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Abstract

There is a growing interest within the AI research commu-
nity in developing autonomous systems capable of explain-
ing their behavior to users. However, the problem of com-
puting explanations for users of different levels of expertise
has received little research attention. We propose an approach
for addressing this problem by representing the user’s under-
standing of the task as an abstraction of the domain model that
the planner uses. We present algorithms for generating min-
imal explanations in cases where this abstract human model
is not known. We reduce the problem of generating an ex-
planation to a search over the space of abstract models and
show that while the complete problem is NP-hard, a greedy
algorithm can provide good approximations of the optimal
solution. We also empirically show that our approach can ef-
ficiently compute explanations for a variety of problems.

1 Introduction
AI systems have the potential to transform society by assist-
ing humans in diverse situations ranging from extraplanetary
exploration to assisted living. In order to achieve this poten-
tial, however, humans working with such systems need to be
able to understand them just as they would understand hu-
man team members. This presents a number of challenges
because most humans do not understand AI algorithms and
their behavior at the same intuitive level that they understand
other humans. Recently, there have been attempts to bridge
this gap by developing systems capable of explaining their
behavior. Most recently (Chakraborti et al. 2017) formulated
the problem of explaining plans as that of model reconcili-
ation. Their approach relied on identifying ways of bring-
ing the human model (i.e the explainee model) closer to the
robot model so that the plan in question appears optimal in
the new model. Their work looked at scenarios in which the
human used a model of the domain that was at the same
level of fidelity as the one used by the agent to generate the
plan. This approach, unfortunately, did not capture scenar-
ios where the human possessed a lower level of expertise

*This is an extended version of the paper “Hierarchical Exper-
tise Level Modeling for User Specific Contrastive Explanations”
that is to appear in IJCAI 2018. The current version includes a
demonstration of the proposed approach (Section 5) that was not
part of the IJCAI version.

and thus used a more “abstract” or coarser representation of
the model as compared to the AI agent.

In this paper, we propose a new approach to this prob-
lem where the agent explains its ongoing or planned behav-
ior to humans with differing levels of expertise. We con-
sider explanations in the framework of counterfactual rea-
soning, where a user who is confused by the agent's activity
(or proposed activity) presents alternative behavior that they
would have expected the agent to execute. This aligns with
the widely held belief that humans expect explanations to
be contrastive (Miller 2017). In keeping with the terminol-
ogy used in social sciences literature we will call the set of
alternative behaviors as foils to the proposed robot behavior.

For instance, consider a mission-control operator who
needs to supervise the activity of an autonomous robot on
Mars in the midst of a sandstorm that could present valu-
able data for analysis. If the robot proposes to go back to the
base before going to a vantage point for observing the storm,
the operator would naturally be perplexed, and may be moti-
vated to ask, why doesn't the robot go directly to the vantage
point?! Similarly, a human team member at a manufactur-
ing plant may be perplexed by a robot's unnecessary detours
while assembling an automobile engine. Not only do such
situations involve personnel with varying skill levels, they
also place a premium on the size of explanations.

A natural interaction would have the robot present an ex-
planation about why the human's counterfactual suggestion
would not apply in the current situation. This explanation
could involve facts about the environment as well as about
the robot's constraints. E.g., “I need to get a new battery
pack to observe the sandstorm for at least 30 minutes with-
out interruption”. Such explanations need to be attuned to
the level of understanding of the human involved. If the
operator happens to be the lead designer of the robot's se-
quential decision-making engine, the robot could provide
more specific information, e.g. “I am carrying battery-pack
#00920”, because this operator knows that some battery
packs wouldn't allow it to carry out the full observation.

In this paper we present the Hierarchical Expertise-
Level Modeling or the HELM approach for facilitating
such context and user-specific explanations. We assume that
the human user’s understanding of the task is an abstraction
of the model used by the robot. HELM generates the ap-
propriate explanation by searching through a model lattice
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of possible abstractions of the agent's model. Each model
within this lattice represents a different level of understand-
ing of the task, with the highest fidelity representation (cor-
responding to the most detailed understanding of the do-
main used by the robot) forming the base of the lattice and
the model representing the most naive understanding of the
task (for example one held by a lay user) forming the high-
est node. Since the user's level of expertise is unknown to
the agent, our algorithm estimates the human model before
searching for an explanation. While we assume a closed
form model in this paper, we plan to extend our approach
to arbitrary generative models or simulations in future work.

Our explanations consist of information that may be ab-
sent in the user's abstract model, and show why the foil
doesn't apply in the true situation. These explanations will
cause the user’s model to shift to a more accurate model
in the lattice (and ultimately achieve model reconciliation).
We will refer to model updates constituting these explana-
tions as model concretizations. Our framework can also be
extended to situations where a user's understanding is ab-
stract and erroneous. In this paper, we focus on the funda-
mental aspects of the problem and restrict our attention to
settings where the user's understanding is an abstraction of
the actual situation.

Readers familiar with counter-example guided model
checking (CEGAR) literature (Clarke et al. 2000) or its ap-
plications in planning (Seipp and Helmert 2013) will no-
tice that our method of refining models is quite reminis-
cent of model refinement methods discussed in that litera-
ture. The foils we consider in our approach are equivalent to
the counter-examples used by CEGAR methods and similar
to these methods we too are looking for concretizations that
refute these counter-examples. We provide a more detailed
comparison between the methods in Section 6.

The rest of this paper is structured as follows. In Section
2, we present our formal framework. Section 3 covers dif-
ferent approaches for generating explanation and Section 4
presents empirical evaluation of these methods on standard
IPC domains. Through Section 5, we will discuss the ap-
plication of this method on a simple task and motion plan-
ning problem. In sections 6 and 7, we will discuss the related
work and possible future directions.

2 Hierarchical Expertise-Level Models
In this work, we focus on abstractions that form models
by projecting out state fluents. While the presentation in
the following sections is equally valid for both predicate
and propositional abstractions, we will focus on proposi-
tional abstractions to keep our formulation clear and con-
cise. We will look at planning models of the form M =
〈P, S,A, I,G〉 where P gives the set of state fluents, S the
set of possible states, A the set of actions, I the initial state
and G the goal. Each state s ∈ S is uniquely represented by
the set of propositions that are true in that state, i.e, s ⊆ P .

Each action a ∈ A is associated with a set of precon-
ditions preca that need to hold for the effects (ea) of that
action to be applied to a particular state. Each effect set ea
can be further separated into a set of add effects e+

a and a set

Figure 1: An illustration of the hierarchical explanation process.
The human observer who views the task at a higher level of ab-
straction expects the rover to execute a different plan from the one
chosen by the rover. The rover presents the human with an expla-
nation it believes will help resolve the foils in the human’s updated
model.

of delete effects e−a . The result of executing an action a on a
state s in this setting is defined as follows

a(S) =

{
(S ∪ e+

a ) \ e−a , if preca ⊆ S
S otherwise

A plan π is defined as a sequence of actions (〈a1, .., an〉, n
being the size of the plan), and a plan is said to solveM (i.e,
π(I) |=M G) if π(I) ⊇ G.

Automated planning has a long tradition of employing
abstraction both for plan generation (c.f (Sacerdoti 1974))
and for generating heuristics (c.f (Seipp and Helmert 2013;
Keyder et al. 2012)) and a number of different abstraction
schemes have been proposed in these works. In fact, state
abstractions as presented in this work have been widely used
in pattern databases and are referred to as projections in
that literature (c.f (Culberson and Schaeffer 1998; Edelkamp
2000)). Following works like (Seipp and Helmert 2013;
Backstrom and Jonsson 2013), we will also use the concept
of a transition system induced by the planning model to de-
fine state abstractions. Intuitively, a transition system con-
stitutes a graph where the nodes represent possible states,
and the edges capture the transitions between the states that
are valid in the corresponding planning model. We refer the
readers to the previously mentioned works for further anal-
yses of state transition systems and their connection to ab-
stractions.
Definition 1. A set X is said to be a propositional abstrac-
tion of a set of states S with respect to some set of proposi-
tions Λ, if there exists a surjective mapping fΛ : S → X ,
such that for every state s ∈ S, there exists a state fΛ(s) ∈
X where fΛ(s) = s \ Λ.

For notational convenience we will refer to the set of
states obtained by abstracting out the proposition set Λ from
some set of states S as [S]fΛ

.
Definition 2. For a planning model M = 〈P, S,A, I,G〉
with a corresponding transition system T , a model
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M′ = 〈P ′, S′, A, I ′, G′〉 with a transition system T ′ is
considered an abstraction of MMM, if there exists a set of
propositions Λ, such that P ′ = P − Λ, S′ = [S]fΛ

,
I ′ = fΛ(I), G′ = fΛ(G) and for every transition s1

a−→ s2

in T corresponding to an action a, there exists an equivalent

transition (s1 \Λ)
[a]fΛ−−−→ (s2 \Λ) in T ′, where [a]fΛ

is part
of the new action set A′.

As per Definition 2, the abstract model is complete in the
sense that all plans that were valid in the original model will
have an equivalent plan in this new model. We will use the
operator @ to capture the fact that a model M is less ab-
stract than the modelM′, i.e ifM @M′ then there exist a
set of propositions Λ such thatM = [M′]fΛ

. With the def-
inition of abstraction and related notations in place, we are
now ready to define a model lattice. We will use this lattice
to both estimate the human model and to identify explana-
tions.

Definition 3. For a modelM#, the model lattice LLL is a tu-
ple of the formL = 〈M,E,P, `〉, where M is the set of lattice
nodes such thatM# ∈M and ∀M′ ∈M,M# vM′, E is
the lattice edges, P is the superset of propositions considered
for abstraction within this lattice and ` is a function mapping
edges to labels. Additionally, for each edge ei = (Mi,Mj)
there exists a proposition p ∈ P such that [Mi]fp = Mj

and `(Mi,Mj) = p.

Thus each edge in this lattice corresponds to an abstrac-
tion formed by projecting out a single proposition (repre-
sented by the label of the edge). We can also define a con-
cretization function γp that retrieves the model that was used
to generate the given abstract model by projecting out the
proposition p, i.e, γp(M) = M′ if (M′,M) ∈ E and
`(M′,M) = p else γp(M) =M.

Throughout the rest of this work, we will make some as-
sumptions on the structure of the lattice L and the abstrac-
tion methods used by L to simplify our discussions. In this
paper, we will focus on lattices where each node in M has
an incoming edge for every proposition missing from its cor-
responding model. We will refer to lattices that satisfy this
property as Proposition Conserving lattices. Additionally,
we will call a proposition conserving lattice that contains an
abstract node corresponding to each possible subset of P as
the Complete Lattice forM given P.

Formally, a lattice L is proposition conserving, iff for
any model M ∈ M and ∀p ∈ P, if p is not in PM then
there exists a model M′ ∈ M, such that (M′,M) ∈ E
and `(M′,M) = p). Notice that enforcing conservation of
propositions doesn’t require any further assumptions about
the human model and can be easily ensured by the agent
generating the lattice.

We also assume that all abstraction functions used in gen-
erating the models in the lattice are commutative and idem-
potent, i.e., [[M]fp1

]fp2
= [[M]fp2

]fp1
and [[M]fp1

]fp1
=

[M]fp1
. Readers can refer to (Srivastava, Russell, and Pinto

2016) for a comprehensive list of ways to generate abstract
models that satisfy these properties.

As mentioned earlier, we consider an explanation gen-

eration setting where the human observer uses a task
model (denoted as MH = 〈PH , SH , AH , IH , GH〉), that
is a more abstract version of the robot’s model (MR =
〈PH , SR, AR, IR, GR〉). While the robot may not know
MH , it knows that MH is a member of the set M for
the lattice L. The human comes up with a foil set F =
{π1, π2, ..., πm} that the robot needs to refute by providing
an explanation E regarding the task. The explanation should
contain information about specific domain properties (i.e.,
state fluents) that are missing from the human’s model and
how these properties affect different actions (For example,
which actions use these propositions as preconditions and
which ones generate/delete them). To illustrate the utility of
such explanations consider an example involving a simpli-
fied version of the rover domain mentioned earlier.
Example 1. Let us suppose that the rover uses a modi-
fied version of the IPC rover domain (International Planning
Competition 2011) that also takes into account the battery
level of the rover. Each rover operation has a different en-
ergy requirement, and the battery level needs to be above a
predefined threshold for it to execute them, e.g., it can per-
form rock sampling only if the battery level is above 75%.
Furthermore, the rover needs to visit the base station (i.e.,
the lander) and perform a reset action to recharge its batter-
ies.

The rover knows that the human observer is at
most ignorant of its energy requirements and/or stor-
age capabilities. So the model lattice L needs to
consider abstractions corresponding to the follow-
ing propositions P={battery level above 25 perc, bat-
tery level above 50 perc, battery level above 75 perc,
full store}. Figure 2 shows the lattice that the robot would
use in this setting. Here we will create each abstract model
by dropping a proposition from the more concrete model
and by making the effects of action non-deterministic if the
dropped predicate appears in the precondition. For example,
if the action drop store1 has effects of the form

{full store1, store of store1} → {¬full store1, empty store1}
Now in an abstract version of this model, if the proposition

full store1 is dropped the effect becomes

{ store of store1} → ND{ empty store1}
Which now says that the action’s effects are non-

deterministic and executing drop store1 may or may not turn
the fluent empty store1 true.

Here the robot presents the plan

πR = 〈 navigate w0 lander, reset at lander, navigate lander w1,
sample rock store0 w1〉

and the observer responds by proposing the foil set

F = {〈 navigate w0 w1, navigate lander w1,
sample rock store0 w1 〉}

If the robot knew that the human was ignorant about
all the battery level predicates and nothing else, the robot
could help resolve the human confusion by informing them
about the fact that action sample rock requires the bat-
tery to be above 75% (i.e describing the proposition bat-
tery level above 75 perc) and in this updated model the
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Figure 2: A possible abstraction lattice for the rover domain.

human foil can no longer achieve the goal. We can repre-
sent such an explanation using the set of propositions whose
concretization is required to refute the given foils.
Definition 4. An explanation E of size n for the human
modelMH and a foil set F can be represented as a set of
propositions of the form E = {p1, ..., pn} such that
∀π ∈ F, π(IγE(MH)) 6|=γE(MH) GγE(MH)

Where γE(MH) is the model obtained by applying the con-
cretizations corresponding to E on the modelMH .

In Example 1, the rover would have difficulty coming up
with a single explanation as it does not knowMH . One pos-
sibility would be to restrict its attention to just the models
that are consistent with the foils . In this scenario, this would
correspond to {c6, c7, c9, c10, c11, c12}.

Now we need to find a way of generating explanations
given this reduced set of models.
Proposition 1. Let Mi be some model in L such that
MH v Mi. If E is a valid explanation for Mi and some
foil set F , then E must also explain F forMH .

This proposition directly follows from the fact that for
a proposition conserving lattice γE(Mi) will be a logical
weaker model than γE(MH). Next, we will define the con-
cept of a minimal abstraction set for a given lattice L and
foils F
Definition 5. Given an the abstraction lattice L =
〈M,E,P, `〉 the minimal abstraction set Mmin is the supre-
mum of all the models that are consistent with the foil set F .
Mmin = sup{Mi|Mi ∈ M,∀π ∈ F (π(IMi

) |=Mi

GMi
)}

In Example 1, the minimal abstract model set will be
Mmin = {c11, c12}.

If we can find an explanation that is valid for all the mod-
els in Mmin then by Proposition 1 it must work for MH as
well.
Proposition 2. For a given model lattice L, the minimal ab-
straction set Mmin and a set of foils F , there exists an ex-
planation E such that ∀M′ ∈Mmin and ∀π ∈ F ,
π(IγE(M′)) 6|=γE(M′) GγE(M′)

It is easy to see why this property holds, as any explana-
tion that involves concretizing all possible propositions in P
satisfies this property.

In most cases, we would prefer to compute the least
costly or the shortest explanation (if all concretizations are
equally expensive) to the explainee. In the rover example,

even if the human is unaware of multiple task details, the
robot can easily resolve the explainee’s doubts by just ex-
plaining the concretizations related to the proposition bat-
tery level above 75 perc without getting into other details.
Describing the details of remaining propositions is unnec-
essary and in the worst case might leave the human feel-
ing overwhelmed and confused. In this case, the explanation
would just include information regarding battery levels and
how to identify when the battery level is or above 75% and
model updates like
sample rock-has-precondition-battery level above 75 perc
sample soil-has-precondition-battery level above 75 perc
...
Before delving into the optimization version of the problem,
let us look at the complexity of the corresponding decision
problem

Theorem 1. Given a minimal abstraction set Mmin, a plan
πR, the set of propositions being abstracted P and the set of
foils F for a modelM, the problem of identifying whether
an explanation of size k exists for the complete lattice is NP-
complete.

Proof (Sketch). The fact that we can test the validity of the
given explanation in polynomial time (size of the explana-
tion is guaranteed to be smaller than |P|) shows that the
problem is in NP. We can show NP-completeness by re-
ducing the set covering problem (Bernhard and Vygen 2008)
to an instance of the explanation generation problem. Let’s
consider a set covering problem with U as the universe set
and S as the set of sub-collections. Now let us create an
explanation generation problem where the set of foils F is
equal to U and the propositions in the set P contain a propo-
sition for each member of S. Additionally concretizing with
respect to a proposition will resolve only the foils covered
by its corresponding subset in S. For this setting, we can
construct a fully connected proposition conserving lattice L
of height |S|. Within the lattice, there exists a unique most
abstract model where all the foils hold and a single most con-
crete model (where none of the foils hold). Now if we can
come up with an explanation of size k in this setting, then
this explanation corresponds to a set cover of size k.

3 Generating Minimal Explanations
As mentioned earlier, we are interested in producing the
minimal explanation. Additionally, in most domains, the
cost of communicating the concretization details could vary
among propositions. An explanation that involves a propo-
sition that appears in every action definition might be harder
to communicate than one that only uses a proposition that is
part of the definition of a single action.

In addition to the actual size, the comprehensibility of the
explanations may also depend on factors like human’s men-
tal load, the familiarity with the concepts captured by the
propositions, etc.. To keep our discussions simple, we will
restrict the cost of communicating an explanation to just
the number of unique model updates this explanation would
bring about in the human model.We will use the symbol Cp
to represent the cost of communicating the changes related
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to the proposition p and also overload it to work on sets of
propositions.

Now our problem is to find the cheapest explanation (rep-
resented as Emin) for a given set of foils F , and the mini-
mal abstract model set Mmin. One possibility is to perform
an A* search (Hart, Nilsson, and Raphael 1968) over the
space of possible propositional concretizations to identify
Emin. Each search state consists of the minimal set of ab-
stract models for the human model given the current expla-
nation prefix. We will stop the search as soon as we find a
state where the foils no longer hold for the current minimal
set.
Proposition 3. Let Mmin be the minimal abstraction set for
a given lattice L = 〈M,E,P, `〉 and foil set F . Then for
a proposition p, the set M̂min formed by applying the con-
cretization corresponding to p on every element of Mmin

will be the minimal abstract set for M̂ formed by applying
the concretization γp on every element of M given F .

The above property implies that we don’t need to look
at the lattice L to recalculate minimal abstraction set after
the application of every concretization function. We can also
further simplify our problem by exploiting the fact that a par-
ticular propositional concretization resolves a foil (i.e., make
the foil no longer valid) when it either adds a precondition
(or a new condition for a conditional effect) or a goal fact
that can not be satisfied by the foil. To concisely capture this
idea we will introduce the concept of a foil resolution set to
represent the subset of foils resolved by the concretization
of a particular proposition.
Definition 6. For a set of models M′, a foil set F and
a proposition p, the resolution set RF (M′, p) gives
the subset of foils that no longer holds in the con-
cretized models, i.e RF (M′, p) = {π|π ∈ F ∧ (∀M′ ∈
M′(π(Iγp(M′)) 6|=γp(M′) Gγp(M′) ∧ π(IM′) |=M′ GM′))}.

We will also use RF to represent the set of foils resolved
by a sequence of propositions
Proposition 4. For a set of model M′ and a foil set F

RF (M′, 〈p1, p2〉) = RF (M′, 〈p1〉) ∪ RF (M′, 〈p2〉)
The above property implies that concretizing any n propo-

sitions cannot resolve foils that weren’t resolved by the in-
dividual propositions. The idea of generating resolution sets
are again closely related to the idea of resolving counter-
examples and can be understood
Proposition 5. For two models M1, M2 and a set of
foils F , if M1 v M2 then for any proposition p,
RF ({M1}, p) ⊆ RF ({M2}, p)

The above proposition ensures that if an explanation is the
minimal one for Mmin, then it must be the minimal expla-
nation forMH as well.

These propositions will be instrumental in proving the
effectiveness of our greedy algorithm described by Algo-
rithm 1. In each iteration of this search, the algorithm greed-
ily chooses the proposition that minimizes Cp

|F ′∩RF (M′,p)| ,
where F ′ is the set of unresolved foils at that iteration and
the search ends when all foils are resolved.

Algorithm 1 Greedy Algorithm for Generating Ê
1: procedure GREEDY-EXP-SEARCH

2: Input: 〈F,L = 〈M,E, P, `〉〉
3: Output: Explanation Ê

4: Procedure:
5: curr model = 〈Mmin, F 〉
6: Ê = {}
7: Mmin ←MinimalAbstractModels(L, F )
8: Precompute the resolution setsRF (Mmin, p) for each p ∈ P
9: while True do

10: M′, F ′ = curr model
11: if |F ′| = 0 then return Ê . Return Ê if all the foils are resolved
12: else
13: pnext = arg minp(

Cp
|F ′∩RF (M′,p)| )

14: Mnew = {γpnext (M)|M ∈ M′}
15: curr model = 〈Mnew, F \ RF (M′, p)〉
16: Ê = Ê ∪ p

Theorem 2. The explanation Ê generated by Algorithm 1
for a set of foils F and a lattice L = 〈M,E,P, `〉 is less
than or equal to (ln k) ∗ CEmin

, where CEmin
is the cost

of an optimal explanation and k represents the maximum
number of foils that can be resolved by concretizing a single
proposition, i.e, k = maxp |RF (Mmin, p)|.

Proof (Sketch). We will prove the above theorem by show-
ing that Algorithm 1 corresponds to the greedy search algo-
rithm for a weighted set cover problem. Consider a weighted
set cover problem 〈U, S,W 〉 such that the universe set U =
F , the subcollections set S is defined as S = {sp|p ∈ P}
where sp = RF (Mmin, p) and the cost of each subset sp is
gives as W (sp) = Cp. Proposition 4 ensures that the size
of resolution set is a submodular and monotonic function. In
this setting, the act of identifying a set of propositions that
resolve the foil set is identical to coming up with a set cover
for U in the new weighted set cover problem. Furthermore,
we can show that the optimal set cover Copt must correspond
to the cheapest explanation Emin (We can prove this equiv-
alence using Propositions 1,2 and 4, we are skipping the de-
tails of this proof due to space constraints). Algorithm 1 de-
scribes a greedy way of identifying the cheapest set cover
for this weighted set cover problem and thus the minimal
explanation for the original problem. For weighted set cover
the above greedy algorithm is guaranteed to generate solu-
tions that are at most ln k ∗W (Copt) (Young 2008), where
k = maxs∈S |s| and this approximation guarantee will hold
for Emin as well.

We can use this algorithm to either generate solutions and
or to calculate an inadmissible heuristic for the previously
mentioned A* search. For the heuristic generation, we will
further simplify the calculations (specifically step 8 in Al-
gorithm 1) by considering an over-approximation of RF .
Instead of considering the set of all foils resolved by con-
cretizing each proposition p, we will consider the set of foils
where p appears in the precondition of one of the actions in
it. This set should be a superset forRF for any proposition.

71



Figure 3: An example explanation generated by our system for
rover domain. The human incorrectly believes that the rover can
communicate sample information without explicitly collecting any
samples. While the abstraction lattice was generated by projecting
out upto 12 predicates, the search correctly identifies concretiza-
tions related to (have soil analysis ?r - rover ?w - waypoint) as the
cheapest explanation

4 Empirical Evaluations
In our evaluation, we wanted to understand how effective our
approaches were in terms of the conciseness of the explana-
tions produced, the solution computation time and the use-
fulness of approximation. For the approximation, we were
interested in identifying the trade-off between decrease in
runtime vs. reduction in solution quality. All three expla-
nation methods discussed in this paper (blind, heuristic and
greedy) were evaluated on five IPC benchmark domains(In-
ternational Planning Competition 2011). All the experiments
detailed in this section were run on an Ubuntu workstation
with 64G RAM.

For each domain, we selected 30 problems from either
available test sets or by using standard problem generators
(the problems sizes were selected to reflect the size of previ-
ous IPC test problems). The lattice for each problem-domain
pair was generated by randomly selecting 50% of domain
predicates and then generating a fully connected proposition
conserving lattice using that set of predicates. Since none
of the models contained any conditional effects, we created
the abstract models by dropping the propositions to be ab-
stracted from the domain models (which is still complete for
these models). The foils were generated by selecting random
models from the lattice and creating plans from these models
that do not hold in the concrete model. Each search evaluated
here, generates the set of proposition whose concretizations
can resolve the foils set F . In actual applications, this set of
propositions needs to be converted into an explanan (the ac-
tual message) by considering how this proposition is used in
the robot model. Figure 3 shows the explanation generated
by our approach for a problem in Rover domain.

The table in Figure 4 presents the results from our em-
pirical evaluation on the IPC domains. The table shows the
average cost/size of each explanation along with the time
taken to generate them. Note that by size, we refer to the
number of predicates that are part of the explanation while
the cost reflects the total number of unique model updates
induced by that explanation. We attempted explanation gen-
eration for foil set sizes of one, two and four per problem.

Our main conclusion is that heuristic search seems to out-

perform blind search in almost every problem and generates
near-optimal solutions (Blind search always generates the
minimal explanation). Further, we saw that greedy search
outperformed heuristic search in most cases barring a few
exceptions. The greedy search was able to make significant
gains especially for higher foil set sizes. This is entirely ex-
pected due to the fact that step 8 in Algorithm 1 can be
expensive for problems with long plans (but still polyno-
mial). This expensive pre-computation pays off as we move
to cases where Emin consists of multiple propositions. Ad-
ditionally, we found out that greedy solutions were quite
comparable to the optimal solutions with respect to their
costs. For example in |F | = 4 for satellite domain, while
the greedy solution cost took a penalty of∼ 1.4% the search
time was reduced by ∼ 68%. The graph in 4 plots the com-
parison between the time saved by the greedy search versus
any loss in optimality incurred by the greedy search.

5 Robot Demonstration
This section describes a demonstration of our approach on
a physical robot for a simple grocery putaway task. Fig-
ure 6 presents the basic setup for the task. The goal of the
robot here is to put away a bottle of tablets, a can of en-
ergy drink and a jar of sugar to proper storage locations. The
storage location of each object is decided based on its type.
For example, the robot should place the medicine bottle in
the medicine cabinet, the sugar jar in the high pantry shelf,
while the energy drink needs to be handed over to the hu-
man. In addition to these task-level constraints, the robot’s
operations are restricted by various motion level constraints
that limit the possible physical movements that the robot can
perform. For example, given the current position of the sugar
jar on the table, the robot couldn’t come up with any pickup
pose that would allow the robot to place the sugar jar on the
high shelf. In such cases, the robot could always enlist the
help of the human to complete the plan.

In this setting, we will assume that the most concrete
robot model consists of action descriptions that include
both task-level symbols as well as continuous geometric ar-
guments. Figure 7 presents the definitions for pickup and
place in high shelf actions in the most concrete model. In
this model, the arguments of type ?pose and ?traj represents
the pickup/putdown pose (the position and orientation of the
end effector) and motion plans followed by the robot to per-
form the pickup/putdown.For this demo, we will consider a
non proposition conserving model lattice that spans multi-
ple levels of abstractions. Starting out we can convert each
of the continuous arguments into geometric symbols (this
is similar to the approach used in (Srivastava et al. 2014)).
Next, we will further abstract the poses to align with possi-
ble regions on the object (i.e., pick up the object from the
bottom, middle or top). We will also consider abstractions
where we combine the predicates is putdown pose and col-
lision free trajectory into a single predicate called reachable
and also create new models by dropping arguments from the
actions (we only drop an argument when none of the pred-
icates use this argument). Figure 8 presents an intermediate
model where most of the geometric predicates are already
abstracted out. There could also be additional non-geometric
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Domain Name CP |P| |F | Blind Search (Optimal) Heuristic Search Greedy Set Cover
Cost Size Time(S) Cost Size Time(S) Cost Size Time(S)

Barman

84.07 7 1 6.87 1 2.43 6.87 1 2.08 6.87 1 3.61
84 7 2 8.94 1.22 6.35 8.94 1.22 5.71 9.90 1.39 6.05

90.7 7 4 17.19 1.77 24.99 17.19 1.77 23.7 18.45 1.97 10.34

Rover

168.66 12 1 3.58 1 7.86 3.58 1 5.22 3.58 1 19.18
188.83 12 2 6.13 1.48 51.36 6.12 1.48 34.04 6.26 1.52 30.5
192.83 12 4 10.87 2 203.83 10.87 2 181.87 11.42 2.19 49.32

Satellite

53.01 4 1 18.73 1 2.23 18.73 1 1.92 18.73 1 1.49
60.77 4 2 32 1.61 7.21 32 1.6 5.86 32.53 1.7 3.04
62.73 4 4 43.27 2.29 18.67 43.27 2.29 16.42 43.88 2.39 5.85

Woodworking

156.71 7 1 14.45 1 2.84 14.45 1 2.23 14.45 1 3.35
146.33 7 2 20.62 1.21 6.88 20.62 1.21 4.93 21.38 1.38 6.25

154 7 4 28.62 1.69 24.70 28.62 1.69 19.49 30.41 2 12.13

Sokoban

220.6 3 1 51.21 1 1.51 51.21 1 1.35 51.21 1 1.28
151.72 3 2 94.52 1.55 3.93 94.52 1.55 3.35 98.31 1.73 2.59
220.69 3 4 136.41 2.22 8.75 136.41 2.22 8.3 141.93 2.37 5.23

Figure 4: Table showing runtime/cost for explanations generated for standard IPC domains.Column |P| represents number of predicates that
were used in generating the lattice, while CP represents the cost of an explanation that tries to concretize all propositions in P and provides an
upper bound on explanation cost. The graph on the right side compares the performance of greedy set cover against the optimal blind search
for |F | = 4. It plots the average time saved by the set cover and the average increase in cost of the solution for each domain.

Figure 5: The plan and foils used in the scenario.

Figure 6: The grocery putaway domain setting.

predicates (like the is condiment type predicate) that can be
abstracted out.

Figure 5 presents a plan and possible foils that could be
generated in this domain. The plan involves the robot placing
the energy drink and medicine on its own but relying on the
human to complete the place action for sugar jar. The naive
user asks merely why the robot doesn’t finish the plan on its
own while the expert user provides specific grasp that she/he
believes can help the robot complete the plan. While the ex-
planation to the naive user relies on the high-level predicate
reachable, the explanation to the expert is more detailed and
relates to the fact that a lower region grasp will result in a
collision with the table. We can present such collisions to the
human by simulating the trajectories using tools like Rviz
(Hershberger, Gossow, and Faust 2016).

The readers can view the demonstration of the scenario
implemented on a fetch robot at https://youtu.be/

(:action pickup
:parameters (?x - item ?y - storage ?u - pose ?v - traj)
:precondition (and

(is pickup pose ?u ?x)
(is collision free traj ?x ?y ?u ?v)
(in ?x ?y) (handempty)

)
:effect (and

(not (handempty))
(not (in ?x ?y))
(holding ?x)
(increase (total-cost) 1)

)
)

(:action place in high shelf
:parameters (?x - item ?y - storage ?u - pose ?v - traj)
:precondition (and

(is putdown pose ?u ?x)
(is collision free traj ?x ?y ?u ?v)
(is condiment type ?x)
(holding ?x)
(is high shelf ?y)

)
:effect (and

(handempty)
(in ?x ?y)
(not (holding ?x))
(item putaway ?x)
(increase (total-cost) 1)

)
)

Figure 7: The action definitions for pickup and
place in high shelf from the most concrete model.

qUHg8RABjsw. OpenRAVE (Diankov 2010) was used to
compute the trajectories of the robot arm for the pickup and
place actions. COLLADA (Arnaud and Barnes 2006) mod-
els of the furniture and the items were created and populated
in the OpenRAVE environment using AR markers, the trans-
formation of which was obtained using the ar track alvar
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(:action pickup
:parameters (?x - item ?y - storage)
:precondition (and

(in ?x ?y) (handempty)
(reachable ?y)

)
:effect (and

(not (handempty))
(not (in ?x ?y))
(holding ?x)
(increase (total-cost) 1)

)
)

(:action place in high shelf
:parameters (?x - item ?y - storage)
:precondition (and

(is condiment type ?x)
(holding ?x) (reachable ?y)
(is high shelf ?y)

)
:effect (and

(handempty)
(in ?x ?y)
(not (holding ?x))
(item putaway ?x)
(increase (total-cost) 1)

)
)

Figure 8: The action definitions for pickup and
place in high shelf from an abstract model.

package available in ROS. Resulting OpenRAVE trajecto-
ries were then converted into ROS JointTrajectory messages
and executed on the robot.

6 Related Work
There is increasing interest within the automated planning
community to solve the problem of generating explana-
tions for plans ((Fox, Long, and Magazzeni 2017; Lang-
ley et al. 2017)). Earlier works like (Seegebarth et al. 2012;
Bercher et al. 2014; Kambhampati 1990) looked at explana-
tions as a way of describing the effects of plans, while works
like (Sohrabi, Baier, and McIlraith 2011; Meadows, Lang-
ley, and Emery 2013) looked at plans itself as explanations
for a set of observations. Another approach that has received
a lot of interest recently is to view explanations as a way
of achieving model reconciliation (Chakraborti et al. 2017).
Such explanations are seen as a solution to a model reconcil-
iation problem (referred to as MRP) and this approach postu-
lates that the goal of an explanation is to update the observer
model so they can correctly evaluate the plans in question.

we can also view our explanations as model updates that
focuses on a specific type of update, namely model con-
cretization. Unlike MRP we do not make any assumptions
about the availability of human model or the human’s com-
putational capabilities. The assumption that we have access
to foils help us scale to much larger problems as compared to
the original MRP approach to generate contrastive explana-

tions. Following the conventions of the original MRP paper,
we can see that the explanations studied here are both com-
plete and monotonic.

As noted, our work is closely related to the well studied
method of counter-example guided refinement or CEGAR
that was originally developed for Model checking. Many
planning works have successfully used CEGAR based meth-
ods to generate heuristics for plan generation ((Seipp and
Helmert 2013; 2014)). The idea of foil resolution set for a
given concretization is also closely related to the process
of identifying spurious counter examples employed by CE-
GAR based methods (c.f (Haslum et al. 2012; Keyder et al.
2012; Steinmetz and Hoffmann 2016)). One major differ-
ence between our work and standard CEGAR based meth-
ods is the fact that in our setting the abstract model pro-
ducing the foil (or counter-example) is unknown. Since we
are exclusively dealing with spurious counter-examples we
are also not bound to testing our foils (in other words iden-
tifying faults or pivot states) in the most concrete model
(which could be quite expensive). Further, traditional CE-
GAR methods are generally not as focused on identifying
the cheapest refinements.

Many abstraction schemes have been proposed for plan-
ning tasks (starting with (Sacerdoti 1974)), but in this paper,
we mainly focused on state abstractions and based our for-
mulation on previous works like (Srivastava, Russell, and
Pinto 2016) and (Backstrom and Jonsson 2013). It would
be interesting to see how we can extend the approaches dis-
cussed in this paper to handle temporal and procedural ab-
stractions (e.g., HLAs (Marthi, Russell, and Wolfe 2007)).

7 Conclusion and Discussion
In this paper, we investigated the problem of generating ex-
planations when the explainee understands the task model at
a lower levels of abstraction. We looked at how we can use
explanations as concretization for such scenarios and pro-
posed algorithms for generating minimal explanations. One
unique aspect of our approach is the use of foils as a way of
capturing human confusion about the problem. This not only
helps us formulate more efficient explanation generation
methods but also aligns with the widely held belief that hu-
man expect contrastive explanations (c.f. (Lombrozo 2012;
2006)). Moreover, in most real-world scenarios humans usu-
ally include the foil in the request for explanations unless
the foil is quite apparent from the context. Future directions
include extending the methods to handle models that are in-
correct in addition to being imprecise and looking at other
possible methods for abstraction. We also plan to perform
human factors studies on this explanation paradigm to eval-
uate its effectiveness.

Acknowledgments
We thank Dan Weld for helpful comments on a pre-
vious draft. This research is supported in part by the
AFOSR grant FA9550-18-1-0067, ONR grants N00014161-
2892, N00014-13-1-0176, N00014- 13-1-0519, N00014-15-
1-2027, and the NASA grant NNX17AD06G.

74



References
Arnaud, R., and Barnes, M. C. 2006. COLLADA: sailing
the gulf of 3D digital content creation. CRC Press.
Backstrom, C., and Jonsson, P. 2013. Bridging the gap be-
tween refinement and heuristics in abstraction. In Twenty-
Third International Joint Conference on Artificial Intelli-
gence.
Bercher, P.; Biundo, S.; Geier, T.; Hoernle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, execute,
explain-how planning helps to assemble your home theater.
In ICAPS.
Bernhard, K., and Vygen, J. 2008. Combinatorial optimiza-
tion: Theory and algorithms. Springer, Third Edition, 2005.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In IJCAI.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-guided abstraction refinement. In
International Conference on Computer Aided Verification,
154–169. Springer.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Diankov, R. 2010. Automated Construction of Robotic Ma-
nipulation Programs. Ph.D. Dissertation, Carnegie Mellon
University, Robotics Institute.
Edelkamp, S. 2000. Planning with pattern databases. In
ECP.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. In IJCAI XAI Workshop.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2):100–107.
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