
Safe Goal-Directed Autonomy and the Need for Sound Abstractions

Siddharth Srivastava
School of Computing, Informatics and Decision Systems Engineering

Arizona State University
Tempe, AZ 85282

siddharths@asu.edu

Abstract

The field of sequential decision making (SDM) captures a
range of mathematical frameworks geared towards the syn-
thesis of goal-directed behaviors for autonomous systems.
Abstract benchmark problems such as the blocks-world do-
main have facilitated immense progress in solution algorithms
for SDM. there is some evidence that a direct application of
SDM algorithms in real-world situations can produce unsafe
behaviors. This is particularly apparent in task and motion
planning in robotics. We believe that the reliability of today’s
SDM algorithms is limited because SDM models, such as the
blocks-world domain, are unsound abstractions (those that
yield false inferences) of real world situations.
This position paper presents the case for a focused research ef-
fort towards the study of sound abstractions of models for
SDM and algorithms for efficiently computing safe goal-
directed behavior using such abstractions.

Introduction
The increasing maturity of AI techniques presents us with
a unique opportunity to develop physical and electronic AI
agents that could autonomously assist humans. Such agents
would need to be able to accept high-level commands, and
reason about what to do over extended periods of time span-
ning multiple decision epochs. The field of sequential de-
cision making (SDM) captures such problems. In order to
solve them, an AI agent needs to the assess different courses
of action available to it: which course of actions would ac-
complish the assigned task? would it be safe to execute?
which course of actions would be beneficial? Evaluating a
possible courses of action in this way requires some knowl-
edge about the environment and the possible impacts of the
agent’s actions in it—in other words, a model.

In the absence of a model, such evaluations would need to
be done through trial and error. It is difficult to conceive of
situations where deploying robots would have a high value
and where such trials and their associated errors would be
acceptable. In situations that involve proximal human-robot
collaboration, or situations that are too dangerous for humans,
errors are usually associated with forbidding penalties. Just
as a bomb-disposal robot that learns on the fly would be an
ephemeral investment, a household assistant that attempts
to learn through trial an error, which medication is required
when a person goes into insulin shock, would be of dubious

ethical, social and economic value. It is well known in the
AI community that PAC-learning guarantees alone are not
sufficient for ensuring safe behavior in such situations; recent
analyses have highlighted their limitations in the face of the
anticipated roles of AI systems (Russell, Dewey, and Tegmark
2015; Brynjolfsson and Mitchell 2017).

The focus of this position paper is on the mechanisms
for creating domain models that are efficient but sound ab-
stractions of real-world problems, and the algorithmic ad-
vances required for using such models for safe behavior
synthesis. Models can be in the form of closed-form math-
ematical specifications, (such as Markov Decision Process
with transition probability specifications) or in the form of
black-box simulators or generative models that can sample
possible action outcomes (as typically used in reinforcement
learning). Models of either form can be derived from ex-
isting knowledge, or learned through past experience in the
field. Indeed, some of the most popular demonstrations of
AI systems rely upon perfect models (Silver et al. 2017;
Mnih et al. 2015) in the form of game simulators for effi-
ciently obtaining millions of labeled behavioral experiences.

Regardless of the form or the nature of acquisition of
models, higher fidelity models feature larger branching fac-
tors and larger time horizons and therefore result in SDM
problems of higher computational complexity (regardless
of the solution approach taken, be it dynamic program-
ming, search, learning from trials and past experience,
or a combination thereof). Hierarchical abstractions are
used to alleviate this problem by creating input models
that are abstractions of the true problem (Sacerdoti 1974;
Knoblock 1990; Parr and Russell 1998; Dietterich 2000;
Marthi, Russell, and Wolfe 2007).

Hierarchical abstractions include state abstractions (mod-
els that maintain fewer environment properties than the real
situation) as well as temporal abstractions (models featuring
high-level actions that span multiple primitive operations of
the underlying actuators).

In recent work (Srivastava, Russell, and Pinto 2016) we
showed that simple forms of abstractions can result in models
that are not consistent with the underlying problem scenario
as well as models that are not Markovian, or not solvable!
As a result many real-world problems have never truly been
addressed by SDM solution techniques that treat their input
models as perfect abstractions.

In AAAI 2018 Spring Symposium on Integrating Representation, Reasoning, Learning, and Execution for Goal Directed Autonomy (SIRLE 2018) 
Stanford, CA, USA



Figure 1: A realistic blocks-world problem. Pickups can be made
only from the sides. Although there is no stacking and the precondi-
tions of the pickup action are satisfied, there is no feasible motion
plan for picking up most of the objects on the table.

For instance, consider the blocks-world domain, which
is among the most easily recognizable, perhaps even infa-
mous, benchmarks for sequential decision making. Given
initial and desired configurations of blocks on a surface, the
problem is to compute a behavior that would transform the
initial configuration to the desired configuration. The set
of available actions typically consists of maneuvers such
as pickup and place. Stochastic action effects and noisy
sensors for this domain can be easily expressed in most mod-
eling languages for SDM (Boutilier, Reiter, and Price 2001;
Younes and Littman 2004; Sanner 2010; Srivastava, Cheng,
and Russell 2014). Although SDM models for the blocks-
world domain are considered to be too “well studied” to be in-
teresting for research, they are poor abstractions of the under-
lying SDM problems of rearranging objects while avoiding
collisions (see Fig. 1 for a simplified yet realistic problem).
Consequently the underlying problems remain unsolved and
feature significant research challenges.

Indeed, while the true space of blocks-world problems
captures all pick-and-place problems, ongoing research in
robotics shows that SDM solvers that perform well on the
standard blocks-world model produce poor unsafe solu-
tions even in simplified real-world situations that feature
robots with perfect sensing and actuation, and block arrange-
ments without stacking (Cambon, Alami, and Gravot 2009;
Kaelbling and Lozano-Pérez 2011; Plaku and Hager 2010;
Kaelbling and Lozano-Pérez 2013; Srivastava et al. 2014).
These solutions could violate arbitrarily many of the con-
straints that were abstracted in an unsound fashion, and result
in unsafe behaviors that include unintended collisions. This
situation is representative of several problems where goal-
directed autonomy is desired; we believe that this potential
for unsafe behavior effectively prohibits the safe deployment
of general purpose AI agents.

Problem with the Current Situation
Conventional modeling paradigm As noted above, it is
well appreciated that abstraction is a useful mathematical
tool for solving real-world SDM problems. The conventional
wisdom along these lines is to use an abstract domain model

with an SDM solver to compute the “high-level strategy” for
solving a problem (e.g., one that determines the order of un-
stacking and stacking block-tower configurations), and then
use a low-level planner (e.g., a motion planner) or controller
to implement each of the actions in the strategy.

Underlying assumptions and their limitations This wis-
dom is based on the assumption that the effect of applying an
action in the real world will be consistent with the modeled
effect in the abstract model. This in turn is based on the
assumption that the result of applying a desired abstraction
function on the real situation will be a Markovian model.

On the other hand, constructing a Markovian model re-
quires the inclusion of several properties of the environment
as state variables or predicates; abstraction requires removing,
or coarsening properties in the model. It should therefore
be natural to expect the abstraction of an accurate domain
model to possibly result in a non-Markovian domain model.
Recent work shows that this intuition is in fact true (Srivas-
tava, Russell, and Pinto 2016): simple abstractions can result
in models that are not Markovian; furthermore, it is often not
possible to express the resulting models accurately in existing
modeling languages for SDM.

This raises a few questions: all the SDM models we use
are Markovian (and naturally, are expressed in the modeling
languages that we have been using). Few, if any, of these are
accurate, non-abstracted depictions of the real world situation
that they represent. Have we been lucky enough to always get
Markovian abstractions? Do the domain designers intuitively
construct perfect abstract transition systems that retain just
the right properties to make the resulting abstracted model
tractable as well as Markovian?

To answer these questions, we turn once again to the blocks
world and its abstraction expressed as the blocks-world do-
main. Among other details, this domain states that if a block
has nothing on top of it, the robot’s gripper should be able
to pick it up. In a real situation (e.g. Fig. 1), this is not true
because there may be no collision-free path for the gripper
to pick up the block. The vocabulary used in the blocks-
world domain is not sufficient to accurately express this prop-
erty (Cambon, Alami, and Gravot 2009; Hertle et al. 2012;
Kaelbling and Lozano-Pérez 2011). As a result the standard
blocks-world domain is not a sound model of the real blocks
world because it implies action consequences that are not
true 1. Policies computed using such models are unsafe, and
can be dangerous. Although our example refers to situations
where geometric constraints were abstracted out, such errors
can arise with all forms of abstraction. One would not ap-
preciate a robot using such principles in most applications
that could benefit from a safe and productive robot, including
mining, firefighting, bomb disposals, household help, etc.

In fact, the sound abstraction of the blocks world using the

1It is sound for environments where the gripper is either infinites-
imally thin (so that it can slip between adjacent towers), or is an
electromagnet suspended from the ceiling. Either way, the ceiling
should be arbitrarily high and the table should be broad enough to
lay any number of blocks on it. Such situations are unusual if not
impossible.



vocabulary of the blocks-world domain is a non-Markovian
transition system: the effect of reaching for a block in this
transition system depends on the occurrence of preceding
place actions. If the target block was initially reachable, and
no other place actions placed a block on the same table, the
block will remain accessible. Otherwise, it may not be. There-
fore, the standard blocks-world model is not only inconsistent
with the underlying problem, its vocabulary is insufficient
to make the abstract transition system Markovian! Forcing
such a non-Markovian abstract transition system into domain
languages that can only express Markovian models results
in a model that is inconsistent with the modeled problem.
Our research indicates that the situation can be resolved if
the modeling languages are extended to annotate parts of the
model as imprecise due to abstraction, and algorithms uti-
lize this information to extract more information from higher
fidelity models when needed.

Non-solutions The preceding discussion may seem to indi-
cate that a stochastic formulation (such as an MDP) would
help resolve these issues. However, this is not true. First, it
would require enumerating and solving for the complete set
of possible outcomes for an action in an abstract state space.
This is infeasible. E.g., in the blocks-world model’s vocabu-
lary, every time a robot (not a ceiling mounted gripper) tries
to move its hand, all possible subsets of movable objects in
the room would need to be considered as potentially being
knocked over. Second, such models would not be complete:
they would disallow solutions that are feasible under a more
accurate representation.

The problems highlighted above are orthogonal to ef-
forts aimed at increasing the level of detail expressible in
our input modeling languages (e.g., (Hertle et al. 2012;
Fox and Long 2002)). Even if we could model SDM prob-
lems at the level of detail of sub-atomic particle interactions,
this is unlikely to yield more efficient solution techniques.
It is equally unlikely that modeling an entire household at
the level circuit diagrams of every appliance would “help” a
household robot efficiently compute useful behavior. Natural
computational consequences of increasing branching factors
and time horizons make it clear that a uniformly detailed
model at the highest possible fidelity will not yield the most
efficient SDM system, regardless of the solution approach.
Thus, SDM solvers will continue to rely upon hierarchical
abstractions for efficiency in modeling and in solution com-
putation.

Paths Ahead
We believe that the limitations in correctly expressing abstract
SDM models of real-world situations (and consequently, of
efficiently solving such problems) have limited the applica-
bility of SDM techniques in the real world. As a community
we have made numerous advances under the assumption that
inputs will be perfect abstractions that yield exactly the true
consequences. Our position is that these advances are nec-
essary, but not sufficient towards deployable autonomous
systems. We also need to expand the scope of SDM technol-
ogy towards principled approaches for designing and com-

puting abstract SDM models that may be imprecise, but not
incorrect. New representations for such abstract SDM mod-
els (generative models or simulators, as well as analytical)
would require and facilitate corresponding algorithms that
produce truly executable solutions.

Some prior research efforts are highly relevant to this prob-
lem. Work on algorithms for planning with models that
may be incomplete addresses situations when unknown per-
turbations may have been applied to accurate domain mod-
els that are expressible in the modeling language (Nguyen
and Kambhampati 2014). Angelic semantics for high-level
actions increase the scope of representation languages to
specify upper and lower bounds on reachable states in situa-
tions with temporal abstraction rather than state abstraction.
The resulting algorithms are able to effectively utilize such
bounds in pruning irrelevant high-level actions (Marthi, Rus-
sell, and Wolfe 2007). Related research in motion planning
highlights the value of state abstractions of control-theoretic
models, which are constructed using subsets of the full set
of variables required to describe a system (Styler and Sim-
mons 2017). We have been developing representations for
efficiently expressing imprecise but sound abstract models
resulting from state and temporal abstraction for arbitrary
SDM problems. Our solution algorithms utilize sound and
imprecise abstract models, but dynamically improve them
by deriving abstracted, context-sensitive information from
more accurate models. This information is abstracted and
incorporated in the abstract models (Srivastava et al. 2014;
Srivastava, Russell, and Pinto 2016), allowing SDM algo-
rithms to compute agent behaviors with strong guarantees
of safety and correctness. Some of our main results can be
summarized as follows:

1. Under certain conditions, abstraction can indeed result in
Markovian models. These conditions appear to be rare.

2. In many cases, abstraction results in domain models that in-
cludes forms of model-imprecision that could have been re-
solved during computation had they been expressed. How-
ever, current modeling languages do not support constructs
that distinguish model imprecision arising due to abstrac-
tion from non-determinism or stochasticity that is a feature
of the environment.

3. If model imprecision caused due to abstraction is recorded
in the abstract model (e.g., by noting that the effect of
a place action is imprecise, along with the abstraction
function that caused the imprecision), the situation can be
resolved. It is possible to dynamically tune the abstraction
to include more information from accurate models using
different solvers for models at different levels of abstrac-
tion. Used in this fashion, SDM solvers can effectively
produce executable behavior. Dynamically tuning an im-
precise (but not incorrect) model during search allowed us
to produce a competitive task and motion planner that uses
existing SDM solvers.

These initial results indicate that new methods for computing
and utilizing abstract models that are sound even when they
are imprecise allow us to leverage SDM technology towards
solving entire new classes of problems that are abstractions
of real-world situations.



Acknowledgments
I thank Rao Kambhampati for helpful discussions and com-
ments on this paper.

References
[Boutilier, Reiter, and Price 2001] Boutilier, C.; Reiter, R.;
and Price, B. 2001. Symbolic dynamic programming for
first-order mdps. In Proc. IJCAI, volume 1, 690–700.

[Brynjolfsson and Mitchell 2017] Brynjolfsson, E., and
Mitchell, T. 2017. What can machine learning do?
workforce implications. Science 358(6370):1530–1534.

[Cambon, Alami, and Gravot 2009] Cambon, S.; Alami, R.;
and Gravot, F. 2009. A hybrid approach to intricate motion,
manipulation and task planning. IJRR 28:104–126.

[Dietterich 2000] Dietterich, T. G. 2000. Hierarchical rein-
forcement learning with the maxq value function decomposi-
tion. J. Artif. Intell. Res.(JAIR) 13:227–303.

[Fox and Long 2002] Fox, M., and Long, D. 2002. PDDL+:
Modeling continuous time dependent effects. In Proceedings
of the 3rd International NASA Workshop on Planning and
Scheduling for Space.

[Hertle et al. 2012] Hertle, A.; Dornhege, C.; Keller, T.; and
Nebel, B. 2012. Planning with semantic attachments: An
object-oriented view. In Proc. ECAI.

[Kaelbling and Lozano-Pérez 2011] Kaelbling, L. P., and
Lozano-Pérez, T. 2011. Hierarchical task and motion plan-
ning in the now. In Proc. ICRA.

[Kaelbling and Lozano-Pérez 2013] Kaelbling, L. P., and
Lozano-Pérez, T. 2013. Integrated task and motion plan-
ning in belief space. The International Journal of Robotics
Research 32(9-10):1194–1227.

[Knoblock 1990] Knoblock, C. A. 1990. Learning abstraction
hierarchies for problem solving. In Proc. AAAI.

[Marthi, Russell, and Wolfe 2007] Marthi, B.; Russell, S. J.;
and Wolfe, J. 2007. Angelic semantics for high-level actions.
In Proc. ICAPS.

[Mnih et al. 2015] Mnih, V.; Kavukcuoglu, K.; Silver, D.;
Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.; Ried-
miller, M.; Fidjeland, A. K.; Ostrovski, G.; et al. 2015.
Human-level control through deep reinforcement learning.
Nature 518(7540):529–533.

[Nguyen and Kambhampati 2014] Nguyen, T. A., and Kamb-
hampati, S. 2014. A heuristic approach to planning with
incomplete STRIPS action models. In ICAPS.

[Parr and Russell 1998] Parr, R., and Russell, S. J. 1998. Re-
inforcement learning with hierarchies of machines. In Proc.
NIPS.

[Plaku and Hager 2010] Plaku, E., and Hager, G. D. 2010.
Sampling-based motion and symbolic action planning with
geometric and differential constraints. In Proc. ICRA.

[Russell, Dewey, and Tegmark 2015] Russell, S.; Dewey, D.;
and Tegmark, M. 2015. Research priorities for robust and
beneficial artificial intelligence. AI Magazine 36(4):105–114.

[Sacerdoti 1974] Sacerdoti, E. D. 1974. Planning in a hier-
archy of abstraction spaces. Artificial intelligence 5(2):115–
135.

[Sanner 2010] Sanner, S. 2010. Relational dy-
namic influence diagram language (rddl): Language
description. http://users.cecs.anu.edu.au/
~ssanner/IPPC_2011/RDDL.pdf.

[Silver et al. 2017] Silver, D.; Schrittwieser, J.; Simonyan, K.;
Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.;
Lai, M.; Bolton, A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.;
van den Driessche, G.; Graepel, T.; and Hassabis, D. 2017.
Mastering the game of go without human knowledge. Nature
550(7676):354–359.

[Srivastava et al. 2014] Srivastava, S.; Fang, E.; Riano, L.;
Chitnis, R.; Russell, S.; and Abbeel, P. 2014. A modular
approach to task and motion planning with an extensible
planner-independent interface layer. In Proc. ICRA.

[Srivastava, Cheng, and Russell 2014] Srivastava, S.; Cheng,
X.; and Russell, S. 2014. First-order open-universe POMDPs:
Formulation and algorithms. In Proc. UAI.

[Srivastava, Russell, and Pinto 2016] Srivastava, S.; Russell,
S.; and Pinto, A. 2016. Metaphysics of planning domain
descriptions. In Proc. AAAI.

[Styler and Simmons 2017] Styler, B. K., and Simmons, R.
2017. Plan-time multi-model switching for motion planning.
In Proc. ICAPS.

[Younes and Littman 2004] Younes, H. L., and Littman, M. L.
2004. PPDDL 1.0: An extension to pddl for expressing
planning domains with probabilistic effects. Technical Report
CMU-CS-04-162.

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf

	Introduction
	Problem with the Current Situation
	Paths Ahead
	Acknowledgments



