_freight_glasstargetLoc_1 ?freight_p1)
(clear3_gripper_bowl_1 ?gripper_p1)
(clear3_gripper_glass_1 ?gripper_p1)
(clear3_gripper_glass_2 ?gripper_p1)

)
:effect (and

(freight_bowl_0 ?freight_p1 ?bowl_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(not (freight_bowl_1 ?freight_p1 ?bowl_p1))
(not (freight_gripper_1 ?freight_p1 ?gripper_p1))
(clear3_freight_bowl_1 ?freight_p1)
(clear3_freight_gripper_1 ?freight_p1)

)
)

(:action a3
:parameters (?glassinitLoc_extra_p1 - glassinitLoc ?gripper_p1 - gripper

?glass_p1 - glass ?freight_p1 - freight)↪→

:precondition (and
(freight_glass_0 ?freight_p1 ?glass_p1)
(freight_glassinitLoc_1 ?freight_p1 ?glassinitLoc_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(glass_glassinitLoc_0 ?glass_p1 ?glassinitLoc_extra_p1)
(gripper_glass_2 ?gripper_p1 ?glass_p1)
(clear3_freight_bowl_1 ?freight_p1)
(clear3_freight_bowlinitLoc_1 ?freight_p1)
(clear3_freight_bowltargetLoc_1 ?freight_p1)
(clear3_freight_glass_1 ?freight_p1)
(clear3_freight_glasstargetLoc_1 ?freight_p1)

26

(clear3_freight_gripper_1 ?freight_p1)
(clear3_gripper_bowl_1 ?gripper_p1)
(clear3_gripper_bowl_2 ?gripper_p1)
(clear3_gripper_glass_1 ?gripper_p1)

)
:effect (and

(freight_glass_1 ?freight_p1 ?glass_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(not (freight_glass_0 ?freight_p1 ?glass_p1))
(not (freight_gripper_0 ?freight_p1 ?gripper_p1))
(not (clear3_freight_glass_1 ?freight_p1))
(not (clear3_freight_gripper_1 ?freight_p1))

)
)

(:action a4
:parameters (?glassinitLoc_extra_p1 - glassinitLoc ?gripper_p1 - gripper

?glass_p1 - glass ?freight_p1 - freight)↪→

:precondition (and
(freight_glass_0 ?freight_p1 ?glass_p1)
(freight_glassinitLoc_1 ?freight_p1 ?glassinitLoc_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(glass_glassinitLoc_1 ?glass_p1 ?glassinitLoc_extra_p1)
(gripper_glass_1 ?gripper_p1 ?glass_p1)
(clear3_gripper_bowl_1 ?gripper_p1)
(clear3_gripper_bowl_2 ?gripper_p1)
(clear3_gripper_glass_2 ?gripper_p1)

)
:effect (and

(gripper_glass_2 ?gripper_p1 ?glass_p1)
(not (gripper_glass_0 ?gripper_p1 ?glass_p1))
(not (gripper_glass_1 ?gripper_p1 ?glass_p1))
(clear3_gripper_glass_1 ?gripper_p1)
(not (clear3_gripper_glass_2 ?gripper_p1))

)
)

(:action a5
:parameters (?bowl_p1 - bowl ?gripper_extra_p1 - gripper

?freight_extra_p1 - freight ?bowlinitLoc_p1 - bowlinitLoc)↪→

:precondition (and
(bowl_bowlinitLoc_1 ?bowl_p1 ?bowlinitLoc_p1)
(freight_bowl_0 ?freight_extra_p1 ?bowl_p1)
(freight_bowlinitLoc_1 ?freight_extra_p1 ?bowlinitLoc_p1)
(freight_gripper_0 ?freight_extra_p1 ?gripper_extra_p1)
(gripper_bowl_2 ?gripper_extra_p1 ?bowl_p1)

)
:effect (and

(bowl_bowlinitLoc_0 ?bowl_p1 ?bowlinitLoc_p1)
(not (bowl_bowlinitLoc_1 ?bowl_p1 ?bowlinitLoc_p1))
(clear3_bowl_bowlinitLoc_1 ?bowl_p1)

)
)

(:action a6
:parameters (?bowltargetLoc_p1 - bowltargetLoc ?gripper_p1 - gripper

?bowlinitLoc_extra_p1 - bowlinitLoc ?freight_p1 - freight)↪→

:precondition (and
(freight_bowlinitLoc_0 ?freight_p1 ?bowlinitLoc_extra_p1)

27

(freight_bowltargetLoc_1 ?freight_p1 ?bowltargetLoc_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(clear3_freight_bowl_1 ?freight_p1)
(clear3_freight_bowlinitLoc_1 ?freight_p1)
(clear3_freight_glass_1 ?freight_p1)
(clear3_freight_glassinitLoc_1 ?freight_p1)
(clear3_freight_glasstargetLoc_1 ?freight_p1)

)
:effect (and

(freight_bowltargetLoc_0 ?freight_p1 ?bowltargetLoc_p1)
(not (freight_bowltargetLoc_1 ?freight_p1 ?bowltargetLoc_p1))
(clear3_freight_bowltargetLoc_1 ?freight_p1)

)
)

(:action a7
:parameters (?bowl_p1 - bowl ?gripper_extra_p1 - gripper

?bowlinitLoc_extra_p1 - bowlinitLoc ?freight_extra_p1 - freight
?bowltargetLoc_p1 - bowltargetLoc)

↪→

↪→

:precondition (and
(bowl_bowlinitLoc_0 ?bowl_p1 ?bowlinitLoc_extra_p1)
(bowl_bowltargetLoc_0 ?bowl_p1 ?bowltargetLoc_p1)
(freight_bowl_0 ?freight_extra_p1 ?bowl_p1)
(freight_bowlinitLoc_0 ?freight_extra_p1 ?bowlinitLoc_extra_p1)
(freight_bowltargetLoc_1 ?freight_extra_p1 ?bowltargetLoc_p1)
(freight_gripper_0 ?freight_extra_p1 ?gripper_extra_p1)
(gripper_bowl_2 ?gripper_extra_p1 ?bowl_p1)
(clear3_bowl_bowltargetLoc_1 ?bowl_p1)

)
:effect (and

(bowl_bowltargetLoc_1 ?bowl_p1 ?bowltargetLoc_p1)
(not (bowl_bowltargetLoc_0 ?bowl_p1 ?bowltargetLoc_p1))
(not (clear3_bowl_bowltargetLoc_1 ?bowl_p1))

)
)

(:action a8
:parameters (?glass_p1 - glass ?gripper_p1 - gripper

?glasstargetLoc_extra_p1 - glasstargetLoc ?freight_p1 - freight)↪→

:precondition (and
(freight_glass_0 ?freight_p1 ?glass_p1)
(freight_glasstargetLoc_1 ?freight_p1 ?glasstargetLoc_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(glass_glasstargetLoc_1 ?glass_p1 ?glasstargetLoc_extra_p1)
(gripper_glass_2 ?gripper_p1 ?glass_p1)
(clear3_gripper_bowl_1 ?gripper_p1)
(clear3_gripper_bowl_2 ?gripper_p1)
(clear3_gripper_glass_1 ?gripper_p1)

)
:effect (and

(gripper_glass_1 ?gripper_p1 ?glass_p1)
(not (gripper_glass_0 ?gripper_p1 ?glass_p1))
(not (gripper_glass_2 ?gripper_p1 ?glass_p1))
(clear3_gripper_glass_2 ?gripper_p1)
(not (clear3_gripper_glass_1 ?gripper_p1))

)
)

(:action a9

28

:parameters (?bowltargetLoc_extra_p1 - bowltargetLoc ?bowl_p1 - bowl
?gripper_p1 - gripper ?freight_p1 - freight)↪→

:precondition (and
(bowl_bowltargetLoc_1 ?bowl_p1 ?bowltargetLoc_extra_p1)
(freight_bowl_0 ?freight_p1 ?bowl_p1)
(freight_bowltargetLoc_1 ?freight_p1 ?bowltargetLoc_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(gripper_bowl_1 ?gripper_p1 ?bowl_p1)
(clear3_gripper_bowl_2 ?gripper_p1)
(clear3_gripper_glass_1 ?gripper_p1)
(clear3_gripper_glass_2 ?gripper_p1)

)
:effect (and

(gripper_bowl_0 ?gripper_p1 ?bowl_p1)
(not (gripper_bowl_1 ?gripper_p1 ?bowl_p1))
(not (gripper_bowl_2 ?gripper_p1 ?bowl_p1))
(clear3_gripper_bowl_1 ?gripper_p1)

)
)

(:action a10
:parameters (?bowltargetLoc_extra_p1 - bowltargetLoc ?bowl_p1 - bowl

?gripper_p1 - gripper ?freight_p1 - freight)↪→

:precondition (and
(bowl_bowltargetLoc_1 ?bowl_p1 ?bowltargetLoc_extra_p1)
(freight_bowl_0 ?freight_p1 ?bowl_p1)
(freight_bowltargetLoc_1 ?freight_p1 ?bowltargetLoc_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(gripper_bowl_2 ?gripper_p1 ?bowl_p1)
(clear3_gripper_bowl_1 ?gripper_p1)
(clear3_gripper_glass_1 ?gripper_p1)
(clear3_gripper_glass_2 ?gripper_p1)

)
:effect (and

(gripper_bowl_1 ?gripper_p1 ?bowl_p1)
(not (gripper_bowl_0 ?gripper_p1 ?bowl_p1))
(not (gripper_bowl_2 ?gripper_p1 ?bowl_p1))
(clear3_gripper_bowl_2 ?gripper_p1)
(not (clear3_gripper_bowl_1 ?gripper_p1))

)
)

(:action a11
:parameters (?freight_extra_p1 - freight ?glass_p1 - glass

?gripper_extra_p1 - gripper ?glasstargetLoc_p1 - glasstargetLoc)↪→

:precondition (and
(freight_glass_0 ?freight_extra_p1 ?glass_p1)
(freight_glasstargetLoc_1 ?freight_extra_p1 ?glasstargetLoc_p1)
(freight_gripper_0 ?freight_extra_p1 ?gripper_extra_p1)
(glass_glasstargetLoc_0 ?glass_p1 ?glasstargetLoc_p1)
(gripper_glass_2 ?gripper_extra_p1 ?glass_p1)
(clear3_glass_glasstargetLoc_1 ?glass_p1)

)
:effect (and

(glass_glasstargetLoc_1 ?glass_p1 ?glasstargetLoc_p1)
(not (glass_glasstargetLoc_0 ?glass_p1 ?glasstargetLoc_p1))
(not (clear3_glass_glasstargetLoc_1 ?glass_p1))

)
)

29

(:action a12
:parameters (?bowltargetLoc_p1 - bowltargetLoc ?bowl_extra_p1 - bowl

?gripper_p1 - gripper ?bowlinitLoc_extra_p1 - bowlinitLoc ?freight_p1
- freight)

↪→

↪→

:precondition (and
(bowl_bowlinitLoc_0 ?bowl_extra_p1 ?bowlinitLoc_extra_p1)
(freight_bowl_1 ?freight_p1 ?bowl_extra_p1)
(freight_bowlinitLoc_0 ?freight_p1 ?bowlinitLoc_extra_p1)
(freight_bowltargetLoc_0 ?freight_p1 ?bowltargetLoc_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(gripper_bowl_2 ?gripper_p1 ?bowl_extra_p1)
(clear3_freight_bowlinitLoc_1 ?freight_p1)
(clear3_freight_bowltargetLoc_1 ?freight_p1)
(clear3_freight_glass_1 ?freight_p1)
(clear3_freight_glassinitLoc_1 ?freight_p1)
(clear3_freight_glasstargetLoc_1 ?freight_p1)

)
:effect (and

(freight_bowltargetLoc_1 ?freight_p1 ?bowltargetLoc_p1)
(not (freight_bowltargetLoc_0 ?freight_p1 ?bowltargetLoc_p1))
(not (clear3_freight_bowltargetLoc_1 ?freight_p1))

)
)

(:action a13
:parameters (?glassinitLoc_p1 - glassinitLoc ?gripper_p1 - gripper

?freight_p1 - freight)↪→

:precondition (and
(freight_glassinitLoc_0 ?freight_p1 ?glassinitLoc_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(clear3_freight_bowl_1 ?freight_p1)
(clear3_freight_bowlinitLoc_1 ?freight_p1)
(clear3_freight_bowltargetLoc_1 ?freight_p1)
(clear3_freight_glass_1 ?freight_p1)
(clear3_freight_glassinitLoc_1 ?freight_p1)
(clear3_freight_glasstargetLoc_1 ?freight_p1)

)
:effect (and

(freight_glassinitLoc_1 ?freight_p1 ?glassinitLoc_p1)
(not (freight_glassinitLoc_0 ?freight_p1 ?glassinitLoc_p1))
(not (clear3_freight_glassinitLoc_1 ?freight_p1))

)
)

(:action a14
:parameters (?gripper_p1 - gripper ?bowl_p1 - bowl ?bowlinitLoc_extra_p1

- bowlinitLoc ?freight_p1 - freight)↪→

:precondition (and
(bowl_bowlinitLoc_1 ?bowl_p1 ?bowlinitLoc_extra_p1)
(freight_bowl_0 ?freight_p1 ?bowl_p1)
(freight_bowlinitLoc_1 ?freight_p1 ?bowlinitLoc_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(gripper_bowl_1 ?gripper_p1 ?bowl_p1)
(clear3_gripper_bowl_2 ?gripper_p1)
(clear3_gripper_glass_1 ?gripper_p1)
(clear3_gripper_glass_2 ?gripper_p1)

)
:effect (and

30

(gripper_bowl_2 ?gripper_p1 ?bowl_p1)
(not (gripper_bowl_0 ?gripper_p1 ?bowl_p1))
(not (gripper_bowl_1 ?gripper_p1 ?bowl_p1))
(clear3_gripper_bowl_1 ?gripper_p1)
(not (clear3_gripper_bowl_2 ?gripper_p1))

)
)

(:action a15
:parameters (?gripper_p1 - gripper ?bowl_p1 - bowl ?bowlinitLoc_extra_p1

- bowlinitLoc ?freight_p1 - freight)↪→

:precondition (and
(bowl_bowlinitLoc_1 ?bowl_p1 ?bowlinitLoc_extra_p1)
(freight_bowl_0 ?freight_p1 ?bowl_p1)
(freight_bowlinitLoc_1 ?freight_p1 ?bowlinitLoc_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(gripper_bowl_0 ?gripper_p1 ?bowl_p1)
(clear3_gripper_bowl_1 ?gripper_p1)
(clear3_gripper_bowl_2 ?gripper_p1)
(clear3_gripper_glass_1 ?gripper_p1)
(clear3_gripper_glass_2 ?gripper_p1)

)
:effect (and

(gripper_bowl_1 ?gripper_p1 ?bowl_p1)
(not (gripper_bowl_0 ?gripper_p1 ?bowl_p1))
(not (gripper_bowl_2 ?gripper_p1 ?bowl_p1))
(not (clear3_gripper_bowl_1 ?gripper_p1))

)
)

(:action a16
:parameters (?glass_p1 - glass ?gripper_p1 - gripper

?glasstargetLoc_extra_p1 - glasstargetLoc ?freight_p1 - freight)↪→

:precondition (and
(freight_glass_1 ?freight_p1 ?glass_p1)
(freight_glasstargetLoc_1 ?freight_p1 ?glasstargetLoc_extra_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(gripper_glass_2 ?gripper_p1 ?glass_p1)
(clear3_freight_bowl_1 ?freight_p1)
(clear3_freight_bowlinitLoc_1 ?freight_p1)
(clear3_freight_bowltargetLoc_1 ?freight_p1)
(clear3_freight_glassinitLoc_1 ?freight_p1)
(clear3_gripper_bowl_1 ?gripper_p1)
(clear3_gripper_bowl_2 ?gripper_p1)
(clear3_gripper_glass_1 ?gripper_p1)

)
:effect (and

(freight_glass_0 ?freight_p1 ?glass_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(not (freight_glass_1 ?freight_p1 ?glass_p1))
(not (freight_gripper_1 ?freight_p1 ?gripper_p1))
(clear3_freight_glass_1 ?freight_p1)
(clear3_freight_gripper_1 ?freight_p1)

)
)

(:action a17

31

:parameters (?glasstargetLoc_extra_p1 - glasstargetLoc ?glass_p1 - glass
?freight_p1 - freight ?glassinitLoc_extra_p1 - glassinitLoc
?gripper_p1 - gripper)

↪→

↪→

:precondition (and
(freight_glass_0 ?freight_p1 ?glass_p1)
(freight_glassinitLoc_0 ?freight_p1 ?glassinitLoc_extra_p1)
(freight_glasstargetLoc_1 ?freight_p1 ?glasstargetLoc_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(glass_glassinitLoc_0 ?glass_p1 ?glassinitLoc_extra_p1)
(glass_glasstargetLoc_1 ?glass_p1 ?glasstargetLoc_extra_p1)
(gripper_glass_1 ?gripper_p1 ?glass_p1)
(clear3_gripper_bowl_1 ?gripper_p1)
(clear3_gripper_bowl_2 ?gripper_p1)
(clear3_gripper_glass_2 ?gripper_p1)

)
:effect (and

(gripper_glass_0 ?gripper_p1 ?glass_p1)
(not (gripper_glass_1 ?gripper_p1 ?glass_p1))
(not (gripper_glass_2 ?gripper_p1 ?glass_p1))
(clear3_gripper_glass_1 ?gripper_p1)

)
)

(:action a18
:parameters (?glasstargetLoc_p1 - glasstargetLoc ?gripper_p1 - gripper

?glassinitLoc_extra_p1 - glassinitLoc ?glass_extra_p1 - glass
?freight_p1 - freight)

↪→

↪→

:precondition (and
(freight_glass_1 ?freight_p1 ?glass_extra_p1)
(freight_glassinitLoc_0 ?freight_p1 ?glassinitLoc_extra_p1)
(freight_glasstargetLoc_0 ?freight_p1 ?glasstargetLoc_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(gripper_glass_2 ?gripper_p1 ?glass_extra_p1)
(clear3_freight_bowl_1 ?freight_p1)
(clear3_freight_bowlinitLoc_1 ?freight_p1)
(clear3_freight_bowltargetLoc_1 ?freight_p1)
(clear3_freight_glassinitLoc_1 ?freight_p1)
(clear3_freight_glasstargetLoc_1 ?freight_p1)

)
:effect (and

(freight_glasstargetLoc_1 ?freight_p1 ?glasstargetLoc_p1)
(not (freight_glasstargetLoc_0 ?freight_p1 ?glasstargetLoc_p1))
(not (clear3_freight_glasstargetLoc_1 ?freight_p1))

)
)

(:action a19
:parameters (?gripper_p1 - gripper ?freight_p1 - freight)
:precondition (and

(freight_gripper_0 ?freight_p1 ?gripper_p1)
(clear3_freight_bowl_1 ?freight_p1)
(clear3_freight_bowlinitLoc_1 ?freight_p1)
(clear3_freight_glass_1 ?freight_p1)
(clear3_freight_glassinitLoc_1 ?freight_p1)
(clear3_freight_gripper_1 ?freight_p1)
(clear3_gripper_bowl_1 ?gripper_p1)
(clear3_gripper_bowl_2 ?gripper_p1)
(clear3_gripper_glass_1 ?gripper_p1)
(clear3_gripper_glass_2 ?gripper_p1)

32

)
:effect (and

(freight_gripper_1 ?freight_p1 ?gripper_p1)
(not (freight_gripper_0 ?freight_p1 ?gripper_p1))
(not (clear3_freight_gripper_1 ?freight_p1))

)
)

(:action a20
:parameters (?glassinitLoc_extra_p1 - glassinitLoc ?gripper_p1 - gripper

?glasstargetLoc_p1 - glasstargetLoc ?freight_p1 - freight)↪→

:precondition (and
(freight_glassinitLoc_0 ?freight_p1 ?glassinitLoc_extra_p1)
(freight_glasstargetLoc_1 ?freight_p1 ?glasstargetLoc_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(clear3_freight_bowl_1 ?freight_p1)
(clear3_freight_bowlinitLoc_1 ?freight_p1)
(clear3_freight_bowltargetLoc_1 ?freight_p1)
(clear3_freight_glass_1 ?freight_p1)
(clear3_freight_glassinitLoc_1 ?freight_p1)

)
:effect (and

(freight_glasstargetLoc_0 ?freight_p1 ?glasstargetLoc_p1)
(not (freight_glasstargetLoc_1 ?freight_p1 ?glasstargetLoc_p1))
(clear3_freight_glasstargetLoc_1 ?freight_p1)

)
)

(:action a21
:parameters (?glassinitLoc_p1 - glassinitLoc ?glass_p1 - glass

?freight_extra_p1 - freight ?gripper_extra_p1 - gripper)↪→

:precondition (and
(freight_glass_0 ?freight_extra_p1 ?glass_p1)
(freight_glassinitLoc_1 ?freight_extra_p1 ?glassinitLoc_p1)
(freight_gripper_0 ?freight_extra_p1 ?gripper_extra_p1)
(glass_glassinitLoc_1 ?glass_p1 ?glassinitLoc_p1)
(gripper_glass_2 ?gripper_extra_p1 ?glass_p1)

)
:effect (and

(glass_glassinitLoc_0 ?glass_p1 ?glassinitLoc_p1)
(not (glass_glassinitLoc_1 ?glass_p1 ?glassinitLoc_p1))
(clear3_glass_glassinitLoc_1 ?glass_p1)

)
)

(:action a22
:parameters (?gripper_p1 - gripper ?bowl_p1 - bowl ?bowlinitLoc_extra_p1

- bowlinitLoc ?freight_p1 - freight)↪→

:precondition (and
(bowl_bowlinitLoc_0 ?bowl_p1 ?bowlinitLoc_extra_p1)
(freight_bowl_0 ?freight_p1 ?bowl_p1)
(freight_bowlinitLoc_1 ?freight_p1 ?bowlinitLoc_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(gripper_bowl_2 ?gripper_p1 ?bowl_p1)
(clear3_freight_bowl_1 ?freight_p1)
(clear3_freight_bowltargetLoc_1 ?freight_p1)
(clear3_freight_glass_1 ?freight_p1)
(clear3_freight_glassinitLoc_1 ?freight_p1)
(clear3_freight_glasstargetLoc_1 ?freight_p1)

33

(clear3_freight_gripper_1 ?freight_p1)
(clear3_gripper_bowl_1 ?gripper_p1)
(clear3_gripper_glass_1 ?gripper_p1)
(clear3_gripper_glass_2 ?gripper_p1)

)
:effect (and

(freight_bowl_1 ?freight_p1 ?bowl_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(not (freight_bowl_0 ?freight_p1 ?bowl_p1))
(not (freight_gripper_0 ?freight_p1 ?gripper_p1))
(not (clear3_freight_bowl_1 ?freight_p1))
(not (clear3_freight_gripper_1 ?freight_p1))

)
)

(:action a23
:parameters (?gripper_p1 - gripper ?freight_p1 - freight)
:precondition (and

(freight_gripper_1 ?freight_p1 ?gripper_p1)
(clear3_freight_bowl_1 ?freight_p1)
(clear3_freight_bowltargetLoc_1 ?freight_p1)
(clear3_freight_glass_1 ?freight_p1)
(clear3_freight_glasstargetLoc_1 ?freight_p1)
(clear3_gripper_bowl_1 ?gripper_p1)
(clear3_gripper_bowl_2 ?gripper_p1)
(clear3_gripper_glass_1 ?gripper_p1)
(clear3_gripper_glass_2 ?gripper_p1)

)
:effect (and

(freight_gripper_0 ?freight_p1 ?gripper_p1)
(not (freight_gripper_1 ?freight_p1 ?gripper_p1))
(clear3_freight_gripper_1 ?freight_p1)

)
)

(:action a24
:parameters (?glassinitLoc_p1 - glassinitLoc ?gripper_p1 - gripper

?glass_extra_p1 - glass ?freight_p1 - freight)↪→

:precondition (and
(freight_glass_1 ?freight_p1 ?glass_extra_p1)
(freight_glassinitLoc_1 ?freight_p1 ?glassinitLoc_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(gripper_glass_2 ?gripper_p1 ?glass_extra_p1)
(clear3_freight_bowl_1 ?freight_p1)
(clear3_freight_bowlinitLoc_1 ?freight_p1)
(clear3_freight_bowltargetLoc_1 ?freight_p1)
(clear3_freight_glasstargetLoc_1 ?freight_p1)

)
:effect (and

(freight_glassinitLoc_0 ?freight_p1 ?glassinitLoc_p1)
(not (freight_glassinitLoc_1 ?freight_p1 ?glassinitLoc_p1))
(clear3_freight_glassinitLoc_1 ?freight_p1)

)
)

(:action a25
:parameters (?glassinitLoc_extra_p1 - glassinitLoc ?gripper_p1 - gripper

?glass_p1 - glass ?freight_p1 - freight)↪→

:precondition (and

34

(freight_glass_0 ?freight_p1 ?glass_p1)
(freight_glassinitLoc_1 ?freight_p1 ?glassinitLoc_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(glass_glassinitLoc_1 ?glass_p1 ?glassinitLoc_extra_p1)
(gripper_glass_0 ?gripper_p1 ?glass_p1)
(clear3_gripper_bowl_1 ?gripper_p1)
(clear3_gripper_bowl_2 ?gripper_p1)
(clear3_gripper_glass_1 ?gripper_p1)
(clear3_gripper_glass_2 ?gripper_p1)

)
:effect (and

(gripper_glass_1 ?gripper_p1 ?glass_p1)
(not (gripper_glass_0 ?gripper_p1 ?glass_p1))
(not (gripper_glass_2 ?gripper_p1 ?glass_p1))
(not (clear3_gripper_glass_1 ?gripper_p1))

)
)

(:action a26
:parameters (?gripper_p1 - gripper ?bowlinitLoc_p1 - bowlinitLoc

?glasstargetLoc_extra_p1 - glasstargetLoc ?freight_p1 - freight)↪→

:precondition (and
(freight_bowlinitLoc_0 ?freight_p1 ?bowlinitLoc_p1)
(freight_glasstargetLoc_0 ?freight_p1 ?glasstargetLoc_extra_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(clear3_freight_bowl_1 ?freight_p1)
(clear3_freight_bowlinitLoc_1 ?freight_p1)
(clear3_freight_bowltargetLoc_1 ?freight_p1)
(clear3_freight_glass_1 ?freight_p1)
(clear3_freight_glassinitLoc_1 ?freight_p1)
(clear3_freight_glasstargetLoc_1 ?freight_p1)

)
:effect (and

(freight_bowlinitLoc_1 ?freight_p1 ?bowlinitLoc_p1)
(not (freight_bowlinitLoc_0 ?freight_p1 ?bowlinitLoc_p1))
(not (clear3_freight_bowlinitLoc_1 ?freight_p1))

)
))

H.3 Building Structures with Keva Planks

(define (domain Keva)
(:requirements :strips :typing :equality :conditional-effects

:existential-preconditions :universal-preconditions)
(:types

loc
plank
gripper

)

(:constants
loc_plankTarget_Const - loc

)

(:predicates
(gripper_plank_0 ?x - gripper ?y - plank)
(gripper_plank_1 ?x - gripper ?y - plank)
(gripper_plank_2 ?x - gripper ?y - plank)
(plank_plank_0 ?x - plank ?y - plank)

35

(plank_plank_1 ?x - plank ?y - plank)
(plank_plank_2 ?x - plank ?y - plank)
(plank_plank_3 ?x - plank ?y - plank)
(plank_plank_4 ?x - plank ?y - plank)
(plank_plank_5 ?x - plank ?y - plank)
(plank_plank_6 ?x - plank ?y - plank)
(plank_plank_7 ?x - plank ?y - plank)
(plank_plank_8 ?x - plank ?y - plank)
(plank_plank_9 ?x - plank ?y - plank)
(loc_plank_0 ?x - loc ?y - plank)
(loc_plank_1 ?x - loc ?y - plank)
(clear3_plank_plank_2 ?x - plank)
(clear3_gripper_plank_2 ?x - gripper)
(clear3_plank_plank_6 ?x - plank)
(clear3_plank_plank_8 ?x - plank)
(clear3_plank_plank_5 ?x - plank)
(clear3_plank_plank_7 ?x - plank)
(clear3_plank_plank_9 ?x - plank)
(clear3_plank_plank_4 ?x - plank)
(clear3_gripper_plank_1 ?x - gripper)
(clear3_plank_plank_1 ?x - plank)
(clear3_plank_plank_3 ?x - plank)

)

(:action a1
:parameters (?gripper_extra_p1 - gripper ?plank_p2 - plank

?plank_p1 - plank)
:precondition (and

(not (= ?plank_p2 ?plank_p1))
(loc_plank_0 loc_plankTarget_Const ?plank_p1)
(loc_plank_1 loc_plankTarget_Const ?plank_p2)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p2)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p1)
(plank_plank_0 ?plank_p2 ?plank_p2)
(clear3_plank_plank_4 ?plank_p1)
(clear3_plank_plank_4 ?plank_p2)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(plank_plank_4 ?plank_p2 ?plank_p1)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p1))
(not (plank_plank_0 ?plank_p2 ?plank_p1))
(not (plank_plank_1 ?plank_p2 ?plank_p1))
(not (plank_plank_2 ?plank_p2 ?plank_p1))
(not (plank_plank_3 ?plank_p2 ?plank_p1))
(not (plank_plank_5 ?plank_p2 ?plank_p1))
(not (plank_plank_6 ?plank_p2 ?plank_p1))
(not (plank_plank_7 ?plank_p2 ?plank_p1))
(not (plank_plank_8 ?plank_p2 ?plank_p1))
(not (plank_plank_9 ?plank_p2 ?plank_p1))
(not (clear3_plank_plank_4 ?plank_p2))

)
)

(:action a2

36

:parameters (?gripper_extra_p1 - gripper ?plank_p3 - plank ?plank_p2
- plank↪→

?plank_p1 - plank)
:precondition (and

(not (= ?plank_p3 ?plank_p2))
(not (= ?plank_p3 ?plank_p1))
(not (= ?plank_p2 ?plank_p1))
(loc_plank_0 loc_plankTarget_Const ?plank_p2)
(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(loc_plank_1 loc_plankTarget_Const ?plank_p3)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p1)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p3)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p3)
(plank_plank_0 ?plank_p2 ?plank_p1)
(plank_plank_0 ?plank_p2 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p3)
(plank_plank_0 ?plank_p3 ?plank_p2)
(plank_plank_0 ?plank_p3 ?plank_p3)
(plank_plank_4 ?plank_p3 ?plank_p1)
(clear3_plank_plank_1 ?plank_p1)
(clear3_plank_plank_1 ?plank_p2)
(clear3_plank_plank_1 ?plank_p3)
(clear3_plank_plank_3 ?plank_p1)
(clear3_plank_plank_3 ?plank_p2)
(clear3_plank_plank_3 ?plank_p3)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p2)
(plank_plank_1 ?plank_p1 ?plank_p2)
(plank_plank_3 ?plank_p3 ?plank_p2)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p2))
(not (plank_plank_0 ?plank_p1 ?plank_p2))
(not (plank_plank_0 ?plank_p3 ?plank_p2))
(not (plank_plank_1 ?plank_p3 ?plank_p2))
(not (plank_plank_2 ?plank_p1 ?plank_p2))
(not (plank_plank_2 ?plank_p3 ?plank_p2))
(not (plank_plank_3 ?plank_p1 ?plank_p2))
(not (plank_plank_4 ?plank_p1 ?plank_p2))
(not (plank_plank_4 ?plank_p3 ?plank_p2))
(not (plank_plank_5 ?plank_p1 ?plank_p2))
(not (plank_plank_5 ?plank_p3 ?plank_p2))
(not (plank_plank_6 ?plank_p1 ?plank_p2))
(not (plank_plank_6 ?plank_p3 ?plank_p2))
(not (plank_plank_7 ?plank_p1 ?plank_p2))
(not (plank_plank_7 ?plank_p3 ?plank_p2))
(not (plank_plank_8 ?plank_p1 ?plank_p2))
(not (plank_plank_8 ?plank_p3 ?plank_p2))
(not (plank_plank_9 ?plank_p1 ?plank_p2))
(not (plank_plank_9 ?plank_p3 ?plank_p2))
(not (clear3_plank_plank_1 ?plank_p1))
(not (clear3_plank_plank_3 ?plank_p3))

)
)

(:action a3
:parameters (?plank_p1 - plank ?gripper_p1 - gripper)

37

:precondition (and
(gripper_plank_2 ?gripper_p1 ?plank_p1)
(clear3_gripper_plank_1 ?gripper_p1)

)
:effect (and

(gripper_plank_1 ?gripper_p1 ?plank_p1)
(not (gripper_plank_0 ?gripper_p1 ?plank_p1))
(not (gripper_plank_2 ?gripper_p1 ?plank_p1))
(clear3_gripper_plank_2 ?gripper_p1)
(not (clear3_gripper_plank_1 ?gripper_p1))

)
)

(:action a4
:parameters (?plank_p1 - plank ?gripper_p1 - gripper)
:precondition (and

(gripper_plank_0 ?gripper_p1 ?plank_p1)
(clear3_gripper_plank_1 ?gripper_p1)
(clear3_gripper_plank_2 ?gripper_p1)

)
:effect (and

(gripper_plank_2 ?gripper_p1 ?plank_p1)
(not (gripper_plank_0 ?gripper_p1 ?plank_p1))
(not (gripper_plank_1 ?gripper_p1 ?plank_p1))
(not (clear3_gripper_plank_2 ?gripper_p1))

)
)

(:action a5
:parameters (?plank_p1 - plank ?gripper_p1 - gripper)
:precondition (and

(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(gripper_plank_2 ?gripper_p1 ?plank_p1)
(clear3_gripper_plank_1 ?gripper_p1)

)
:effect (and

(gripper_plank_0 ?gripper_p1 ?plank_p1)
(not (gripper_plank_1 ?gripper_p1 ?plank_p1))
(not (gripper_plank_2 ?gripper_p1 ?plank_p1))
(clear3_gripper_plank_2 ?gripper_p1)

)
)

(:action a6
:parameters (?plank_p1 - plank ?gripper_p1 - gripper)
:precondition (and

(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(gripper_plank_1 ?gripper_p1 ?plank_p1)
(clear3_gripper_plank_2 ?gripper_p1)

)
:effect (and

(gripper_plank_2 ?gripper_p1 ?plank_p1)
(not (gripper_plank_0 ?gripper_p1 ?plank_p1))
(not (gripper_plank_1 ?gripper_p1 ?plank_p1))
(clear3_gripper_plank_1 ?gripper_p1)
(not (clear3_gripper_plank_2 ?gripper_p1))

)
)

38

(:action a7
:parameters (?gripper_extra_p1 - gripper ?plank_p3 - plank ?plank_p2

- plank↪→

?plank_p1 - plank)
:precondition (and

(not (= ?plank_p3 ?plank_p2))
(not (= ?plank_p3 ?plank_p1))
(not (= ?plank_p2 ?plank_p1))
(loc_plank_0 loc_plankTarget_Const ?plank_p2)
(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(loc_plank_1 loc_plankTarget_Const ?plank_p3)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p1)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p3)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p3)
(plank_plank_0 ?plank_p2 ?plank_p1)
(plank_plank_0 ?plank_p2 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p3)
(plank_plank_0 ?plank_p3 ?plank_p2)
(plank_plank_0 ?plank_p3 ?plank_p3)
(plank_plank_4 ?plank_p3 ?plank_p1)
(clear3_plank_plank_8 ?plank_p1)
(clear3_plank_plank_8 ?plank_p2)
(clear3_plank_plank_8 ?plank_p3)
(clear3_plank_plank_9 ?plank_p1)
(clear3_plank_plank_9 ?plank_p2)
(clear3_plank_plank_9 ?plank_p3)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p2)
(plank_plank_8 ?plank_p1 ?plank_p2)
(plank_plank_9 ?plank_p3 ?plank_p2)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p2))
(not (plank_plank_0 ?plank_p1 ?plank_p2))
(not (plank_plank_0 ?plank_p3 ?plank_p2))
(not (plank_plank_1 ?plank_p1 ?plank_p2))
(not (plank_plank_1 ?plank_p3 ?plank_p2))
(not (plank_plank_2 ?plank_p1 ?plank_p2))
(not (plank_plank_2 ?plank_p3 ?plank_p2))
(not (plank_plank_3 ?plank_p1 ?plank_p2))
(not (plank_plank_3 ?plank_p3 ?plank_p2))
(not (plank_plank_4 ?plank_p1 ?plank_p2))
(not (plank_plank_4 ?plank_p3 ?plank_p2))
(not (plank_plank_5 ?plank_p1 ?plank_p2))
(not (plank_plank_5 ?plank_p3 ?plank_p2))
(not (plank_plank_6 ?plank_p1 ?plank_p2))
(not (plank_plank_6 ?plank_p3 ?plank_p2))
(not (plank_plank_7 ?plank_p1 ?plank_p2))
(not (plank_plank_7 ?plank_p3 ?plank_p2))
(not (plank_plank_8 ?plank_p3 ?plank_p2))
(not (plank_plank_9 ?plank_p1 ?plank_p2))
(not (clear3_plank_plank_8 ?plank_p1))
(not (clear3_plank_plank_9 ?plank_p3))

)
)

(:action a8

39

:parameters (?gripper_extra_p1 - gripper ?plank_p3 - plank ?plank_p2
- plank↪→

?plank_p1 - plank)
:precondition (and

(not (= ?plank_p3 ?plank_p2))
(not (= ?plank_p3 ?plank_p1))
(not (= ?plank_p2 ?plank_p1))
(loc_plank_0 loc_plankTarget_Const ?plank_p2)
(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(loc_plank_1 loc_plankTarget_Const ?plank_p3)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p1)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p3)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p3)
(plank_plank_0 ?plank_p2 ?plank_p1)
(plank_plank_0 ?plank_p2 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p3)
(plank_plank_0 ?plank_p3 ?plank_p2)
(plank_plank_0 ?plank_p3 ?plank_p3)
(plank_plank_4 ?plank_p3 ?plank_p1)
(clear3_plank_plank_2 ?plank_p1)
(clear3_plank_plank_2 ?plank_p2)
(clear3_plank_plank_2 ?plank_p3)
(clear3_plank_plank_6 ?plank_p1)
(clear3_plank_plank_6 ?plank_p2)
(clear3_plank_plank_6 ?plank_p3)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p2)
(plank_plank_2 ?plank_p3 ?plank_p2)
(plank_plank_6 ?plank_p1 ?plank_p2)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p2))
(not (plank_plank_0 ?plank_p1 ?plank_p2))
(not (plank_plank_0 ?plank_p3 ?plank_p2))
(not (plank_plank_1 ?plank_p1 ?plank_p2))
(not (plank_plank_1 ?plank_p3 ?plank_p2))
(not (plank_plank_2 ?plank_p1 ?plank_p2))
(not (plank_plank_3 ?plank_p1 ?plank_p2))
(not (plank_plank_3 ?plank_p3 ?plank_p2))
(not (plank_plank_4 ?plank_p1 ?plank_p2))
(not (plank_plank_4 ?plank_p3 ?plank_p2))
(not (plank_plank_5 ?plank_p1 ?plank_p2))
(not (plank_plank_5 ?plank_p3 ?plank_p2))
(not (plank_plank_6 ?plank_p3 ?plank_p2))
(not (plank_plank_7 ?plank_p1 ?plank_p2))
(not (plank_plank_7 ?plank_p3 ?plank_p2))
(not (plank_plank_8 ?plank_p1 ?plank_p2))
(not (plank_plank_8 ?plank_p3 ?plank_p2))
(not (plank_plank_9 ?plank_p1 ?plank_p2))
(not (plank_plank_9 ?plank_p3 ?plank_p2))
(not (clear3_plank_plank_2 ?plank_p3))
(not (clear3_plank_plank_6 ?plank_p1))

)
)

(:action a9
:parameters (?gripper_extra_p1 - gripper ?plank_p2 - plank

40

?plank_p1 - plank)
:precondition (and

(not (= ?plank_p2 ?plank_p1))
(loc_plank_0 loc_plankTarget_Const ?plank_p1)
(loc_plank_1 loc_plankTarget_Const ?plank_p2)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p2)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p1)
(plank_plank_0 ?plank_p2 ?plank_p2)
(clear3_plank_plank_5 ?plank_p1)
(clear3_plank_plank_5 ?plank_p2)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(plank_plank_5 ?plank_p2 ?plank_p1)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p1))
(not (plank_plank_0 ?plank_p2 ?plank_p1))
(not (plank_plank_1 ?plank_p2 ?plank_p1))
(not (plank_plank_2 ?plank_p2 ?plank_p1))
(not (plank_plank_3 ?plank_p2 ?plank_p1))
(not (plank_plank_4 ?plank_p2 ?plank_p1))
(not (plank_plank_6 ?plank_p2 ?plank_p1))
(not (plank_plank_7 ?plank_p2 ?plank_p1))
(not (plank_plank_8 ?plank_p2 ?plank_p1))
(not (plank_plank_9 ?plank_p2 ?plank_p1))
(not (clear3_plank_plank_5 ?plank_p2))

)
)

(:action a10
:parameters (?gripper_extra_p1 - gripper ?plank_p2 - plank

?plank_p1 - plank)
:precondition (and

(not (= ?plank_p2 ?plank_p1))
(loc_plank_0 loc_plankTarget_Const ?plank_p1)
(loc_plank_1 loc_plankTarget_Const ?plank_p2)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p2)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p1)
(plank_plank_0 ?plank_p2 ?plank_p2)
(clear3_plank_plank_7 ?plank_p1)
(clear3_plank_plank_7 ?plank_p2)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(plank_plank_7 ?plank_p2 ?plank_p1)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p1))
(not (plank_plank_0 ?plank_p2 ?plank_p1))
(not (plank_plank_1 ?plank_p2 ?plank_p1))
(not (plank_plank_2 ?plank_p2 ?plank_p1))
(not (plank_plank_3 ?plank_p2 ?plank_p1))
(not (plank_plank_4 ?plank_p2 ?plank_p1))
(not (plank_plank_5 ?plank_p2 ?plank_p1))
(not (plank_plank_6 ?plank_p2 ?plank_p1))
(not (plank_plank_8 ?plank_p2 ?plank_p1))

41

(not (plank_plank_9 ?plank_p2 ?plank_p1))
(not (clear3_plank_plank_7 ?plank_p2))

)
)

(:action a11
:parameters (?gripper_extra_p1 - gripper ?plank_p1 - plank)
:precondition (and

(loc_plank_0 loc_plankTarget_Const ?plank_p1)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p1)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p1))

)
)

(:action a12
:parameters (?gripper_extra_p1 - gripper ?plank_p3 - plank ?plank_p2

- plank↪→

?plank_p1 - plank)
:precondition (and

(not (= ?plank_p3 ?plank_p2))
(not (= ?plank_p3 ?plank_p1))
(not (= ?plank_p2 ?plank_p1))
(loc_plank_0 loc_plankTarget_Const ?plank_p2)
(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(loc_plank_1 loc_plankTarget_Const ?plank_p3)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p1)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p3)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p1)
(plank_plank_0 ?plank_p2 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p3)
(plank_plank_0 ?plank_p3 ?plank_p1)
(plank_plank_0 ?plank_p3 ?plank_p2)
(plank_plank_0 ?plank_p3 ?plank_p3)
(plank_plank_7 ?plank_p1 ?plank_p3)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p2)
(plank_plank_4 ?plank_p3 ?plank_p2)
(plank_plank_5 ?plank_p1 ?plank_p2)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p2))
(not (plank_plank_0 ?plank_p1 ?plank_p2))
(not (plank_plank_0 ?plank_p3 ?plank_p2))
(not (plank_plank_1 ?plank_p1 ?plank_p2))
(not (plank_plank_1 ?plank_p3 ?plank_p2))
(not (plank_plank_2 ?plank_p1 ?plank_p2))
(not (plank_plank_2 ?plank_p3 ?plank_p2))
(not (plank_plank_3 ?plank_p1 ?plank_p2))
(not (plank_plank_3 ?plank_p3 ?plank_p2))
(not (plank_plank_4 ?plank_p1 ?plank_p2))
(not (plank_plank_5 ?plank_p3 ?plank_p2))
(not (plank_plank_6 ?plank_p1 ?plank_p2))
(not (plank_plank_6 ?plank_p3 ?plank_p2))
(not (plank_plank_7 ?plank_p1 ?plank_p2))

42

(not (plank_plank_7 ?plank_p3 ?plank_p2))
(not (plank_plank_8 ?plank_p1 ?plank_p2))
(not (plank_plank_8 ?plank_p3 ?plank_p2))
(not (plank_plank_9 ?plank_p1 ?plank_p2))
(not (plank_plank_9 ?plank_p3 ?plank_p2))
(not (clear3_plank_plank_4 ?plank_p3))
(not (clear3_plank_plank_5 ?plank_p1))

)
)

(:action a13
:parameters (?gripper_extra_p1 - gripper ?plank_p3 - plank ?plank_p2

- plank↪→

?plank_p1 - plank)
:precondition (and

(not (= ?plank_p3 ?plank_p2))
(not (= ?plank_p3 ?plank_p1))
(not (= ?plank_p2 ?plank_p1))
(loc_plank_0 loc_plankTarget_Const ?plank_p2)
(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(loc_plank_1 loc_plankTarget_Const ?plank_p3)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p1)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p3)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p3)
(plank_plank_0 ?plank_p2 ?plank_p1)
(plank_plank_0 ?plank_p2 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p3)
(plank_plank_0 ?plank_p3 ?plank_p2)
(plank_plank_0 ?plank_p3 ?plank_p3)
(plank_plank_4 ?plank_p3 ?plank_p1)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p2)
(plank_plank_8 ?plank_p1 ?plank_p2)
(plank_plank_9 ?plank_p3 ?plank_p2)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p2))
(not (plank_plank_0 ?plank_p1 ?plank_p2))
(not (plank_plank_0 ?plank_p3 ?plank_p2))
(not (plank_plank_1 ?plank_p1 ?plank_p2))
(not (plank_plank_1 ?plank_p3 ?plank_p2))
(not (plank_plank_2 ?plank_p1 ?plank_p2))
(not (plank_plank_2 ?plank_p3 ?plank_p2))
(not (plank_plank_3 ?plank_p1 ?plank_p2))
(not (plank_plank_3 ?plank_p3 ?plank_p2))
(not (plank_plank_4 ?plank_p1 ?plank_p2))
(not (plank_plank_4 ?plank_p3 ?plank_p2))
(not (plank_plank_5 ?plank_p1 ?plank_p2))
(not (plank_plank_5 ?plank_p3 ?plank_p2))
(not (plank_plank_6 ?plank_p1 ?plank_p2))
(not (plank_plank_6 ?plank_p3 ?plank_p2))
(not (plank_plank_7 ?plank_p1 ?plank_p2))
(not (plank_plank_7 ?plank_p3 ?plank_p2))
(not (plank_plank_8 ?plank_p3 ?plank_p2))
(not (plank_plank_9 ?plank_p1 ?plank_p2))
(not (clear3_plank_plank_8 ?plank_p1))
(not (clear3_plank_plank_9 ?plank_p3))

43

)
)

(:action a14
:parameters (?gripper_extra_p1 - gripper ?plank_p4 - plank ?plank_p3

- plank↪→

?plank_p2 - plank ?plank_p1 - plank)
:precondition (and

(not (= ?plank_p4 ?plank_p3))
(not (= ?plank_p4 ?plank_p2))
(not (= ?plank_p4 ?plank_p1))
(not (= ?plank_p3 ?plank_p2))
(not (= ?plank_p3 ?plank_p1))
(not (= ?plank_p2 ?plank_p1))
(loc_plank_0 loc_plankTarget_Const ?plank_p2)
(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(loc_plank_1 loc_plankTarget_Const ?plank_p3)
(loc_plank_1 loc_plankTarget_Const ?plank_p4)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p1)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p3)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p4)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p1)
(plank_plank_0 ?plank_p2 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p3)
(plank_plank_0 ?plank_p2 ?plank_p4)
(plank_plank_0 ?plank_p3 ?plank_p1)
(plank_plank_0 ?plank_p3 ?plank_p2)
(plank_plank_0 ?plank_p3 ?plank_p3)
(plank_plank_0 ?plank_p4 ?plank_p1)
(plank_plank_0 ?plank_p4 ?plank_p2)
(plank_plank_0 ?plank_p4 ?plank_p3)
(plank_plank_0 ?plank_p4 ?plank_p4)
(plank_plank_2 ?plank_p1 ?plank_p4)
(plank_plank_4 ?plank_p1 ?plank_p3)
(plank_plank_6 ?plank_p3 ?plank_p4)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p2)
(plank_plank_1 ?plank_p3 ?plank_p2)
(plank_plank_3 ?plank_p1 ?plank_p2)
(plank_plank_4 ?plank_p4 ?plank_p2)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p2))
(not (plank_plank_0 ?plank_p1 ?plank_p2))
(not (plank_plank_0 ?plank_p3 ?plank_p2))
(not (plank_plank_0 ?plank_p4 ?plank_p2))
(not (plank_plank_1 ?plank_p1 ?plank_p2))
(not (plank_plank_1 ?plank_p4 ?plank_p2))
(not (plank_plank_2 ?plank_p1 ?plank_p2))
(not (plank_plank_2 ?plank_p3 ?plank_p2))
(not (plank_plank_2 ?plank_p4 ?plank_p2))
(not (plank_plank_3 ?plank_p3 ?plank_p2))
(not (plank_plank_3 ?plank_p4 ?plank_p2))
(not (plank_plank_4 ?plank_p1 ?plank_p2))
(not (plank_plank_4 ?plank_p3 ?plank_p2))
(not (plank_plank_5 ?plank_p1 ?plank_p2))
(not (plank_plank_5 ?plank_p3 ?plank_p2))

44

(not (plank_plank_5 ?plank_p4 ?plank_p2))
(not (plank_plank_6 ?plank_p1 ?plank_p2))
(not (plank_plank_6 ?plank_p3 ?plank_p2))
(not (plank_plank_6 ?plank_p4 ?plank_p2))
(not (plank_plank_7 ?plank_p1 ?plank_p2))
(not (plank_plank_7 ?plank_p3 ?plank_p2))
(not (plank_plank_7 ?plank_p4 ?plank_p2))
(not (plank_plank_8 ?plank_p1 ?plank_p2))
(not (plank_plank_8 ?plank_p3 ?plank_p2))
(not (plank_plank_8 ?plank_p4 ?plank_p2))
(not (plank_plank_9 ?plank_p1 ?plank_p2))
(not (plank_plank_9 ?plank_p3 ?plank_p2))
(not (plank_plank_9 ?plank_p4 ?plank_p2))
(not (clear3_plank_plank_1 ?plank_p3))
(not (clear3_plank_plank_3 ?plank_p1))
(not (clear3_plank_plank_4 ?plank_p4))

)
)

(:action a15
:parameters (?gripper_extra_p1 - gripper ?plank_p3 - plank ?plank_p2

- plank↪→

?plank_p1 - plank)
:precondition (and

(not (= ?plank_p3 ?plank_p2))
(not (= ?plank_p3 ?plank_p1))
(not (= ?plank_p2 ?plank_p1))
(loc_plank_0 loc_plankTarget_Const ?plank_p2)
(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(loc_plank_1 loc_plankTarget_Const ?plank_p3)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p1)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p3)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p1)
(plank_plank_0 ?plank_p2 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p3)
(plank_plank_0 ?plank_p3 ?plank_p1)
(plank_plank_0 ?plank_p3 ?plank_p2)
(plank_plank_0 ?plank_p3 ?plank_p3)
(plank_plank_4 ?plank_p1 ?plank_p3)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p2)
(plank_plank_1 ?plank_p3 ?plank_p2)
(plank_plank_3 ?plank_p1 ?plank_p2)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p2))
(not (plank_plank_0 ?plank_p1 ?plank_p2))
(not (plank_plank_0 ?plank_p3 ?plank_p2))
(not (plank_plank_1 ?plank_p1 ?plank_p2))
(not (plank_plank_2 ?plank_p1 ?plank_p2))
(not (plank_plank_2 ?plank_p3 ?plank_p2))
(not (plank_plank_3 ?plank_p3 ?plank_p2))
(not (plank_plank_4 ?plank_p1 ?plank_p2))
(not (plank_plank_4 ?plank_p3 ?plank_p2))
(not (plank_plank_5 ?plank_p1 ?plank_p2))
(not (plank_plank_5 ?plank_p3 ?plank_p2))
(not (plank_plank_6 ?plank_p1 ?plank_p2))

45

(not (plank_plank_6 ?plank_p3 ?plank_p2))
(not (plank_plank_7 ?plank_p1 ?plank_p2))
(not (plank_plank_7 ?plank_p3 ?plank_p2))
(not (plank_plank_8 ?plank_p1 ?plank_p2))
(not (plank_plank_8 ?plank_p3 ?plank_p2))
(not (plank_plank_9 ?plank_p1 ?plank_p2))
(not (plank_plank_9 ?plank_p3 ?plank_p2))
(not (clear3_plank_plank_1 ?plank_p3))
(not (clear3_plank_plank_3 ?plank_p1))

)
)

(:action a16
:parameters (?gripper_extra_p1 - gripper ?plank_p4 - plank ?plank_p3

- plank ?plank_p2 - plank↪→

?plank_p1 - plank)
:precondition (and

(not (= ?plank_p4 ?plank_p3))
(not (= ?plank_p4 ?plank_p2))
(not (= ?plank_p4 ?plank_p1))
(not (= ?plank_p3 ?plank_p2))
(not (= ?plank_p3 ?plank_p1))
(not (= ?plank_p2 ?plank_p1))
(loc_plank_0 loc_plankTarget_Const ?plank_p2)
(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(loc_plank_1 loc_plankTarget_Const ?plank_p3)
(loc_plank_1 loc_plankTarget_Const ?plank_p4)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p1)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p3)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p4)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p3)
(plank_plank_0 ?plank_p1 ?plank_p4)
(plank_plank_0 ?plank_p2 ?plank_p1)
(plank_plank_0 ?plank_p2 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p3)
(plank_plank_0 ?plank_p2 ?plank_p4)
(plank_plank_0 ?plank_p3 ?plank_p1)
(plank_plank_0 ?plank_p3 ?plank_p2)
(plank_plank_0 ?plank_p3 ?plank_p3)
(plank_plank_0 ?plank_p3 ?plank_p4)
(plank_plank_0 ?plank_p4 ?plank_p2)
(plank_plank_0 ?plank_p4 ?plank_p3)
(plank_plank_0 ?plank_p4 ?plank_p4)
(plank_plank_4 ?plank_p4 ?plank_p1)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p2)
(plank_plank_2 ?plank_p4 ?plank_p2)
(plank_plank_4 ?plank_p3 ?plank_p2)
(plank_plank_6 ?plank_p1 ?plank_p2)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p2))
(not (plank_plank_0 ?plank_p1 ?plank_p2))
(not (plank_plank_0 ?plank_p3 ?plank_p2))
(not (plank_plank_0 ?plank_p4 ?plank_p2))
(not (plank_plank_1 ?plank_p1 ?plank_p2))
(not (plank_plank_1 ?plank_p3 ?plank_p2))

46

(not (plank_plank_1 ?plank_p4 ?plank_p2))
(not (plank_plank_2 ?plank_p1 ?plank_p2))
(not (plank_plank_2 ?plank_p3 ?plank_p2))
(not (plank_plank_3 ?plank_p1 ?plank_p2))
(not (plank_plank_3 ?plank_p3 ?plank_p2))
(not (plank_plank_3 ?plank_p4 ?plank_p2))
(not (plank_plank_4 ?plank_p1 ?plank_p2))
(not (plank_plank_4 ?plank_p4 ?plank_p2))
(not (plank_plank_5 ?plank_p1 ?plank_p2))
(not (plank_plank_5 ?plank_p3 ?plank_p2))
(not (plank_plank_5 ?plank_p4 ?plank_p2))
(not (plank_plank_6 ?plank_p3 ?plank_p2))
(not (plank_plank_6 ?plank_p4 ?plank_p2))
(not (plank_plank_7 ?plank_p1 ?plank_p2))
(not (plank_plank_7 ?plank_p3 ?plank_p2))
(not (plank_plank_7 ?plank_p4 ?plank_p2))
(not (plank_plank_8 ?plank_p1 ?plank_p2))
(not (plank_plank_8 ?plank_p3 ?plank_p2))
(not (plank_plank_8 ?plank_p4 ?plank_p2))
(not (plank_plank_9 ?plank_p1 ?plank_p2))
(not (plank_plank_9 ?plank_p3 ?plank_p2))
(not (plank_plank_9 ?plank_p4 ?plank_p2))
(not (clear3_plank_plank_2 ?plank_p4))
(not (clear3_plank_plank_4 ?plank_p3))
(not (clear3_plank_plank_6 ?plank_p1))

)
)

(:action a17
:parameters (?gripper_extra_p1 - gripper ?plank_p3 - plank ?plank_p2

- plank↪→

?plank_p1 - plank)
:precondition (and

(not (= ?plank_p3 ?plank_p2))
(not (= ?plank_p3 ?plank_p1))
(not (= ?plank_p2 ?plank_p1))
(loc_plank_0 loc_plankTarget_Const ?plank_p2)
(loc_plank_1 loc_plankTarget_Const ?plank_p1)
(loc_plank_1 loc_plankTarget_Const ?plank_p3)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p1)
(gripper_plank_0 ?gripper_extra_p1 ?plank_p3)
(gripper_plank_1 ?gripper_extra_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p1)
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p1 ?plank_p3)
(plank_plank_0 ?plank_p2 ?plank_p1)
(plank_plank_0 ?plank_p2 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p3)
(plank_plank_0 ?plank_p3 ?plank_p1)
(plank_plank_0 ?plank_p3 ?plank_p2)
(plank_plank_0 ?plank_p3 ?plank_p3)

)
:effect (and

(loc_plank_1 loc_plankTarget_Const ?plank_p2)
(plank_plank_4 ?plank_p1 ?plank_p2)
(plank_plank_7 ?plank_p3 ?plank_p2)
(not (loc_plank_0 loc_plankTarget_Const ?plank_p2))
(not (plank_plank_0 ?plank_p1 ?plank_p2))
(not (plank_plank_0 ?plank_p3 ?plank_p2))

47

(not (plank_plank_1 ?plank_p1 ?plank_p2))
(not (plank_plank_1 ?plank_p3 ?plank_p2))
(not (plank_plank_2 ?plank_p1 ?plank_p2))
(not (plank_plank_2 ?plank_p3 ?plank_p2))
(not (plank_plank_3 ?plank_p1 ?plank_p2))
(not (plank_plank_3 ?plank_p3 ?plank_p2))
(not (plank_plank_4 ?plank_p3 ?plank_p2))
(not (plank_plank_5 ?plank_p1 ?plank_p2))
(not (plank_plank_5 ?plank_p3 ?plank_p2))
(not (plank_plank_6 ?plank_p1 ?plank_p2))
(not (plank_plank_6 ?plank_p3 ?plank_p2))
(not (plank_plank_7 ?plank_p1 ?plank_p2))
(not (plank_plank_8 ?plank_p1 ?plank_p2))
(not (plank_plank_8 ?plank_p3 ?plank_p2))
(not (plank_plank_9 ?plank_p1 ?plank_p2))
(not (plank_plank_9 ?plank_p3 ?plank_p2))
(not (clear3_plank_plank_4 ?plank_p1))
(not (clear3_plank_plank_7 ?plank_p3))

)
))

H.4 Building Structures with Jenga Planks

(define (domain Jenga)
(:requirements :strips :typing :equality
:conditional-effects :existential-preconditions :universal-preconditions)
(:types

loc
jenga
gripper

)

(:constants
loc_jengaTarget_Const - loc

)

(:predicates
(loc_jenga_0 ?x - loc ?y - jenga)
(loc_jenga_1 ?x - loc ?y - jenga)
(loc_jenga_2 ?x - loc ?y - jenga)
(jenga_jenga_0 ?x - jenga ?y - jenga)
(jenga_jenga_1 ?x - jenga ?y - jenga)
(jenga_jenga_2 ?x - jenga ?y - jenga)
(jenga_jenga_3 ?x - jenga ?y - jenga)
(jenga_jenga_4 ?x - jenga ?y - jenga)
(jenga_jenga_5 ?x - jenga ?y - jenga)
(jenga_jenga_6 ?x - jenga ?y - jenga)
(jenga_jenga_7 ?x - jenga ?y - jenga)
(jenga_jenga_8 ?x - jenga ?y - jenga)
(gripper_jenga_0 ?x - gripper ?y - jenga)
(gripper_jenga_1 ?x - gripper ?y - jenga)
(gripper_jenga_2 ?x - gripper ?y - jenga)
(clear3_gripper_jenga_1 ?x - gripper)
(clear3_jenga_jenga_6 ?x - jenga)
(clear3_jenga_jenga_2 ?x - jenga)
(clear3_jenga_jenga_3 ?x - jenga)
(clear3_jenga_jenga_1 ?x - jenga)
(clear3_jenga_jenga_8 ?x - jenga)
(clear3_gripper_jenga_2 ?x - gripper)

48

(clear3_jenga_jenga_4 ?x - jenga)
(clear3_jenga_jenga_7 ?x - jenga)
(clear3_jenga_jenga_5 ?x - jenga)

)

(:action a1
:parameters (?jenga_p1 - jenga ?gripper_extra_p1 - gripper)
:precondition (and

(loc_jenga_0 loc_jengaTarget_Const ?jenga_p1)
(gripper_jenga_1 ?gripper_extra_p1 ?jenga_p1)

)
:effect (and

(loc_jenga_1 loc_jengaTarget_Const ?jenga_p1)
(not (loc_jenga_0 loc_jengaTarget_Const ?jenga_p1))
(not (loc_jenga_2 loc_jengaTarget_Const ?jenga_p1))

)
)

(:action a2
:parameters (?jenga_p1 - jenga ?gripper_p1 - gripper)
:precondition (and

(gripper_jenga_0 ?gripper_p1 ?jenga_p1)
(clear3_gripper_jenga_1 ?gripper_p1)
(clear3_gripper_jenga_2 ?gripper_p1)

)
:effect (and

(gripper_jenga_2 ?gripper_p1 ?jenga_p1)
(not (gripper_jenga_0 ?gripper_p1 ?jenga_p1))
(not (gripper_jenga_1 ?gripper_p1 ?jenga_p1))
(not (clear3_gripper_jenga_2 ?gripper_p1))

)
)

(:action a3
:parameters (?jenga_p2 - jenga ?jenga_p3 - jenga ?jenga_p1 - jenga

?gripper_extra_p1 - gripper)
:precondition (and

(not (= ?jenga_p2 ?jenga_p3))
(not (= ?jenga_p2 ?jenga_p1))
(not (= ?jenga_p3 ?jenga_p1))
(loc_jenga_0 loc_jengaTarget_Const ?jenga_p2)
(loc_jenga_1 loc_jengaTarget_Const ?jenga_p1)
(loc_jenga_1 loc_jengaTarget_Const ?jenga_p3)
(gripper_jenga_0 ?gripper_extra_p1 ?jenga_p1)
(gripper_jenga_0 ?gripper_extra_p1 ?jenga_p3)
(gripper_jenga_1 ?gripper_extra_p1 ?jenga_p2)
(jenga_jenga_0 ?jenga_p1 ?jenga_p2)
(jenga_jenga_0 ?jenga_p3 ?jenga_p2)
(clear3_jenga_jenga_1 ?jenga_p1)
(clear3_jenga_jenga_1 ?jenga_p2)
(clear3_jenga_jenga_1 ?jenga_p3)
(clear3_jenga_jenga_3 ?jenga_p1)
(clear3_jenga_jenga_3 ?jenga_p2)
(clear3_jenga_jenga_3 ?jenga_p3)

)
:effect (and

(loc_jenga_1 loc_jengaTarget_Const ?jenga_p2)
(jenga_jenga_1 ?jenga_p1 ?jenga_p2)
(jenga_jenga_3 ?jenga_p3 ?jenga_p2)

49

(not (loc_jenga_0 loc_jengaTarget_Const ?jenga_p2))
(not (loc_jenga_2 loc_jengaTarget_Const ?jenga_p2))
(not (jenga_jenga_0 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_0 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_1 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_2 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_2 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_3 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_4 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_4 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_5 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_5 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_6 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_6 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_7 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_7 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_8 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_8 ?jenga_p3 ?jenga_p2))
(not (clear3_jenga_jenga_1 ?jenga_p1))
(not (clear3_jenga_jenga_3 ?jenga_p3))

)
)

(:action a4
:parameters (?jenga_p2 - jenga ?jenga_p3 - jenga ?jenga_p1 - jenga

?gripper_extra_p1 - gripper)
:precondition (and

(not (= ?jenga_p2 ?jenga_p3))
(not (= ?jenga_p2 ?jenga_p1))
(not (= ?jenga_p3 ?jenga_p1))
(loc_jenga_0 loc_jengaTarget_Const ?jenga_p1)
(loc_jenga_1 loc_jengaTarget_Const ?jenga_p2)
(loc_jenga_1 loc_jengaTarget_Const ?jenga_p3)
(gripper_jenga_0 ?gripper_extra_p1 ?jenga_p2)
(gripper_jenga_0 ?gripper_extra_p1 ?jenga_p3)
(gripper_jenga_1 ?gripper_extra_p1 ?jenga_p1)
(jenga_jenga_0 ?jenga_p2 ?jenga_p1)
(jenga_jenga_0 ?jenga_p3 ?jenga_p1)
(clear3_jenga_jenga_2 ?jenga_p1)
(clear3_jenga_jenga_2 ?jenga_p2)
(clear3_jenga_jenga_2 ?jenga_p3)
(clear3_jenga_jenga_8 ?jenga_p1)
(clear3_jenga_jenga_8 ?jenga_p2)
(clear3_jenga_jenga_8 ?jenga_p3)

)
:effect (and

(loc_jenga_1 loc_jengaTarget_Const ?jenga_p1)
(jenga_jenga_2 ?jenga_p2 ?jenga_p1)
(jenga_jenga_8 ?jenga_p3 ?jenga_p1)
(not (loc_jenga_0 loc_jengaTarget_Const ?jenga_p1))
(not (loc_jenga_2 loc_jengaTarget_Const ?jenga_p1))
(not (jenga_jenga_0 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_0 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_1 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_1 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_2 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_3 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_3 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_4 ?jenga_p2 ?jenga_p1))

50

(not (jenga_jenga_4 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_5 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_5 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_6 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_6 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_7 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_7 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_8 ?jenga_p2 ?jenga_p1))
(not (clear3_jenga_jenga_2 ?jenga_p2))
(not (clear3_jenga_jenga_8 ?jenga_p3))

)
)

(:action a5
:parameters (?jenga_p1 - jenga ?gripper_p1 - gripper)
:precondition (and

(loc_jenga_1 loc_jengaTarget_Const ?jenga_p1)
(gripper_jenga_1 ?gripper_p1 ?jenga_p1)
(clear3_gripper_jenga_2 ?gripper_p1)

)
:effect (and

(gripper_jenga_2 ?gripper_p1 ?jenga_p1)
(not (gripper_jenga_0 ?gripper_p1 ?jenga_p1))
(not (gripper_jenga_1 ?gripper_p1 ?jenga_p1))
(clear3_gripper_jenga_1 ?gripper_p1)
(not (clear3_gripper_jenga_2 ?gripper_p1))

)
)

(:action a6
:parameters (?jenga_p1 - jenga ?gripper_p1 - gripper)
:precondition (and

(loc_jenga_1 loc_jengaTarget_Const ?jenga_p1)
(gripper_jenga_2 ?gripper_p1 ?jenga_p1)
(clear3_gripper_jenga_1 ?gripper_p1)

)
:effect (and

(gripper_jenga_0 ?gripper_p1 ?jenga_p1)
(not (gripper_jenga_1 ?gripper_p1 ?jenga_p1))
(not (gripper_jenga_2 ?gripper_p1 ?jenga_p1))
(clear3_gripper_jenga_2 ?gripper_p1)

)
)

(:action a7
:parameters (?jenga_p1 - jenga ?gripper_p1 - gripper)
:precondition (and

(gripper_jenga_2 ?gripper_p1 ?jenga_p1)
(clear3_gripper_jenga_1 ?gripper_p1)

)
:effect (and

(gripper_jenga_1 ?gripper_p1 ?jenga_p1)
(not (gripper_jenga_0 ?gripper_p1 ?jenga_p1))
(not (gripper_jenga_2 ?gripper_p1 ?jenga_p1))
(clear3_gripper_jenga_2 ?gripper_p1)
(not (clear3_gripper_jenga_1 ?gripper_p1))

)
)

51

(:action a8
:parameters (?jenga_p2 - jenga ?jenga_p3 - jenga ?jenga_p1 - jenga

?gripper_extra_p1 - gripper)
:precondition (and

(not (= ?jenga_p2 ?jenga_p3))
(not (= ?jenga_p2 ?jenga_p1))
(not (= ?jenga_p3 ?jenga_p1))
(loc_jenga_0 loc_jengaTarget_Const ?jenga_p2)
(loc_jenga_1 loc_jengaTarget_Const ?jenga_p1)
(loc_jenga_1 loc_jengaTarget_Const ?jenga_p3)
(gripper_jenga_0 ?gripper_extra_p1 ?jenga_p1)
(gripper_jenga_0 ?gripper_extra_p1 ?jenga_p3)
(gripper_jenga_1 ?gripper_extra_p1 ?jenga_p2)
(jenga_jenga_0 ?jenga_p1 ?jenga_p2)
(jenga_jenga_0 ?jenga_p3 ?jenga_p2)
(clear3_jenga_jenga_4 ?jenga_p1)
(clear3_jenga_jenga_4 ?jenga_p2)
(clear3_jenga_jenga_4 ?jenga_p3)
(clear3_jenga_jenga_6 ?jenga_p1)
(clear3_jenga_jenga_6 ?jenga_p2)
(clear3_jenga_jenga_6 ?jenga_p3)

)
:effect (and

(loc_jenga_1 loc_jengaTarget_Const ?jenga_p2)
(jenga_jenga_4 ?jenga_p1 ?jenga_p2)
(jenga_jenga_6 ?jenga_p3 ?jenga_p2)
(not (loc_jenga_0 loc_jengaTarget_Const ?jenga_p2))
(not (loc_jenga_2 loc_jengaTarget_Const ?jenga_p2))
(not (jenga_jenga_0 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_0 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_1 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_1 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_2 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_2 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_3 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_3 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_4 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_5 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_5 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_6 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_7 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_7 ?jenga_p3 ?jenga_p2))
(not (jenga_jenga_8 ?jenga_p1 ?jenga_p2))
(not (jenga_jenga_8 ?jenga_p3 ?jenga_p2))
(not (clear3_jenga_jenga_4 ?jenga_p1))
(not (clear3_jenga_jenga_6 ?jenga_p3))

)
)

(:action a9
:parameters (?jenga_p2 - jenga ?jenga_p3 - jenga ?jenga_p1 - jenga

?gripper_extra_p1 - gripper)
:precondition (and

(not (= ?jenga_p2 ?jenga_p3))
(not (= ?jenga_p2 ?jenga_p1))
(not (= ?jenga_p3 ?jenga_p1))
(loc_jenga_0 loc_jengaTarget_Const ?jenga_p1)
(loc_jenga_1 loc_jengaTarget_Const ?jenga_p2)
(loc_jenga_1 loc_jengaTarget_Const ?jenga_p3)

52

(gripper_jenga_0 ?gripper_extra_p1 ?jenga_p2)
(gripper_jenga_0 ?gripper_extra_p1 ?jenga_p3)
(gripper_jenga_1 ?gripper_extra_p1 ?jenga_p1)
(jenga_jenga_0 ?jenga_p2 ?jenga_p1)
(jenga_jenga_0 ?jenga_p3 ?jenga_p1)
(clear3_jenga_jenga_5 ?jenga_p1)
(clear3_jenga_jenga_5 ?jenga_p2)
(clear3_jenga_jenga_5 ?jenga_p3)
(clear3_jenga_jenga_7 ?jenga_p1)
(clear3_jenga_jenga_7 ?jenga_p2)
(clear3_jenga_jenga_7 ?jenga_p3)

)
:effect (and

(loc_jenga_1 loc_jengaTarget_Const ?jenga_p1)
(jenga_jenga_5 ?jenga_p2 ?jenga_p1)
(jenga_jenga_7 ?jenga_p3 ?jenga_p1)
(not (loc_jenga_0 loc_jengaTarget_Const ?jenga_p1))
(not (loc_jenga_2 loc_jengaTarget_Const ?jenga_p1))
(not (jenga_jenga_0 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_0 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_1 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_1 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_2 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_2 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_3 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_3 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_4 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_4 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_5 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_6 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_6 ?jenga_p3 ?jenga_p1))
(not (jenga_jenga_7 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_8 ?jenga_p2 ?jenga_p1))
(not (jenga_jenga_8 ?jenga_p3 ?jenga_p1))
(not (clear3_jenga_jenga_5 ?jenga_p2))
(not (clear3_jenga_jenga_7 ?jenga_p3))

)
)

(:action a10
:parameters (?jenga_p1 - jenga ?gripper_p1 - gripper)
:precondition (and

(gripper_jenga_2 ?gripper_p1 ?jenga_p1)
(clear3_gripper_jenga_1 ?gripper_p1)

)
:effect (and

(gripper_jenga_1 ?gripper_p1 ?jenga_p1)
(not (gripper_jenga_0 ?gripper_p1 ?jenga_p1))
(not (gripper_jenga_2 ?gripper_p1 ?jenga_p1))
(clear3_gripper_jenga_2 ?gripper_p1)
(not (clear3_gripper_jenga_1 ?gripper_p1))

)
)

(:action a11
:parameters (?jenga_p1 - jenga ?gripper_p1 - gripper)
:precondition (and

(gripper_jenga_0 ?gripper_p1 ?jenga_p1)
(clear3_gripper_jenga_1 ?gripper_p1)

53

(clear3_gripper_jenga_2 ?gripper_p1)
)
:effect (and

(gripper_jenga_2 ?gripper_p1 ?jenga_p1)
(not (gripper_jenga_0 ?gripper_p1 ?jenga_p1))
(not (gripper_jenga_1 ?gripper_p1 ?jenga_p1))
(not (clear3_gripper_jenga_2 ?gripper_p1))

)
)

(:action a12
:parameters (?jenga_p1 - jenga ?gripper_p1 - gripper)
:precondition (and

(loc_jenga_1 loc_jengaTarget_Const ?jenga_p1)
(gripper_jenga_1 ?gripper_p1 ?jenga_p1)
(clear3_gripper_jenga_2 ?gripper_p1)

)
:effect (and

(gripper_jenga_2 ?gripper_p1 ?jenga_p1)
(not (gripper_jenga_0 ?gripper_p1 ?jenga_p1))
(not (gripper_jenga_1 ?gripper_p1 ?jenga_p1))
(clear3_gripper_jenga_1 ?gripper_p1)
(not (clear3_gripper_jenga_2 ?gripper_p1))

)
)

(:action a13
:parameters (?jenga_p1 - jenga ?gripper_extra_p1 - gripper)
:precondition (and

(loc_jenga_0 loc_jengaTarget_Const ?jenga_p1)
(gripper_jenga_1 ?gripper_extra_p1 ?jenga_p1)

)
:effect (and

(loc_jenga_1 loc_jengaTarget_Const ?jenga_p1)
(not (loc_jenga_0 loc_jengaTarget_Const ?jenga_p1))

)
)

(:action a14
:parameters (?jenga_p1 - jenga ?gripper_p1 - gripper)
:precondition (and

(loc_jenga_1 loc_jengaTarget_Const ?jenga_p1)
(gripper_jenga_2 ?gripper_p1 ?jenga_p1)
(clear3_gripper_jenga_1 ?gripper_p1)

)
:effect (and

(gripper_jenga_0 ?gripper_p1 ?jenga_p1)
(not (gripper_jenga_1 ?gripper_p1 ?jenga_p1))
(not (gripper_jenga_2 ?gripper_p1 ?jenga_p1))
(clear3_gripper_jenga_2 ?gripper_p1)

)
))

H.5 Packing a Box

(define (domain Packing)
(:requirements :strips :typing :equality :conditional-effects

:existential-preconditions :universal-preconditions)↪→

54

(:types
can
gripper
surface

)

(:predicates
(gripper_can_0 ?x - gripper ?y - can)
(gripper_can_1 ?x - gripper ?y - can)
(gripper_can_2 ?x - gripper ?y - can)
(can_surface_0 ?x - can ?y - surface)
(can_surface_1 ?x - can ?y - surface)
(clear3_gripper_can_1 ?x - gripper)
(clear3_gripper_can_2 ?x - gripper)

)

(:action a1
:parameters (?can_p1 - can ?gripper_p1 - gripper)
:precondition (and

(gripper_can_2 ?gripper_p1 ?can_p1)
(clear3_gripper_can_1 ?gripper_p1)

)
:effect (and

(gripper_can_1 ?gripper_p1 ?can_p1)
(not (gripper_can_0 ?gripper_p1 ?can_p1))
(not (gripper_can_2 ?gripper_p1 ?can_p1))
(clear3_gripper_can_2 ?gripper_p1)
(not (clear3_gripper_can_1 ?gripper_p1))

)
)

(:action a2
:parameters (?can_p1 - can ?gripper_p1 - gripper)
:precondition (and

(gripper_can_0 ?gripper_p1 ?can_p1)
(clear3_gripper_can_1 ?gripper_p1)
(clear3_gripper_can_2 ?gripper_p1)

)
:effect (and

(gripper_can_2 ?gripper_p1 ?can_p1)
(not (gripper_can_0 ?gripper_p1 ?can_p1))
(not (gripper_can_1 ?gripper_p1 ?can_p1))
(not (clear3_gripper_can_2 ?gripper_p1))

)
)

(:action a3
:parameters (?can_p1 - can ?surface_extra_p1 - surface ?gripper_p1 -

gripper)↪→

:precondition (and
(can_surface_1 ?can_p1 ?surface_extra_p1)
(gripper_can_2 ?gripper_p1 ?can_p1)
(clear3_gripper_can_1 ?gripper_p1)

)
:effect (and

(gripper_can_0 ?gripper_p1 ?can_p1)
(not (gripper_can_1 ?gripper_p1 ?can_p1))
(not (gripper_can_2 ?gripper_p1 ?can_p1))
(clear3_gripper_can_2 ?gripper_p1)

55

)
)

(:action a4
:parameters (?can_p1 - can ?surface_extra_p1 - surface ?gripper_p1 -

gripper)↪→

:precondition (and
(can_surface_1 ?can_p1 ?surface_extra_p1)
(gripper_can_1 ?gripper_p1 ?can_p1)
(clear3_gripper_can_2 ?gripper_p1)

)
:effect (and

(gripper_can_2 ?gripper_p1 ?can_p1)
(not (gripper_can_0 ?gripper_p1 ?can_p1))
(not (gripper_can_1 ?gripper_p1 ?can_p1))
(clear3_gripper_can_1 ?gripper_p1)
(not (clear3_gripper_can_2 ?gripper_p1))

)
)

(:action a5
:parameters (?can_p1 - can ?gripper_extra_p1 - gripper ?surface_p1 -

surface)↪→

:precondition (and
(can_surface_0 ?can_p1 ?surface_p1)
(gripper_can_1 ?gripper_extra_p1 ?can_p1)

)
:effect (and

(can_surface_1 ?can_p1 ?surface_p1)
(not (can_surface_0 ?can_p1 ?surface_p1))

)
))

I Code as Policies Evaluation Prompts

I.1 Delivering Items in a Cafe

Domain-specific Prompt for Robot Actions

jointnames = (["torso_lift_joint", "shoulder_pan_joint", "shoulder_lift_joint",
"upperarm_roll_joint", "elbow_flex_joint", "forearm_roll_joint",
"wrist_flex_joint", "wrist_roll_joint"])

define function: openGripper(robot)
def openGripper(robot):

taskmanip = interfaces.TaskManipulation(robot)
with robot:

taskmanip.ReleaseFingers()
robot.WaitForController(0)

define function: grab_success_flag = grab_object(object_name)
def grab_object(object_to_grab):

o = env.GetKinBody(object_to_grab)
ot = o.GetTransform()
robot_t = robot.GetLink("wrist_roll_link").GetTransform()
euclidean_distance = np.linalg.norm(robot_t[:3,3]-ot[:3,3])
obj_type = object_to_grab.split("_")[0]
grab_range = [0.20,0.24]
if euclidean_distance<grab_range[1] and euclidean_distance>grab_range[0]:

robot.Grab(o)
return True

56

else:
print("object out of grasp range")
return False

define function: un_grab(object_name)
def un_grab(object_name):

robot.ReleaseAllGrabbed()

define function: current_pose_of_object =
get_current_pose_of_object(object_name)↪→

def get_current_pose_of_object(object_name):
obj = env.GetKinBody(object_name)
obj_T = obj.GetTransform()
obj_pose = get_pose_from_transform(obj_T)

return obj_pose

define function: robot_ik = get_ik(pose)
def get_ik(pose):

end_effector_solution = get_transform_from_pose(pose)
activate_manip_joints()
filter_option = IkFilterOptions.CheckEnvCollisions
filter_option = IkFilterOptions.IgnoreEndEffectorCollisions

with env:
ikmodel = databases.inversekinematics.InverseKinematicsModel(robot,

iktype=IkParameterization.Type.Transform6D)

if not ikmodel.load():
ikmodel.autogenerate()

try:
solutions = ikmodel.manip.FindIKSolutions(end_effector_solution,

filter_option)↪→
except:

print("error")

if len(solutions) == 0:
print("NO IKs found, Probably Un-reachable transform")

if len(solutions) > 0:
if len(solutions) == 1:

i = 0
else:

i = np.random.randint(0,len(solutions))
else:

return []

return solutions[i]

define function: go_to_gripper_pose(pose)
def go_to_gripper_pose(pose):

activate_manip_joints()
robot.SetActiveDOFValues(pose)

define function: go_to_base_pose(pose)
def go_to_base_pose(pose):

activate_base_joints()
robot.SetActiveDOFValues(pose)

define function: current_arm_joint_values =
get_current_arm_joint_values_of_robot()↪→

def get_current_arm_joint_values_of_robot():
activate_manip_joints()
return robot.GetActiveDOFValues()

57

define function: current_base_joint_values = get_current_base_joint_values()
def get_current_base_joint_values_of_robot():

activate_base_joints
return robot.GetActiveDOFValues()

define function: pose = get_pose_from_transform(transform)
def get_pose_from_transform(transform):

quat = poseFromMatrix(transform)[:4]
eul = axisAngleFromQuat(quat)
pose = []
pose.extend(poseFromMatrix(transform)[4:])
pose.extend(eul)

return pose

define function: collision_flag = collision_check(object_name)
def collision_check(object_name):

collision_flag = False
obj = env.GetKinBody(object_name)

for obj2 in env.GetBodies():
if obj != obj2:

collision = env.CheckCollision(obj,obj2)
if collision:

if (obj2 == robot and obj in robot.GetGrabbed()) or
(obj == robot and obj2 in robot.GetGrabbed()):

collision = False
continue

collision_flag = True
break

return collision_flag

define function: activate_base_joints()
def activate_base_joints():

robot.SetActiveDOFs([], DOFAffine.X | DOFAffine.Y | DOFAffine.RotationAxis)

define function: activate_arm_joints()
def activate_manip_joints():

robot.SetActiveDOFs([robot.GetJoint(name).GetDOFIndex() for name in
jointnames])↪→

define function: grasp_pose_for_object = generate_grasp_pose(object_to_grab)
def generate_grasp_pose(object_to_grab):

activate_manip_joints()
rot_Z = matrixFromAxisAngle([0, 0, -np.pi/2])
gripper_offset = -0.04
world_T_obj = env.GetKinBody(object_to_grab).GetTransform()

rot_ang = np.random.uniform(low = -np.pi, high = np.pi)
obj_T_gripper = matrixFromPose([1, 0, 0, 0, gripper_offset, 0, 0.2/2.0])
rot_mat = matrixFromAxisAngle([0, 0, rot_ang])

wrist_roll_pose = robot.GetLink("wrist_roll_link").GetTransform()
gripper_pose = robot.GetLink("gripper_link").GetTransform()
wrist_pose_wrt_gripper = np.matmul(np.linalg.inv(gripper_pose),

wrist_roll_pose)↪→

grasp_T = world_T_obj.dot(rot_mat).dot(rot_Z).dot(obj_T_gripper)
grasp_T = np.matmul(grasp_T,wrist_pose_wrt_gripper)

grasp_pose = get_pose_from_transform(grasp_T)

return grasp_pose

58

define function: transform = get_tranform_from_pose(pose)
def get_transform_from_pose(pose):

quat = quatFromAxisAngle(pose[3:])
pos = pose[:3]
pose = []
pose.extend(quat)
pose.extend(pos)
transform = matrixFromPose(pose)

return transform

define function: putdown_pose_for_object =
generate_put_down_pose(object_name,target_name)

def generate_put_down_pose(object_name,target_name):
target_id = int(target_name.split("_")[1])
obj = env.GetKinBody(object_name)
can_radius = 0.03
sampling_range = [[-0.175,0.175], [-0.175,0.175]]
target_t = env.GetKinBody(target_name).GetTransform()

x = np.random.uniform(low=sampling_range[0][0]+can_radius,
high=sampling_range[0][1]-can_radius)

y = np.random.uniform(low=sampling_range[1][0]+can_radius,
high=sampling_range[1][1]-can_radius)

target_id = int(target_name.split("_")[1])
if target_id == 0:

z = 0
rot_z = np.eye(4)

else:
z = (0.1/2.0) + 0.005
rot_angle = np.random.uniform(low=-np.pi,high=np.pi)
rot_z = matrixFromAxisAngle([0,0,rot_angle])

t = matrixFromPose([1,0,0,0,x,y,z])
t = target_t.dot(t)
t = t.dot(rot_z)

rot_Z = matrixFromAxisAngle([0, 0, -np.pi/2])
gripper_offset = -0.04
world_T_obj = t

rot_ang = np.random.uniform(low = -np.pi, high = np.pi)
obj_T_gripper = matrixFromPose([1, 0, 0, 0, gripper_offset, 0, 0.2/2.0])
rot_mat = matrixFromAxisAngle([0, 0, rot_ang])

wrist_roll_pose = robot.GetLink("wrist_roll_link").GetTransform()
gripper_pose = robot.GetLink("gripper_link").GetTransform()
wrist_pose_wrt_gripper = np.matmul(np.linalg.inv(gripper_pose),

wrist_roll_pose)↪→

grasp_T = world_T_obj.dot(rot_mat).dot(rot_Z).dot(obj_T_gripper)
grasp_T = np.matmul(grasp_T,wrist_pose_wrt_gripper)

pose = get_pose_from_transform(grasp_T)

return pose

59

define function: base_pose_around_surface =
generate_base_pose_around_surface(target_name)

def generate_base_pose_around_surface(target_name):
target_id = int(target_name.split("_")[1])
diff = 0.35
x_dim = 0.45
x_offset = -diff-x_dim
y_offset = 0
target_t = env.GetKinBody(target_name).GetTransform()
diff_translation_matrix = matrixFromPose([1,0,0,0,x_offset,y_offset,0])

if target_id == 0:
rot_angle = (2*np.pi) / 4.0

else:
rot_angle = np.random.uniform(low=-np.pi,high=np.pi)

rot_Z = matrixFromAxisAngle([0, 0, -np.pi/2])
rot_mat = matrixFromAxisAngle([0,0,rot_angle])
t = np.eye(4)
t = target_t.dot(rot_mat).dot(rot_Z).dot(diff_translation_matrix)

_x = t[0,3]
_y = t[1,3]
_yaw = axisAngleFromRotationMatrix(t[:3,:3])[-1]
pose = [_x,_y,_yaw]

return pose

define function: tuck_arm()
def tuck_arm():

activate_manip_joints()
dof_values = [0, 1.32, 1.4, -0.2, 1.72, 0, 1.3599999999999999, 0.0]

robot.SetActiveDOFValues(dof_values)

grabbed_armTuckDOFs = [0, 1.32, 1.4, -0.2, 1.72, 0, 1.3599999999999999, 0.0]

example: tuck the robot arm to a tuck pose.
tuck_arm()

example: go to "surface_1"
p = generate_base_pose_around_surface("surface_1")
go_to_base_pose(p)

example: grab can_1 which is currently on "surface_0".
p = generate_base_pose_around_surface("surface_2")
go_to_base_pose(p)
p_g = generate_grasp_pose("can_1")
ik = get_ik(p_g)
if len(ik) != 0:

go_to_gripper_pose(ik)
grabbed_flag = grab_object("can_1")

example: pickup a grabbed object "can_2", which is on "surface_1"
when robot is near "surface_1".

p_g = generate_grasp_pose("can_2")
ik = get_ik(p_g)
if len(ik) != 0:

go_to_gripper_pose(ik)
grabbed_flag = grab_object("can_2")
if grabbed_flag:

tuck_arm()

60

example: put down "can_1", which is already being held by the
robot gripper on "surface_1".

p = generate_base_pose_around_surface("surface_1")
go_to_base_pose(p)
p_g = generate_put_down_pose("can_1","surface_1")
ik = get_ik(p_g)
if len(ik) != 0:

go_to_gripper_pose(ik)
un_grab("can_1")
tuck_arm()

example: check collisions for "can_1".
collision_flag = collision_check("can_1")

example: pickup can_1, which is on surface_0 and place it on surface_2
p = generate_base_pose_around_surface("surface_0")
go_to_base_pose(p)
p_g = generate_grasp_pose("can_1")
ik = get_ik(p_g)
if len(ik) != 0:

go_to_gripper_pose(ik)
grabbed_flag = grab_object("can_1")
if grabbed_flag:

tuck_arm()
p = generate_base_pose_around_surface("surface_2")
go_to_base_pose(p)
p_g = generate_put_down_pose("can_1","surface_2")
ik = get_ik(p_g)
if len(ik) != 0:

go_to_gripper_pose(ik)
un_grab("can_1")
tuck_arm()

Prompt for Delivering 1 Item

Using the functions given above solve the following problem: #
There are 2 cans, can_1, and can_2, and three surfaces, surface_1, surface_2,
and surface_0 in the environment. In the initial state, both the cans, can_1 and
can_2 are on the surface - surface_2. the function returns True if robot has
successfully picked up both cans from surface_2 and placed can_1 on surface_0 and
can_2 on surface_1. success_flag is True if the function succeeds in task and
there is no object in collision with any other object in the environemnt.
The signature for the function required is:
success_flag = place_cans_on_goal_surfaces().
only give the code and no other text including comments, markdowns or for which
language the code is given. Also, at the end call the function as well.

Prompt for Delivering 2 Item

Using the functions given above solve the following problem: #
There are 2 cans, can_1, and can_2, and three surfaces, surface_1, surface_2,
and surface_0 in the environment. In the initial state, can_1 is on surface_2
and can_2 is on surface_1. the function returns True if robot has successfully

picked↪→
up can_1 from surface_2 and placed it on surface_1, and also has picked can_2

from↪→
surface_1 and placed it on surface_0. success_flag is True if the function

succeeds↪→

61

in task and there is no object in collision with any other object in the
environemnt.↪→

The signature for the function required is:
success_flag = place_cans_on_goal_surfaces().
only give the code and no other text including comments, markdowns or for which
language the code is given. Also, at the end call the function as well.

I.2 Building Keva Structures

Domain-specific Prompt for Robot Actions

define function: success_flag = tuck_arm()
def tuck_arm(arm="left"):

release(arm)
if arm == "left":

solution = left_arm_tuck_DOFs
elif arm == "right":

solution = right_arm_tuck_DOFs

try:
robot.SetActiveDOFValues(solution)

except:
pass

openGripper()
return True

define function: grab(object_name)
def grab(obj,arm="left"):

o = env.GetKinBody(obj)
if arm == "left":

gripper_link = left_gripper_link
elif arm == "right":

gripper_link = right_gripper_link

robot_t = gripper_link.GetTransform()
ot = o.GetTransform()
euclidean_distance = np.linalg.norm(robot_t[:3,3]-ot[:3,3])
if euclidean_distance<grab_range[1] and euclidean_distance>grab_range[0]:

robot.Grab(o)
else:

print("object out of grasp range")

define function: release(object_name)
def release(object_name="object_name",arm="left"):

robot.ReleaseAllGrabbed()

define function: collision_flag = collision_check(object_name)
def collision_check(object_name):

collision_flag = False
obj = env.GetKinBody(object_name)

for obj2 in env.GetBodies():
if obj != obj2:

collision = env.CheckCollision(obj,obj2)
if collision:

if (obj2 == robot and obj in robot.GetGrabbed()) or
(obj == robot and obj2 in robot.GetGrabbed()):

collision = False
continue

collision_flag = True
break

62

return collision_flag

define function: robot_ik = get_ik_solutions(pose)
def get_ik_solutions(end_effector_solution,robot_param="left"):

end_effector_solution = get_transform_from_pose(end_effector_solution)
current_state = robot.GetActiveDOFValues()
collision = True
if robot_param not in manipulator_groups:

robot_param = "left"

if robot_param == "left":
ik_solver = left_ik_solver

elif robot_param == "right":
ik_solver = right_ik_solver

ik_count = 0

required_T = np.linalg.pinv(robot_init_transform).dot(end_effector_solution)
pose = get_pose_from_transform(required_T)
pos = pose[:3]
orn = quatFromAxisAngle(pose[3:])

while collision:
seed_state = [np.random.uniform(-3.14, 3.14)] *

ik_solver.number_of_joints↪→
joint_values = ik_solver.get_ik(seed_state,

pos[0], pos[1], pos[2],
orn[1], orn[2], orn[3], orn[0]
)

if joint_values is not None:
robot.SetActiveDOFValues(joint_values)
if collision_check(str(robot.GetName())):

collision=True
else:

collision = False
else:

print("no joint_values")
joint_values = []
break

robot.SetActiveDOFValues(current_state)
return joint_values

define function: pose = get_pose_from_transform(transform)
def get_pose_from_transform(transform):

quat = poseFromMatrix(transform)[:4]
eul = axisAngleFromQuat(quat)
pose = []
pose.extend(poseFromMatrix(transform)[4:])
pose.extend(eul)

return pose

define function: go_to_gripper_pose(pose)
def go_to_gripper_pose(pose,arm="left"):

robot.SetActiveDOFValues(pose)

define function: current_pose_of_object =
get_current_pose_of_object(object_name)↪→

def get_current_pose_of_object(object_name):
obj = env.GetKinBody(object_name)
obj_T = obj.GetTransform()
obj_pose = get_pose_from_transform(obj_T)

63

return obj_pose

define function: transform = get_tranform_from_pose(pose)
def get_transform_from_pose(pose):

quat = quatFromAxisAngle(pose[3:])
pos = pose[:3]
pose = []
pose.extend(quat)
pose.extend(pos)
transform = matrixFromPose(pose)

return transform

define function: p = sample_grasp_pose(object_name)
def sample_grasp_pose(object_name):

world_T_obj = env.GetKinBody(object_name).GetTransform()

world_T_robot = get_transform_from_pose(robot.GetActiveDOFValues())
robot_T_world = np.linalg.inv(world_T_robot)

obj_T_robot = np.eye(4)
obj_T_robot[1,3]= grasping_offset

t1 = orpy.matrixFromAxisAngle([0, -np.pi/2, 0])
t2 = orpy.matrixFromAxisAngle([-np.pi/2, 0, 0])

obj_T_robot = np.matmul(np.matmul(obj_T_robot,t1),t2)
t = np.matmul(world_T_obj,obj_T_robot)
pose = get_pose_from_transform(t)

return pose

define function: set_plank(object_name)
def set_plank(plank_name):

plank = env.GetKinBody(plank_name)
x_offsets=[0.15,0.45]
y_offsets=[0.65,0.05]

while True:
t = np.eye(4)
t[0,3] = np.random.uniform(low = -0.45+x_offsets[0], high =

0.45-x_offsets[1])↪→
t[1,3] = np.random.uniform(low = -0.45+y_offsets[0], high =

0.45-y_offsets[1])↪→
t[2,3] = 0.0135

t1 = orpy.matrixFromAxisAngle([-np.pi/2, 0, 0])
t = t.dot(t1)
plank.SetTransform(t)
t2 = orpy.matrixFromAxisAngle([0,-np.pi/2, 0])
plank.SetTransform(t.dot(t2))
if not(collision_check(plank_name)):

break

define function: p = get_goal_put_down_pose_for_plank_1()
def get_goal_put_down_pose_for_plank_1():

world_T_obj = env.GetKinBody("goalLoc_1").GetTransform()

obj_T_robot = np.eye(4)
obj_T_robot[1,3]= grasping_offset

t1 = orpy.matrixFromAxisAngle([0, -np.pi/2, 0])
t2 = orpy.matrixFromAxisAngle([-np.pi/2, 0, 0])

64

obj_T_robot = np.matmul(np.matmul(obj_T_robot,t1),t2)
t = np.matmul(world_T_obj,obj_T_robot)
pose = get_pose_from_transform(t)

return pose

define function: p = sample_plank_on_left_of_other_plank(plank_1,plank_2)
def sample_plank_on_left_of_other_plank(plank_1,plank_2):

plank_1 = env.GetKinBody(plank_1)
relative_transform = get_transform_from_pose([0, 0, 0.077474999073727457, 0,

0, 0])↪→

required_t = plank_1.GetTransform().dot(relative_transform)

world_T_obj = required_t

world_T_robot = get_transform_from_pose(robot.GetActiveDOFValues())
robot_T_world = np.linalg.inv(world_T_robot)

obj_T_robot = np.eye(4)
obj_T_robot[1,3]= grasping_offset

t1 = orpy.matrixFromAxisAngle([0, -np.pi/2, 0])
t2 = orpy.matrixFromAxisAngle([-np.pi/2, 0, 0])

obj_T_robot = np.matmul(np.matmul(obj_T_robot,t1),t2)
t = np.matmul(world_T_obj,obj_T_robot)
pose = get_pose_from_transform(t)

return pose

define function: p = sample_plank_on_right_of_other_plank(plank_1,plank_2)
def sample_plank_on_right_of_other_plank(plank_1,plank_2):

plank_1 = env.GetKinBody(plank_1)
relative_transform =

get_transform_from_pose([0, 0, -0.077474999073727457, 0, 0, 0])

required_t = plank_1.GetTransform().dot(relative_transform)

world_T_obj = required_t

world_T_robot = get_transform_from_pose(robot.GetActiveDOFValues())
robot_T_world = np.linalg.inv(world_T_robot)

obj_T_robot = np.eye(4)
obj_T_robot[1,3]= grasping_offset

t1 = orpy.matrixFromAxisAngle([0, -np.pi/2, 0])
t2 = orpy.matrixFromAxisAngle([-np.pi/2, 0, 0])

obj_T_robot = np.matmul(np.matmul(obj_T_robot,t1),t2)
t = np.matmul(world_T_obj,obj_T_robot)
pose = get_pose_from_transform(t)

return pose

define function: p =
sample_plank_horizontally_on_top_of_other_two_vertical_planks

("plank_1","plank_2","plank_3")
def sample_plank_horizontally_on_top_of_other_two_vertical_planks

(plank_1,plank_2,plank_3):
plank_1 = env.GetKinBody(plank_1)
relative_transform = get_transform_from_pose([0.059907747268674261, 0,

65

0.04373009875416578, 0, 1.5707963267948959, 0])
required_t = plank_1.GetTransform().dot(relative_transform)

world_T_obj = required_t

world_T_robot = get_transform_from_pose(robot.GetActiveDOFValues())
robot_T_world = np.linalg.inv(world_T_robot)

obj_T_robot = np.eye(4)
obj_T_robot[1,3]= grasping_offset

t1 = orpy.matrixFromAxisAngle([0, -np.pi/2, 0])
t2 = orpy.matrixFromAxisAngle([-np.pi/2, 0, 0])

obj_T_robot = np.matmul(np.matmul(obj_T_robot,t1),t2)
t = np.matmul(world_T_obj,obj_T_robot)
pose = get_pose_from_transform(t)

return pose

define function: p =
sample_plank_horizontally_on_top_of_other_two_horizontal_planks_on_

left_side("plank_1","plank_2","plank_3")
def sample_plank_horizontally_on_top_of_other_two_horizontal_planks_on_

left_side(plank_1,plank_2,plank_3):
plank_1 = env.GetKinBody(plank_1)
relative_transform = get_transform_from_pose([0.04, -0.023439999999999989,

0.04,↪→
0, 1.5707963267948963, 0])

required_t = plank_1.GetTransform().dot(relative_transform)

world_T_obj = required_t

world_T_robot = get_transform_from_pose(robot.GetActiveDOFValues())
robot_T_world = np.linalg.inv(world_T_robot)

obj_T_robot = np.eye(4)
obj_T_robot[1,3]= grasping_offset

t1 = orpy.matrixFromAxisAngle([0, -np.pi/2, 0])
t2 = orpy.matrixFromAxisAngle([-np.pi/2, 0, 0])

obj_T_robot = np.matmul(np.matmul(obj_T_robot,t1),t2)
t = np.matmul(world_T_obj,obj_T_robot)
pose = get_pose_from_transform(t)
return pose

define function: p =
sample_plank_horizontally_on_top_of_other_two_horizontal_planks_on_

right_side("plank_1","plank_2","plank_3")
def sample_plank_horizontally_on_top_of_other_two_horizontal_planks_on_

right_side(plank_1,plank_2,plank_3):
plank_1 = env.GetKinBody(plank_1)
relative_transform = get_transform_from_pose([-0.04, -0.023399999999999935,

0.04, 0, 1.5707963267948968, 0])

required_t = plank_1.GetTransform().dot(relative_transform)

world_T_obj = required_t

world_T_robot = get_transform_from_pose(robot.GetActiveDOFValues())
robot_T_world = np.linalg.inv(world_T_robot)

obj_T_robot = np.eye(4)

66

obj_T_robot[1,3]= grasping_offset

t1 = orpy.matrixFromAxisAngle([0, -np.pi/2, 0])
t2 = orpy.matrixFromAxisAngle([-np.pi/2, 0, 0])

obj_T_robot = np.matmul(np.matmul(obj_T_robot,t1),t2)
t = np.matmul(world_T_obj,obj_T_robot)
pose = get_pose_from_transform(t)

return pose

define function: p =
sample_plank_perpendicularly_on_top_of_a_horizontal_plank_on_its_left_side

(plank_1,plank_2)
def sample_plank_perpendicularly_on_top_of_a_horizontal_plank_on_its_

left_side(plank_1,plank_2):
plank_1 = env.GetKinBody(plank_1)
relative_transform = get_transform_from_pose([-0.033744900319561663,

-4.9568220254682954e-16, 0.066504776477813554, 1.0368663869534288e-14,
-1.5707963267948974, -9.9776971655314691e-15])

required_t = plank_1.GetTransform().dot(relative_transform)

world_T_obj = required_t

world_T_robot = get_transform_from_pose(robot.GetActiveDOFValues())
robot_T_world = np.linalg.inv(world_T_robot)

obj_T_robot = np.eye(4)
obj_T_robot[1,3]= grasping_offset

t1 = orpy.matrixFromAxisAngle([0, -np.pi/2, 0])
t2 = orpy.matrixFromAxisAngle([-np.pi/2, 0, 0])

obj_T_robot = np.matmul(np.matmul(obj_T_robot,t1),t2)
t = np.matmul(world_T_obj,obj_T_robot)
pose = get_pose_from_transform(t)
return pose

define function: p =
sample_plank_perpendicularly_on_top_of_a_horizontal_plank_on_its_

right_side(plank_1,plank_2)
def sample_plank_perpendicularly_on_top_of_a_horizontal_plank_on_its_

right_side(plank_1,plank_2):
plank_1 = env.GetKinBody(plank_1)
relative_transform = get_transform_from_pose([0.04373009875416739,

-4.7544147175681199e-16, 0.066334486007690402, 1.0368663869534288e-14,
-1.5707963267948974, -9.9776971655314691e-15])

required_t = plank_1.GetTransform().dot(relative_transform)

world_T_obj = required_t

world_T_robot = get_transform_from_pose(robot.GetActiveDOFValues())
robot_T_world = np.linalg.inv(world_T_robot)

obj_T_robot = np.eye(4)
obj_T_robot[1,3]= grasping_offset

t1 = orpy.matrixFromAxisAngle([0, -np.pi/2, 0])
t2 = orpy.matrixFromAxisAngle([-np.pi/2, 0, 0])

obj_T_robot = np.matmul(np.matmul(obj_T_robot,t1),t2)
t = np.matmul(world_T_obj,obj_T_robot)

67

pose = get_pose_from_transform(t)
return pose

example: place plank_1 and plank_2 parallel to each other
set_plank("plank_1")
p = sample_grasp_pose("plank_1")
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
grab("plank_1")
p = get_goal_put_down_pose_for_plank_1()
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
release()
set_plank("plank_2")
p = sample_grasp_pose("plank_2")
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
grab("plank_2")
p = sample_plank_on_left_of_other_plank("plank_1","plank_2")
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
release()

example: place plank_3 horizontally on top of vertically placed plank_1 and
plank_2↪→

set_plank("plank_3")
p = sample_grasp_pose("plank_3")
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
grab("plank_3")
p = sample_plank_on_top_of_other_planks_in_pose_1("plank_1", "plank_2",

"plank_3")↪→
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
release()

example: place plank_2 vertically on plank_1 on the left
set_plank("plank_2")
p = sample_grasp_pose("plank_2")
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
grab("plank_2")
p = sample_plank_perpendicularly_on_top_of_a_horizontal_plank_on_its_

left_side("plank_1","plank_2")
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
release()

example: place plank_2 vertically on plank_1 on the right
set_plank("plank_2")
p = sample_grasp_pose("plank_2")
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
grab("plank_2")
p = sample_plank_perpendicularly_on_top_of_a_horizontal_plank_on_its_

68

right_side("plank_1","plank_2")
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
release()

example: place plank_3 horizontally on top of horizontally placed
plank_1 and plank_2

set_plank("plank_3")
p = sample_grasp_pose("plank_3")
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
grab("plank_3")
p = sample_plank_on_top_of_other_planks_in_pose_2("plank_1", "plank_2",

"plank_3")↪→
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
release()

example: place plank_3 horizontally on top of horizontally placed
plank_1 and plank_2

set_plank("plank_3")
p = sample_grasp_pose("plank_3")
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
grab("plank_3")
p = sample_plank_on_top_of_other_planks_in_pose_3("plank_1", "plank_2",

"plank_3")↪→
ik = get_ik_solutions(p)
if len(ik) > 0:

go_to_gripper_pose(ik)
release()

example: tuck the robot arm to a tuck pose.
tuck_arm()

example: check collisions for plank_1
collision_flag = collision_check("plank_1")

Prompt for Building Structure 1

Using the functions given above solve the following problem: #
There are 3 planks in the environment. The function should arrange these planks

such↪→
that all the planks are kept at their corresponding goal locations. plank_1 being

at↪→
goal location corresponding to itself. I.e., plank_1 and plank_2 are placed

vertically↪→
on the table parallel from each other and plank_3 should be placed horizontally

on↪→
both of these planks. The function returns true if the planks are placed in a
collision-free configuration, otherwise returns false.
The signature for the function required is:
success_flag = place_planks_in_a_goal_structure().
only give the code and no other text including comments, markdowns or for which
language the code is given. Also, at the end call the function as well.

69

Prompt for Building Structure 2

Using the functions given above solve the following problem: #
There are 4 planks in the environment. The function should arrange these planks
such that all the planks are kept at their corresponding
goal locations. plank_1 and plank_2 are placed horizontally on top of the table,

with↪→
plank_1 being at goal location corresponding to itself and plank_2 placed

parallelly↪→
on left of plank_1. plank_4 is placed on the plank_2 and plank_1 horizontally on
its side on the left and plank_3 is placed on the plank_2 and plank_1

horizontally on↪→
its side on the right. plank_3 is also placed parallelly on the left of the

plank_4.↪→
The signature for the function required is:
success_flag = place_planks_in_a_goal_structure().
only give the code and no other text including comments, markdowns or for which
language the code is given. Also, at the end call the function as well.

Prompt for Building Structure 3

Using the functions given above solve the following problem: #
There are 6 planks in the environment. The function should arrange these planks
such that all the planks are kept at their corresponding goal locations such that

when↪→
kept together, the planks create a structure of a 2D drawing of a house.
The signature for the function required is:
success_flag = place_planks_in_a_goal_structure().
only give the code and no other text including comments, markdowns or for which
language the code is given. Also, at the end call the function as well.

Prompt for Building Structure 4

Using the functions given above solve the following problem: #
There are 6 planks in the environment. The function should arrange these planks
such that all the planks are kept at their corresponding goal locations.
plank_1 and plank_2 are placed horizontally on top of the table, with plank_1

being↪→
at goal location corresponding to itself and plank_2 placed parallelly on left of
plank_1. plank_3 is placed on the plank_2 and plank_1 horizontally on its side on
the left and plank_4 is placed on the plank_2 and plank_1 horizontally on its
side on the right. plank_4 is also placed parallelly on the left of the plank_3.
plank_4 and plank_5 are kept parallelly and vertically on top of plank_3, with

plank_4↪→
kept on right side and plank_5 placed on left side of plank_4. plank_6 is placed
horizontally on plank_4 and plank_5.
The signature for the function required is:
success_flag = place_planks_in_a_goal_structure().
only give the code and no other text including comments, markdowns or for which
language the code is given. Also, at the end call the function as well.

I.3 Packing a Box

Domain-specific Prompt for Robot Actions

define function: grab_object(object_to_grab)
def grab_object(object_to_grab):

o = env.GetKinBody(object_to_grab)
robot.Grab(o)

70

define function: un_grab(object_name)
def un_grab(object_name):

robot.ReleaseAllGrabbed()

define function: grasp_pose_for_object = generate_grasp_pose(object_to_grab)
def generate_grasp_pose(object_to_grab):

world_T_obj = env.GetKinBody(object_to_grab).GetTransform()
obj_T_robot = np.eye(4)
obj_T_robot[2,3] = 0.21
t1 = matrixFromAxisAngle([0, 0, -np.pi/4.0])
obj_T_robot = obj_T_robot.dot(t1)
t = np.matmul(world_T_obj,obj_T_robot)
pose = get_pose_from_transform(t)

return pose

define function: putdown_pose_for_object = generate_putdown_pose
(object_name,target_name)

def generate_putdown_pose(object_name,target_name):
obj_dims = [0.0325,0.0325]
droparea_dims = 0.075

drop = env.GetKinBody(target_name)
drop_t = drop.GetTransform()

x_edge_offset = abs(droparea_dims-obj_dims[0])
y_edge_offset = abs(droparea_dims-obj_dims[1])

x = np.random.uniform(low=-x_edge_offset,high=x_edge_offset)
y = np.random.uniform(low=-y_edge_offset,high=y_edge_offset)
z = 0.001

world_T_obj = matrixFromPose([1,0,0,0,x,y,z])
world_T_obj = drop_t.dot(world_T_obj)

obj_T_robot = np.eye(4)
obj_T_robot[2,3] = 0.21
t1 = matrixFromAxisAngle([0, 0, -np.pi/4.0])
obj_T_robot = obj_T_robot.dot(t1)
t = np.matmul(world_T_obj,obj_T_robot)
pose = get_pose_from_transform(t)

return pose

define function: current_pose_of_object =
get_current_pose_of_object(object_name)↪→

def get_current_pose_of_object(object_name):
obj = env.GetKinBody(object_name)
obj_T = obj.GetTransform()
obj_pose = get_pose_from_transform(obj_T)

return obj_pose

define function: robot_ik = get_ik(pose)
def get_ik(pose):

return pose

define function: go_to_pose(pose)
def go_to_pose(pose):

ik = get_ik(pose)
robot.SetActiveDOFValues(ik)

71

define function: current_joint_values = get_current_joint_values_of_robot()
def get_current_joint_values_of_robot():

return robot.GetActiveDOFValues()

define function: pose = get_pose_from_transform(transform)
def get_pose_from_transform(transform):

quat = poseFromMatrix(transform)[:4]
eul = axisAngleFromQuat(quat)
pose = []
pose.extend(poseFromMatrix(transform)[4:])
pose.extend(eul)

return pose

define function: collision_flag = collision_check(object_name)
def collision_check(object_name):

collision_flag = False
obj = env.GetKinBody(object_name)

for obj2 in env.GetBodies():
if obj != obj2:

collision = env.CheckCollision(obj,obj2)
if collision:

if (obj2 == robot and obj in robot.GetGrabbed())
or (obj == robot and obj2 in robot.GetGrabbed()):
collision = False
continue

collision_flag = True
break

return collision_flag

example: go to grasp pose of can_1.
p = generate_grasp_pose("can_1")
go_to_pose(p)

example: grab can_1.
grab_object("can_1")

example: pickup can_1.
p = generate_grasp_pose("can_1")
go_to_pose(p)
grab_object("can_1")

example: putdown can_1 in box.
p = generate_putdown_pose("can_1","box")
go_to_pose(p)
un_grab("can_1")

example: check collisions for can_1.
collision_flag = collision_check("can_1")
\end{promptbox}
\subsubsection*{Prompt For Packing 1 Can}
\begin{promptbox}
Using the functions given above solve the following problem: #
There is 1 can, can_1, on the table. The function returns true if it can

accommodate↪→
all the cans in a box at a pose such that each can is not in collision with every
other can in the box. The function needs to accommodate all objects in the box.
The signature for the function required is:
collision_flag = put_all_cans_in_box("box").
only give the code and no other text including comments, markdowns or for which
language the code is given. Also, at the end call the function as well.

72

Prompt For Packing 2 Can

Using the functions given above solve the following problem: #
There are 2 cans, can_1, and can_2, on the table. The function returns true if it

can↪→
accommodate all the cans in a box at a pose such that each can is not in

collision↪→
with every other can in the box. The function needs to accommodate all objects in
the box.
The signature for the function required is:
collision_flag = put_all_cans_in_box("box").
only give the code and no other text including comments, markdowns or for which
language the code is given. Also, at the end call the function as well.

Prompt For Packing 3 Can

Using the functions given above solve the following problem: #
There are 3 cans, can_1, can_2, and can_3 on the table. The function returns true
if it can accommodate all the cans in a box at a pose such that each can is not
in collision with every other can in the box. The function needs to accommodate

all↪→
objects in the box.
The signature for the function required is:
collision_flag = put_all_cans_in_box("box").
only give the code and no other text including comments, markdowns or for which
language the code is given. Also, at the end call the function as well.

Prompt For Packing 4 Can

Using the functions given above solve the following problem: #
There are 3 cans, can_1, can_2, and can_3 on the table. The function returns true
if it can accommodate all the cans in a box at a pose such that each can is not
in collision with every other can in the box. The function needs to accommodate

all↪→
objects in the box.
The signature for the function required is:
collision_flag = put_all_cans_in_box("box").
only give the code and no other text including comments, markdowns or for which
language the code is given. Also, at the end call the function as well.

73

	Introduction
	Problem Setting
	Our Approach
	Learning Proto-Relations
	Inventing Semantically Well-Founded Concepts for Logic
	Learning High-Level Actions and Logical World Models from Raw Data

	Empirical Evaluation
	Conclusion
	Limitations
	Formal Framework
	Overview of the LAMP
	Relation Inventor
	Action Inventor
	Example of Action Model Learning

	Related Work
	Task and Motion Planning with Learned World Models
	Code and Data
	Learned Word Models
	Delivering Items in a Cafe
	Setting Up a Dinner Table
	Building Structures with Keva Planks
	Building Structures with Jenga Planks
	Packing a Box

	Code as Policies Evaluation Prompts
	Delivering Items in a Cafe
	Building Keva Structures
	Packing a Box

