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Abstract

Abstraction is key to scaling up reinforcement learning (RL).
However, autonomously learning abstract state and action
representations to enable transfer and generalization remains
a challenging open problem. This paper presents a novel
approach for inventing, representing, and utilizing options,
which represent temporally extended behaviors, in continual
RL settings. Our approach addresses streams of stochastic
problems characterized by long horizons, sparse rewards, and
unknown transition and reward functions.

Our approach continually learns and maintains an inter-
pretable state abstraction, and uses it to invent high-level op-
tions with abstract symbolic representations. These options
meet three key desiderata: (1) composability for solving tasks
effectively with lookahead planning, (2) reusability across
problem instances for minimizing the need for relearning, and
(3) mutual independence for reducing interference among
options. Our main contributions are approaches for contin-
ually learning transferable, generalizable options with sym-
bolic representations, and for integrating search techniques
with RL to efficiently plan over these learned options to solve
new problems. Empirical results demonstrate that the result-
ing approach effectively learns and transfers abstract knowl-
edge across problem instances, achieving superior sample ef-
ficiency compared to state-of-the-art methods.

1 Introduction

Reinforcement Learning (RL) for enabling autonomous
decision-making has been constrained by two fundamental
challenges: sample inefficiency and poor scalability, particu-
larly in environments with long horizons and sparse rewards.
To address these limitations, researchers have focused on re-
ducing the problem complexity through: (1) state abstrac-
tion, which creates compact state representations (Jong and
Stone 2005; Dadvar, Nayyar, and Srivastava 2023), and (2)
temporal abstraction, which captures hierarchical task struc-
tures through temporally extended behaviors (Barto and Ma-
hadevan 2003; Pateria et al. 2021), such as options (Sutton,
Precup, and Singh 1999). Abstraction-based methodologies
offer principled approaches for knowledge transfer across
tasks (Abel et al. 2018), especially in the challenging setting
of continual learning (Liu, Xiao, and Stone 2021; Khetarpal
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et al. 2022), where agents must interact with and solve tasks
indefinitely. However, most existing research on option dis-
covery in RL focuses either on continuous control tasks
with short horizons and dense rewards (Bagaria, Senthil,
and Konidaris 2021; Klissarov and Precup 2021), on single-
task settings (Bagaria and Konidaris 2020; Riemer, Liu, and
Tesauro 2018), or lacks support for lookahead planning over
options to guide low-level policy learning (Machado et al.
2017; Khetarpal et al. 2020). A critical challenge remains
open: the autonomous discovery of generalizable, reusable
options for long-horizon, sparse-reward tasks in continual
RL settings. This is particularly relevant to real-world sce-
narios such as warehouse management, disaster recovery op-
erations, and assembly tasks, where agents must adapt to
shifts in context and required behaviors without dense re-
ward feedback and closed-form analytical models.

We present a novel approach that coherently addresses
option discovery and transfer with a unified symbolic ab-
straction framework for factored domains in the continual
RL settings. We focus on long-horizon, goal-based Markov
decision processes (MDPs) in RL settings with unknown
transition functions and sparse rewards. In particular, we
consider three conceptual desiderata for options: 1) com-
posability: support chaining options for enabling hierarchi-
cal planning, 2) reusability: support transfer of options to
new problem instances, minimizing the need for relearning,
and 3) mutual independence: reduce interference among op-
tions, allowing options to be learned and executed indepen-
dently with minimal side effects while ensuring composabil-
ity at well-defined endpoints. Most prior works meet some
of these criteria but not all.

Our approach, Continual Hierarchical Reinforcement
Learning and Planning (CHiRP) takes as input a set of state
variables and a stochastic simulator, and invents options sat-
isfying desiderata 1-3: the invented options have symbolic
abstract descriptions that directly support composability and
reusability through high-level planning; these options have
stronger effects on different sets of variables and/or values,
supporting mutual independence. The core idea is to capture
notions of context-specific abstractions that depend on and
change with the current state by identifying salient variable
values responsible for greatest variation in the Q-function,
and to use changes in these abstractions as a cue for defin-
ing option endpoints. With every new task in a continual



stream of problems, CHiRP transfers these options and in-
vents new options, building a model of options that is more
broadly useful (Fig. 1(a)). For example, in large instances of
the well-known taxi domain (Dietterich 2000), CHiRP au-
tonomously invents four key options: navigate to the passen-
ger location, pickup the passenger, navigate to the dropoff
location, and dropoff the passenger.

Extensive empirical evaluation across a variety of chal-
lenging domains with continuous/hybrid states and dis-
crete actions demonstrates that our approach substantially
surpasses SOTA RL baselines in sample efficiency within
continual RL settings. Key strengths of our approach are:
fewer hyper-parameters and less tuning required compared
to many of the baselines, including SOTA DRL methods that
require extensive architecture tuning, greater interpretability,
increased sample-efficiency, and satisfaction of key concep-
tual desiderata for task decomposition.

To the best of our knowledge, CHiRP is the first approach
to autonomously invent composable, reusable, and mutu-
ally independent options using auto-generated state abstrac-
tions, and to use these options to create a novel hierarchical
paradigm for continual RL in long-horizon, sparse reward
settings. Our main contributions are: (a) a novel approach
for auto-inventing symbolic options with abstract represen-
tations, (b) a novel search process for composing options for
solving new tasks, and (c) a hierarchical framework that in-
tegrates planning and learning for continual RL.

2 Formal Framework

Problem Definition. We assume RL settings where an
agent interacts with a goal-oriented Markov decision pro-
cess (MDP) M defined by the combination of an environ-
ment (S, A, T,v,h) and a task (s;, S, R). Here, S is a
set of states defined using a factored representation, where

V = {v1,...,v,} is a set of continuous real-valued or dis-
crete variab}es, and each v; € )V has an ordered domain
D,, = [D}'",D;*). We denote the value of variable v; in

state s as s(v;). Each state s € S is defined by assigning
each v; € V a value from its domain, i.e., s(v;) € D,,. A
is a set of finite actions. 7 : & x A — uS is a stochastic
transition function where uS is a probability measure on S.
v € (0,1] is a discount factor and h is a horizon. Lastly, s;
€ &S is an initial state, S; C S is a set of goal states, and
R : S x A — Ris areward function underlying the task.

Running Example. Consider a hybrid state space (defined
by both continuous and finite variables) adaptation of the
classic taxi domain (Dietterich 1999), where a taxi starts at
a random location and is tasked with picking up a passenger
and transporting them to their destination. The pickup and
dropoff locations are chosen randomly among n specific lo-
cations. States are represented by variables V: x € R (taxi’s
x-coordinate), y € R (taxi’s y-coordinate), [ € {0, 1,...,n}
(passenger’s location, where integers indicate specific loca-
tions and 0 indicates elsewhere), and p € {0,1} (passen-
ger’s presence in the taxi). For clarity, consider variables
with small domains: D, = [0.0,5.0),D, = [0.0,5.0),
D, = {0,1,2,3,4}, and D, = {0,1}. A state assigns a
value to each variable from its domain, e.g., s = (s(z) =

0.9,s(y) = 2.1,s(1) = 3,s(p) = 0). There are six primi-
tive actions: navigate in four cardinal directions by a fixed
distance, pickup the passenger, and drop-off the passenger.
A solution to a goal-oriented MDP is a policy 7 : S — A,
which maps each state s € S to an action a € A, with the
objective of maximizing the expected discounted cumulative
reward. When analytical models of transition 7 and reward
‘R functions are available, classical dynamic programming
methods such as value iteration (Bellman 1957) and policy
iteration (Howard 1960) are used to compute policies. How-
ever, in RL settings, 7 (S,.A) and R(S,.A) can be sampled
but their closed-form analytical models are not available.
Methods like Q-learning (Watkins and Dayan 1992), DQN
(Mnih et al. 2013), and PPO (Schulman et al. 2017) are de-
signed to learn policies directly from samples, but they are
often sample inefficient and struggle to scale when effective
horizons are long (Laidlaw, Russell, and Dragan 2023) and
rewards are sparse (Dadvar, Nayyar, and Srivastava 2023).

Continual Reinforcement Learning. Many challenging
real-world scenarios are captured by continual or lifelong
learning setting (Ring 1994; Liu, Xiao, and Stone 2021),
where an agent must interact with and solve a stream of
related tasks, randomly sampled from a distribution, over
the course of its lifetime. In these tasks, subtle aspects of
the initial state, goal states, transition function, and reward
function change over time. The goal is to efficiently retain
and reuse knowledge from previous experiences to solve
new tasks. We adapt the definition of continual learning
(Khetarpal et al. 2022) to goal-oriented MDPs as follows.

Definition 2.1 (Continual Reinforcement Learning (CRL)).
CRL problem is a stream of n MDPs M where each
MDP M € M shares (S, .A,~,h) and may have distinct
(T, sM, S;Vl, RM). An agent interacts with each M; € M
for a maximum of H timesteps in the orderz = 1, ..., n.

A solution to a CRL problem is a policy 7™ : S — A
for each MDP M in the problem stream M. The goal is
to solve each M € M while minimizing agent interactions
and maximizing the expected discounted cumulative reward.
In such challenging settings, abstraction techniques emerge
as powerful tools for improving scalability and generaliza-
tion in RL (Li, Walsh, and Littman 2006).

State Abstractions. A state abstraction ¢ : S — S maps
each state s € S to an abstract state s € S, where S is a par-
titioning of S. Given a set of variables V, let 5(v;) denote the
value of v; € V in an abstract state 5. An abstract state as-
signs an interval of values to each variable from its domain,
e.g., state s = (s(z) = 2.6,s(y) = 0.9,s(l) = 3,s(p) =
0) can be abstracted as 5 = (3(x) = [2.5,5),5(y) =
[0.0,2.5),3(1) = {3,4},5(p) = {0}). Here, 5 represents
a set of states {s € S|Vv; € V, s(v;) € S(v;)}. Also, the
coarsest state abstraction contains a single abstract state S;,;
that assigns S;,;(v;) = D,, to each v; € V. Formally, an
abstract state is defined as follows.

Definition 2.2 (Abstract State). Given a set of variables V
and the domain D,,, for each variable v; € V, an abstract

state 5 € S is defined by assigning an interval of values
5(v;) C D, toeachv; € V.
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Figure 1: (a) Overall approach for Continual Hierarchical RL and Planning (CHiRP). (b) Illustration of a Conditional Abstrac-
tion Tree (CAT) and Abstract Options for a small taxi world instance. Abstract states are outlined in red. Nodes in CAT show
values of refined variables; other variables inherit values from parent nodes. Arrows in abstract states denote option policies.

Conditional Abstraction Trees (CATs). State abstraction
on a variable’s values (such as taxi’s location) is conditioned
on the values of the other variables (such as passenger’s
presence in the taxi). Such rich conditional abstractions for a
task can be captured in the form of a Conditional Abstraction
Tree (CAT) (Dadvar, Nayyar, and Srivastava 2023) where
the root denotes the coarsest abstract state, while lower-
level nodes represent abstract states with greater refinement
on variables requiring higher resolution in variable values.
Fig. 1(b) illustrates a CAT for a small problem of taxi do-
main. CATs are defined formally as follows.

Definition 2.3 (Conditional Abstraction Trees (CATSs)). A
CAT A is a tuple (N, &), where N is a set of nodes rep-
resenting possible abstract states and £ is a set of directed
edges connecting these nodes. The root represents the coars-
est abstract state S;,;. An edge e € £ from a parent abstract
state 5, € N to a child abstract state 5. € N exists iff
5. can be obtained by splitting atleast one of the variable
intervals in 5, at most once. The leaf nodes represent the
active abstract state space Sa. A defines a state abstraction
¢a : S — S mapping each state s € S to the abstract state
5 € Sa represented by the unique leaf in A containing s.

In this work, we use novel notions based on CAT-based
state abstractions to coherently address option invention and
transfer with a unified abstraction framework. We compute
CATs online using CAT+RL (Dadvar, Nayyar, and Srivas-
tava 2023) which refines states with high dispersion in TD-
errors during Q-learning over the abstract state space.

Abstract Options. We use the standard notion of options
(Sutton, Precup, and Singh 1999). An option o is a triple
(Zo, Boy o), where Z, C S is the initiation set where o
can initiate, 3, C S is the termination set where o termi-
nates, and 7, : § — A is the option policy prescribed by
o that maps states to actions. Our approach autonomously
learns all components of options, defined over an abstract
state space Sa, as follows. We define an abstract option o
as a tuple (A,, Z,, By, To), Where A, is the CAT-based state
abstraction ¢a, : S — EAO, T, C SAO is the abstract initi-

ation set, 3, C Sa, is the abstract termination set, and 7, :
Sa, — A s the abstract partial policy. Z, and 3, denote
option endpoints. The declarative description of an option is
termed as option signature (Z,, B,). Additionally, two op-
tions o; and o; are composable iff 3,, C ;.

3 Continual Hierarchical RL and Planning

The core contribution of this paper is a novel approach for
autonomously inventing a forward model of abstract options
using auto-generated CAT-based state abstractions and ef-
ficiently utilizing them for solving continual RL problems.
Our approach CHiRP (Fig. 1(a)) takes as input a continual
stream of tasks M and a stochastic simulator, and computes
a policy for each task. The key insight for option invention
is that CATs, auto-generated using CAT+RL, for each task
inherently capture abstractions that remain stable within a
subtask, but change significantly across subtasks within the
task. We use CATs to capture notions of context-specific
abstractions that depend on the current state and then use
changes in these salient abstractions as a cue for defining op-
tion endpoints. For instance, in the taxi domain (Fig. 1(b)),
when the passenger has not been picked up, the abstraction
needs greater refinement on the value of the taxi’s location
closer to the passenger’s location. However, when the con-
text changes to a situation where the passenger is in the taxi
and has not been dropped off, the abstraction needs greater
refinement on the value of the taxi’s location near the des-
tination. In this scenario, the pickup option (option oy in
Fig. 1(b)) can be seen as an option that achieves a signifi-
cant change in context-specific abstractions.

CHiRP maintains a universal CAT created from the cur-
rent and all previous problems in the stream, and exploits its
structure to identify context-variables, such as the passen-
ger’s presence in the taxi. These variables are used to define
a context-specific distance between states in a manner such
that higher distances correspond to greater changes in salient
variables and values. CHiRP operationalizes this notion of
changes in saliency to invent abstract options. Note that the



Algorithm 1: CHiRP algorithm

Algorithm 2: Invention of Abstract Options

Input: Stream of MDPs M, Budget
Output: Policy 7™ for each M € M
1 O < Initialize empty model of abstract options
2 A < Initialize CAT with 5;,;;
3 for M € M do

4 8 si\’l 3, gg < abstractStates(A, slM, S;\’l)
5 | while 7™ not found or steps < H do

6 IT < computeOptionPlan(O, A, 5, S)

7 if I1 is not found then

8 L IT + inventOptionSign(s, S)")

9 for o € Il do

10 M, < generate MDP for o

11 A,, 7, < CAT+RL(M,, A, s)

12 if 7, is learned then

13 O.update(inventOptions(A,,m,))
14 L A + A,; update 5,5

15 else

16 | break and replan IT

17 return YM € M 1M

descriptions of the invented options are symbolic, hence di-
rectly support efficient composition and reuse. When a new
task is encountered, CHiRP uses foresight to plan ahead by
connecting endpoints of learned options, while also invent-
ing additional option signatures to bridge gaps if needed.
Each option maintains its own encapsulated CAT-based state
abstraction, allowing options to be used and updated inde-
pendently. The options have stronger effects on different sets
of variables and values, which reduces mutual interference.

In Sec. 3.1, we present CHiRP, our overall approach to
continual RL through autonomous invention, transfer, and
reuse of abstract options. Sec. 3.2 details our novel approach
for option invention, and Sec. 3.3 explains a novel planner
for composing these options to solve new tasks.

3.1 Algorithm Overview

Given a continual RL problem, Alg. 1 begins with an empty
model of abstract options O and a CAT A with the coarsest
state abstraction (lines 1-2). For each new task in the stream,
the CAT’s abstraction is used to compute the initial and goal
abstract states (line 4). Once a solution policy is found or a
budget of H timesteps is reached, the agent moves to solv-
ing the next task (line 5). To solve the current task, the agent
interleaves: (1) a planner to plan with the current model of
abstract options, (2) CAT+RL to refine the current CAT’s
state abstraction during learning, and (3) an option inven-
tor to invent novel abstract options using the updated CAT
(lines 6-16). The updated model of options O and CAT A
are transferred to solve subsequent tasks (line 3).

Given a new task, Alg. 1 uses an offline search process
with the current model of abstract options to compute a plan
from the current abstract state to a goal abstract state, de-
noted by II = (og,...,0n,), 0; € O. The learned option

Input: CAT A, Policy 7, thresholds d,. and o,
Output: Abstract options O

1 7 < computeTrajectory(m)

2 T < computeAbstractTrajectory(7,A)

3 A, « generateContext-SpecificCATs(A,7)

4 7 < identifyOptionEndPoints(A,A ., 7,0 tresOhre)

5 O « inventAbstractOptions(7*,7,A,7)

6 O + finetunePolicies(O)

7 return O

representations are used to compose this plan, as detailed
in Sec. 3.3 (line 6 computeOptionPlan()). The method ad-
ditionally creates new option signatures to allow connecting
endpoints of learned options with gaps between them. If no
plan is found with the current model, we initialize the plan
with a new option signature from the current abstract state
to the goal abstract states (line 8). The CAT and policies for
these options are learned later during RL.

For each newly created option signature or previously
learned option in the plan, o € II, we generate an MDP
with a sparse intrinsic reward for reaching the option’s ter-
mination (line 10). The option’s CAT A, and policy 7, are
then learned or fine-tuned using CAT+RL (line 11). We use
these option-specific CATs and policies to invent new ab-
stract options with updated representations, as detailed in
Sec. 3.2 (line 13 inventOptions()). This converts option sig-
natures into abstract options with learned CATs and policies.
We also update the universal CAT A with each invented
option’s CAT A,, adjusting the current abstract state (line
14). Note that option executions can be stochastic, and the
agent may fail to reach the termination set of an option. In
such cases, we use active replanning (Kaelbling and Lozano-
Pérez 2011) from the current abstract state to a goal abstract
state (line 16), and continue learning option-specific CATs
and policies. This process repeats until the computed plan
successfully solves the problem. Finally, Alg. 1 transfers the
updated model of options O and CAT A to solve new tasks.

3.2 Inventing Generalizable Options

We now discuss our approach for inventing options using a
learned CAT and an abstract policy (Alg. 1 line 13) (Sec. 3.1
explains our approach for obtaining these inputs). The key
idea is to identify transitions that lead to significant changes
in context-specific abstractions, revealing that the nature of
the task has changed. We recognize changes in sets of salient
variables and values that significantly impact changes in the
CAT’s structure, and use this as an indicator for determining
when to initiate and terminate options. We also exploit the
structure of different subtrees in the CAT to further decom-
pose these options into multiple options.

We first describe our overall approach for option invention
(Alg. 2) and then discuss each component in detail. Alg. 2
uses the input abstract policy 7w to compute a roll-out tra-
jectory 7 = (sq, ..., Sp) and then uses the input CAT’s ab-
straction function to compute its corresponding abstract tra-
jectory T (lines 1-2). Context-specific abstractions are gen-
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Figure 2: Illustration of two Context-Specific CATs (C-
CATs) highlighting different active abstractions represented
by leaves in the CAT from Fig. 1(b). The left corresponds to
p = 0, while the right corresponds to p = 1.

erated for each state in the trajectory (line 3) and used to
identify a sequence of option endpoints 7* (line 4). We use
these identified option endpoints to invent abstract options as
follows. For each consecutive option endpoints s;, s> € 7%,
we first compute a segment seg;; = (Sk,...,5m) C T s.t.
5, = sf and 5,4 = s;f. Then, an abstract option o0;; =
(Do, Loy, 5 Boiy» Moy, ) is invented, where Z,,, contains sib-
lings of s7 in the CAT A that are in seg,;, fo,;, = {s}},
A,,; = A, and 7,,; = 7 (line 5). Finally, we fine-tune the
policy for each invented option using CAT+RL (line 6). Op-
tions invented in this fashion are used to update the model
of abstract options O. We now discuss our method for gen-
erating context-specific abstractions (line 3) and identifying
option endpoints (line 4) in detail below.

Generating Context-Specific Abstractions. Recall that
the learned CAT captures abstractions for the whole task.
We capture context-specific abstractions that depend upon
the current state in the form of Context-Specific CATs (C-
CATs), which are ablations of the input CAT. To generate
C-CATs, we first identify context-variables as variables that
are relatively more refined among the ones that have a low
frequency of change (Hengst et al. (2002)). The degree of
refinement for a variable intuitively captures how close the
abstraction is to its concrete representation. It is inversely
proportional to the measure of concrete values within each
value interval of that variable. A high degree of refinement
in a variable indicates that it significantly contributes to vari-
ation in the Q-function during learning of the CAT. For in-
stance, in the taxi domain, variable p denoting passenger’s
presence in the taxi is a context-variable since its value per-
sists more and is more refined. The refinement of other fre-
quently changing variables, such as taxi’s location, depend
on the values of the context-variables. We condition the in-
put CAT on these context-variables to generate C-CATs.
Conditioning the CAT on context-variables highlights ab-
stractions that are salient for different contexts—expressed
by different “active” subtrees—within the CAT. More
specifically, C-CATs fix values of context-variables in the
current state and preserve all abstract states in the CAT that
are consistent with these fixed values. All other abstract
states that are inconsistent are ignored (shown in dark in
Fig. 2). For example, Fig. 2 (left) illustrates the C-CAT for

state s; where the passenger’s location is fixed at the bot-
tom left and the passenger has not yet been picked up, i.e.,
s1(p) = 0. Similarly, Fig. 2 (right) illustrates the C-CAT
for state s, where the passenger has been picked up, i.e.,
s2(p) = 1. We formally define C-CATs as follows.

Definition 3.1 (Context-specific CATs (C-CATs)). Given a
CAT A = (N, &) and context-variables V' C V, a C-CAT
A, for state s is defined as (N, E’) where N/ C N s.t.
N' = {55 € N,v; € V,s(v;) € 3(v;)} and & C € sit.
&= {(51752”(51752) €&,51,89 € N/}

Identifying Option Endpoints. We identify transitions
that lead to significant changes in context-specific abstrac-
tions to define endpoints of new options. For instance, con-
sider C-CATs in Fig. 1(b) before and after the passenger is
picked up. These C-CATs are significantly different from
each other, indicating a significant change in abstraction.
To measure difference between abstraction functions repre-
sented by two C-CATs generated from the same CAT, we
use a context-specific distance function. Intuitively, this dis-
tance is computed by traversing from the root node and sum-
ming the structural differences between corresponding sub-
trees of C-CATs. Given a C-CAT A, for state s, let A7 de-
note the subtree rooted at node n, and depth,,, (A?) denote
the maximum depth of that subtree. We drop n from A7
when n = s;,,;;. Let n; denote the ith child of node n in the
CAT A. We formally define this distance as follows.

Definition 3.2 (Context-specific distance between C-CATs).
Given two C-CATs obtained from A rooted at node n, AY,
and A;g , the distance between them is defined as

depth,,, (A% ), ifnnotin AY ;
S(AL A7) = ¢ depth,, (A7), ifnnotin AY;
Li6(AY, AL,  otherwise.

To identify option endpoints using trajectory 7 and the
context-specific distance, we first identify context-variables
from CAT A, and generate C-CATs A, = (Ag,,..., A, ).
Let d,,,. be a distance threshold. Then, for each transition
(8iy8ir1) C 7, we use abstract states ¢ (s;) and P (si47) to
define option endpoints if 6(As,, As,,,) > Omre. The initial
and goal abstract states are also included.

Additionally, our approach uses a context-independent
distance, also derived from the CAT, to allow decomposing
an option into multiple options. For example, navigating to
the pickup location can be decomposed into first reaching
the larger bottom-left quadrant and then the exact pickup lo-
cation (Fig. 1(b)). Intuitively, this distance is greater between
states that belong to highly distinct (having higher low-
est common ancestor (LCA)) and highly refined CAT sub-
trees. Let depth,,,, be the maximum depth of the CAT, and
depth(n1, ny) denote the number of edges between nodes 71
and ny. We formally define this distance as follows.

Definition 3.3 (Context-independent distance between ab-
stract states). Given a CAT A and LCA of two abstract
states 51 and So, the distance between them oa (51, 52) is de-
fined as the weighted sum of (depth,,,, —depth(root, LCA) +
1) and (depth(LCA,s1) + depth(LCA, 53)) /2.



We decompose options by extending the previously com-
puted sequence of option endpoints as follows. We com-
pute trajectory segments Ty = (Sg,...,Sm) C T S.t.
oda(sk) and oA (s,,) are consecutive option endpoints. We
also compute corresponding abstract trajectory segments
Tseg Using the CAT. Let o, < 1.0 be a distance thresh-
old and 0,,,, be the maximum distance between abstract
states in any transition in Ty,. Then, for each transition
(5i-1,5:) C Tyeg, S; is additionally identified as an option
endpoint if oA (Si7,8:) > Cipre X Tmax-

3.3 Planning over Auto-Invented Options

We now describe a novel planning process to compute a
plan II for a new task using the learned model of abstract
options and the learned CAT overlayed with abstract tran-
sitions, termed as a Plannable-CAT (Alg. 1 line 6). This
plannable-CAT is used to guide the search process over the
option endpoints, while creating new option signatures to
connect them when needed. We apply single-outcome de-
terminization (Yoon, Fern, and Givan 2007) for planning by
considering only the most likely effects (here, the termina-
tion sets) of options. To compute a plan of options, we first
augment the Plannable-CAT with transitions between option
endpoints, including lifted transitions between higher levels
of abstract states. We then use A* search over this Plannable-
CAT with a cost function that prioritizes lower-level transi-
tions and a heuristic defined by the context-independent dis-
tance (Def. 3.3). The idea is to compose abstract transitions
at different levels of abstractions. The resulting plan is re-
fined by replacing consecutive higher-level transitions with
a new option signature. This helps to bridge gaps between
option endpoints. Finally, CHiRP interleaves the execution
of the computed plan with learning of option policies for
any newly created option signatures to solve the new task.

4 Empirical Evaluation

We evaluated CHiRP' on a diverse suite of challenging do-
mains in continual RL setting. Full details about the used
domains and hyperparameters are provided in the extended
version of our paper (Nayyar and Srivastava 2024).

4.1 Experimental Setup

Domains. For our evaluation, we compiled a suite of test
domains for continual RL that are amenable to hierarchichal
decomposition and challenging for SOTA methods. We then
created versions of these problems that are significantly
larger than prior investigations to evaluate whether the pre-
sented approaches are able to push the limits of scope and
scalability of continual RL. Our investigation focused on
stochastic versions of the following domains with contin-
uous or hybrid states: (1) Maze World (Ramesh, Tomar,
and Ravindran 2019): An agent needs to navigate through
randomly placed wall obstacles to reach the goal; (2) Four
Rooms World (Sutton, Precup, and Singh 1999): An agent
must move within and between rooms via hallways to reach
the goal; (3) Office World (Icarte et al. 2018): An agent

"https://github.com/A AIR-lab/CHiRP

needs to collect coffee and mail from different rooms and
deliver them to an office; (4) Taxi World (Dietterich 2000):
A taxi needs to pick up a passenger from its pickup location
and drop them off at their destination; (5) Minecraft (James,
Rosman, and Konidaris 2022): An agent must find and mine
relevant resources, build intermediate tools, and use them to
craft an iron or stone axe.

Baselines. We selected the best-performing contemporary
methods that do not require any hand-engineered abstrac-
tions or action hierarchies as baselines to match the absence
of such requirements in our approach: (1) Option-Critic
(Bacon, Harb, and Precup 2017) is an end-to-end gradient-
based method that learns and transfers option policies and
termination conditions; (2) CAT+RL (Dadvar, Nayyar, and
Srivastava 2023) is a top-to-down abstraction refinement
method that dynamically learns state abstractions during RL;
and (3) PPO (Schulman et al. 2017) is a policy-gradient
Deep RL method that progressively learns latent state ab-
stractions through neural network layers.

Hyperparameters. A key strength of CHiRP over base-
lines is that it requires only five additional hyperparameters
beyond standard RL parameters (e.g., decay, learning rate),
unlike SOTA DRL methods that need extensive tuning and
significant effort in network architecture design. Throughout
our experiments, we intuitively set d,,, = 0 and oy ~ 1
to minimize hyperparameter tuning. These values are robust
across domains, preventing options from being too small or
numerous. We use a limited set of values for ke.p, Spcrors
and e, parameters across domains to adaptively control
the training of an option’s policy and CAT. All parameters
are set to the same values across a continual stream of tasks.

Evaluation setting and metrics. We evaluate in a contin-
ual RL setting where an agent needs to adapt to changes
in initial states, goal states, transition and reward functions.
For each domain, 20 tasks are randomly sampled sequen-
tially from a distribution. Each approach is provided a fixed
budget of H timesteps per task before moving on to the
next task. Due to stochasticity and lack of transition mod-
els, a task is considered solved if the agent achieves the goal
> 90% of the time among 100 independent evaluation runs
of the learned policy. We report the fraction of tasks solved
within the total allocated timesteps for each approach. The
reported timesteps include all the interactions with the en-
vironment used for learning state abstractions, option end-
points, and option policies. Results are averaged from 10
independent trials across the entire problem stream.

4.2 Results

We evaluate the presented work across a few key dimen-
sions: sample-efficiency in continual RL setting, and sat-
isfaction of key conceptual desiderata for task decomposi-
tion—composability, reusability, and mutual independence.

Q1. Does CHIRP help improve sample-efficiency over
SOTA RL methods in continual RL setting?

Fig. 3 shows that CHiRP consistently outperforms all
baselines. Our results confirm that, while in principle base-
line approaches can solve problems without hand-designed
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Figure 3: Fraction of tasks solved vs training steps (include interactions for learning abstractions and policies), averaged over 10
trials, evaluated on a stream of 20 random tasks in a continual learning setting with a fixed timestep budget to solve each task.

abstractions and hierarchies, they require orders of magni-
tude more data and struggle to solve streams of distinct long-
horizon tasks with sparse rewards. We found that CAT+RL
delivered the second-best performance, while Option-Critic
and PPO consistently underperformed across all domains,
failing to solve tasks within the allotted budget. While
Option-Critic has the advantage of reusing options, it strug-
gled to learn useful and diverse options. This is at least partly
due to lack of mechanisms for modelling initiation sets for
options and inability to plan long-term sequences of op-
tions, leading to initiation of options in states where they
were either ineffective or unnecessary. CAT+RL performed
well by learning appropriate state abstractions for each task
but did not decompose these tasks into transferable options.
PPO struggled to learn likely due to the challenges asso-
ciated with learning in environments with longer effective
horizons and sparse rewards, as shown by Laidlaw, Russell,
and Dragan (2023). Gradient-based methods typically rely
on dense reward shaping for local gradient updates. In con-
trast, CHiRP overcomes these limitations by learning op-
tions with limited, symbolically represented initiation sets,
maintaining option policies at different levels of abstrac-
tion, and performing long-term planning with these options.
CHiRP benefits from auto-generated state abstractions and
goes beyond by inventing reusable options, resulting in more
effective generalization and transfer across tasks.

Q2. Does CHIRP invent mutually independent options?
Can the options be composed and reused effectively?

Options invented by CHiRP have a key advantage: their
interpretable symbolic representation, where each option’s
initiation and termination conditions are defined in terms of
specific value ranges of variables. Our analysis revealed that
the invented options express distinct, complementary behav-
iors, with each option primarily affecting different state vari-
ables and value ranges. E.g., in the taxi domain, CHiRP in-
vented four options that operate independently: two navi-
gation options that affect different values of taxi location
variable and specialize in moving to pickup/drop-off loca-
tions, and two passenger interaction options that affect dif-
ferent values of passenger variables and focus on picking
up/dropping off the passenger. These options demonstrate
mutual independence through minimal overlap in their core
affected variables and value ranges in terminations of the op-

tions. Their clear symbolic endpoints enable direct chaining
of options, making them both composable and reusable.

5 Related Work

Abstraction has been a topic of significant research interest
(Karia, Nayyar, and Srivastava 2022; Shah and Srivastava
2024; Shah et al. 2024; Karia et al. 2024). Early research
in RL largely focused on hand-designed abstractions (An-
dre and Russell 2002; Dietterich 2000), with more recent
frameworks also using high-level planning models or action
hierarchies (Illanes et al. 2020; Kokel et al. 2021). Typically,
research on learning abstractions has focused on either state
abstraction or action abstraction in isolation (Jonsson and
Barto 2000; Wang et al. 2024). A variety of methods have
been developed for automatic discovery of subgoals or op-
tions, such as identifying bottleneck states through graph-
partitioning (Menache, Mannor, and Shimkin 2002; Simgek
and Barto 2007; Machado, Bellemare, and Bowling 2017),
clustering (Mannor et al. 2004), and frequency-based (Mc-
Govern and Barto 2001; Stolle and Precup 2002) techniques.
A large body of work learns hierarchies in which a high-
level policy sets subgoals for a lower-level policy to achieve
(Vezhnevets et al. 2017; Nachum et al. 2018).

Most prior research in option discovery focuses on control
tasks with short horizons, often using dense rewards due to
computational intractability (Bacon, Harb, and Precup 2017;
Bagaria, Senthil, and Konidaris 2021). Much of this research
is limited to single-task settings (Bagaria and Konidaris
2020; Riemer, Liu, and Tesauro 2018). Many recent methods
learn a fixed, prespecified number of options and depend on
learning a policy over options to use them (Bacon, Harb, and
Precup 2017; Machado et al. 2017; Khetarpal et al. 2020;
Klissarov and Precup 2021). In contrast, our work tackles a
stream of long-horizon, sparse-reward tasks by continually
learning generalizable options with abstract representations
and planning over them.

6 Conclusion and Future Work

This paper presents a novel approach to continual RL based
on autonomously learning and utilizing symbolic abstract
options. Optimality is a good direction for future work.
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Appendix
Selection of Domains and Task Details

We chose continuous state versions of test domains that are
well established as challenging for state-of-the-art RL (An-
dreas, Klein, and Levine 2017; Kokel et al. 2021; Jin et al.
2022). In each domain, we generated a continual stream of
20 randomly sampled tasks, varying in initial states, goal
states, transition and reward functions. We evaluated each
approach on its ability to solve the entire continual RL prob-
lem within a given budget H for each task. The chosen tasks
are particularly difficult due to their long horizons and sparse
rewards. We detail the specific differences among the tasks
in each randomly generated continual RL problem for the
selected domains. These tasks share the same state and ac-
tion spaces but vary in their objectives as follows.

e In Maze World derived from Ramesh, Tomar, and
Ravindran (2019), the agent must navigate from a ran-
domly selected starting location to a randomly chosen
goal, avoiding randomly placed wall obstacles. It can
move in four cardinal directions, with a 0.8 probability
of successful movement and a 0.1 probability of slipping
to an adjacent cell. The agent receives a reward of 500
upon reaching the goal and -1 elsewhere.

* In Four Rooms derived from Sutton, Precup, and Singh
(1999), the agent navigates within and between rooms,
moving through hallways to reach a randomly chosen
goal from a random starting location. The effects of ac-
tions due to stochasticity and the reward structure are the
same as in Maze World.

e In Office World adapted from Icarte et al. (2018), the
agent starts at a random location, tasked with collecting
coffee and mail from specific locations and delivering
them to a randomly chosen desk within an office envi-
ronment. The agent receives a reward of 500 upon suc-
cessfully completing a task and 0O elsewhere.

e In Taxi World adapted from Dietterich (2000), the taxi
starts at a random location, must pick up a passenger
from a randomly selected pickup location and drop them
off at a randomly chosen destination. The environment
features four specific pickup and dropoff locations. The
agent is penalized with a -100 reward for illegal pick or
dropoff actions, and it receives a reward of 500 for suc-
cessfully completing the task of delivering the passenger
to its destination, with a -1 penalty for other moves.

e In Minecraft adapted from James, Rosman, and
Konidaris (2022), the agent starts at a random location,
must gather wood from randomly selected forest loca-
tions to craft a stick, and then mine resources like iron or
stone to build either a stone or an iron axe as required.
The tasks involve building either a stone or an iron axe,
so the agent must identify and collect the necessary re-
sources. Movement incurs a cost of -1, and the agent re-
ceives a reward of 500 upon crafting the correct axe.

For training option policies in our approach, we provide the
agent an intrinsic sparse reward of 500 upon reaching ab-
stract terminations of options.

6.1 Selection of Baselines

We evaluated existing work to select the best performing
baselines on the selected problems, focusing on those that
do not rely on hand-engineered abstractions or action hier-
archies. Extensive evaluation by (Dadvar, Nayyar, and Sri-
vastava 2023) showed that CAT+RL dominated Qlearning
(Watkins and Dayan 1992) and state-of-the-art deep RL ap-
proaches like DQN (Mnih et al. 2013), PPO (Schulman et al.
2017), and A2C (Mnih et al. 2016). As a result, we se-
lected CAT+RL as a suitable baseline for comparison. We
also compared with PPO (Schulman et al. 2017), a state-of-
the-art DRL approach for learning latent representations to
solve RL problems. Finally, we selected Option-Critic (Ba-
con, Harb, and Precup 2017) as it is a state-of-the-art ap-
proach for end-to-end learning of transferable options.

6.2 Hyperparameter Details

We implemented our approach in Python. The code for
CHIiRP! is provided with instructions to run. For baselines,
we used the open-source code available for Option-Critic?,
CAT+RL?, and used standard architectures for PPO from
Stable-Baselines3* by (Raffin et al. 2019).

A key advantage of CHiRP over baselines is that it re-
quires only five additional hyperparameters beyond standard
RL parameters (e.g., decay, learning rate) and is robust to
most parameter values, as long as they are intuitively set. In
contrast, SOTA deep RL methods need extensive tuning, sig-
nificant effort in network architecture design, >15 hyperpa-
rameters, and are highly sensitive to hyperparameter values.
Unlike Option-Critic, CHiRP does not require the number
of options to be specified in advance. For Option-Critic, we
parametrize the intra-option policies with Boltzmann distri-
butions and the terminations with sigmoid functions. Tables
1 (Maze World), 2 (Four Rooms), 3 (Taxi World), 4 (Office
World), and 3 (Minecraft) show the used hyperparameters
for CHiRP and all baselines (the parameters not listed are
used default from provided source codes of the baselines).

The parameters used by CHiRP are: d,;,, and oy, are dis-
tance thresholds used for option invention, k., is the bound
on the number of abstract states refined in option-specific
CATS, Sfucror 18 a scaling factor for adaptively adjusting the
stepmax for training option policies (stepmax for an op-
tion is set to Spq0r * length of recent successful trajectory),
and e, is the maximum episode limit for learning an op-
tion’s policy before halting training to do replanning. Our
approach uses k.4, parameter for controlling abstraction re-
finement for options, similar to its use by CAT+RL for the
entire problem. Throughout our experiments, we intuitively
set 0 = 0 and oy, ~ 1. These values are robust across
domains, preventing options from being too small or numer-
ous. We use a limited set of values for other parameters to
minimize hyperparameter tuning. Additionally, all parame-
ters are set to the same values across a continual stream of
tasks for a domain.

"https://github.com/AAIR-lab/CHiRP
Zhttps://github.com/lweitkamp/option-critic-pytorch
3https://github.com/AAIR-lab/CAT-RL.git
*https://github.com/DLR-RM/stable-baselines3



Hyperparameters

| CHIiRP | Option-Critic | CAT+RL | PPO

Task budget in timesteps (H)

Exploration decay

Minimum exploration rate

Learning rate («)

Discount factor (7)

Episode stepmax

Cap on abstraction refinement (kcqp)
Context-specific distance threshold (&)
Context-independent distance threshold (o)
Factor to adjust stepmax for options (Sfcror)
Maximum episodes to halt option training (€ )
Number of options

Temperature

Termination regularization

Entropy regularization

Generalized Advantage Estimator (gae_lambda)
Steps to run per update (n_steps)

Entropy coefficient (ent_coef)

Value function coefficient (vf_coef)

Maximum gradient clipping (max_grad_norm)

1.5M
0.997
0.05
0.05
0.99
500
2
0
0.95
10
500

1.5M

0.997
0.05
0.05
0.99
500

1.5M

0.997
0.05
0.05
0.99
500

1.5M

3e-4
0.99
500

Table 1: Hyperparameters used in Maze World.

Hyperparameters

| CHiRP | Option-Critic | CAT+RL | PPO

Task budget in timesteps (H)

Exploration decay

Minimum exploration rate

Learning rate («)

Discount factor ()

Episode stepmax

Cap on abstraction refinement (k)
Context-specific distance threshold (&)
Context-independent distance threshold (o)
Factor to adjust stepmax for options (Szcror)
Maximum episodes to halt option training (€. )
Number of options

Temperature

Termination regularization

Entropy regularization

Generalized Advantage Estimator (gae_lambda)
Steps to run per update (n_steps)

Entropy coefficient (ent_coef)

Value function coefficient (vf_coef)

Maximum gradient clipping (max_grad_norm)

2M
0.998
0.05
0.05
0.999
800
2
0
0.95
10
500

2M
0.998
0.05
0.05
0.999
800

2M
0.998
0.05
0.05
0.999
800

2M

3e-4
0.999
800

Table 2: Hyperparameters used in Four Rooms World.




Hyperparameters

| CHIiRP | Option-Critic | CAT+RL | PPO

Task budget in timesteps (H)

Exploration decay

Minimum exploration rate

Learning rate («)

Discount factor (7)

Episode stepmax

Cap on abstraction refinement (k)
Context-specific distance threshold (&)
Context-independent distance threshold (o)
Factor to adjust stepmax for options (Sfcror)
Maximum episodes to halt option training (€, )
Number of options

Temperature

Termination regularization

Entropy regularization

Generalized Advantage Estimator (gae_lambda)
Steps to run per update (n_steps)

Entropy coefficient (ent_coef)

Value function coefficient (vf_coef)

Maximum gradient clipping (max_grad_norm)

4M
0.999
0.05
0.05
1
1000

4M
0.999
0.05
0.05
1
1000

4M
0.999
0.05
0.05
1
1000

4M

Table 3: Hyperparameters used in Taxi World.

Hyperparameters

| CHiRP | Option-Critic | CAT+RL | PPO

Task budget in timesteps (H)

Exploration decay

Minimum exploration rate

Learning rate («)

Discount factor ()

Episode stepmax

Cap on abstraction refinement (k)
Context-specific distance threshold (&)
Context-independent distance threshold (o)
Factor to adjust stepmax for options (S/cror)
Maximum episodes to halt option training (€. )
Number of options

Temperature

Termination regularization

Entropy regularization

Generalized Advantage Estimator (gae_lambda)
Steps to run per update (n_steps)

Entropy coefficient (ent_coef)

Value function coefficient (vf_coef)

Maximum gradient clipping (max_grad_norm)

4M
0.9991
0.05
0.05
0.99
800

0
1

4M
0.9991
0.05
0.05
0.99
800

4M
0.9991
0.05
0.05
0.99
800

4M

le-2
0.99
800

Table 4: Hyperparameters used in Office World.



| Hyperparameters | CHiRP | Option-Critic | CAT+RL | PPO |

Task budget in timesteps (H) 3M 3M 3M 3M
Exploration decay 0.999 0.999 0.999 -
Minimum exploration rate 0.05 0.05 0.05 —
Learning rate («) 0.05 0.05 0.05 3e-4
Discount factor (vy) 1 1 1 |
Episode stepmax 1000 1000 1000 1000
Cap on abstraction refinement (k) 2 - 5 -
Context-specific distance threshold (&) 0 — — —
Context-independent distance threshold (o) 1 — — —
Factor to adjust stepmax for options (Szcror) 10 — — -
Maximum episodes to halt option training (€. ) 200 — — —
Number of options — 8 — —
Temperature — 0.001 — —
Termination regularization — 0.01 — —
Entropy regularization — 0.01 — —
Generalized Advantage Estimator (gae_lambda) — — — 0.95
Steps to run per update (n_steps) — — — 2048
Entropy coefficient (ent_coef) — — — 0.0
Value function coefficient (vf_coef) - - - 0.5
Maximum gradient clipping (max_grad_norm) — — — 0.5

Table 5: Hyperparameters used in Minecraft.



