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Abstract

Much of the research on learning symbolic models of AI
agents focuses on agents with stationary models. This as-
sumption fails to hold in settings where the agent’s capa-
bilities may change as a result of learning, adaptation, or
other post-deployment modifications. Efficient assessment of
agents in such settings is critical for learning the true capabil-
ities of an AI system and for ensuring its safe usage. In this
work, we propose a novel approach to differentially assess
black-box AI agents that have drifted from their previously
known models. As a starting point, we consider the fully ob-
servable and deterministic setting. We leverage sparse obser-
vations of the drifted agent’s current behavior and knowl-
edge of its initial model to generate an active querying pol-
icy that selectively queries the agent and computes an up-
dated model of its functionality. Empirical evaluation shows
that our approach is much more efficient than re-learning the
agent model from scratch. We also show that the cost of dif-
ferential assessment using our method is proportional to the
amount of drift in the agent’s functionality.

1 Introduction
With increasingly greater autonomy in AI systems in recent
years, a major problem still persists and has largely been
overlooked: how do we accurately predict the behavior of a
black-box AI agent that is evolving and adapting to changes
in the environment it is operating in? And how do we ensure
its reliable and safe usage? Numerous factors could cause
unpredictable changes in agent behaviors: sensors and actu-
ators may fail due to physical damage, the agent may adapt
to a dynamic environment, users may change deployment
and use-case scenarios, etc. Most prior work on the topic
presumes that the functionalities and the capabilities of AI
agents are static, while some works start with a tabula-rasa
and learn the entire model from scratch. However, in many
real-world scenarios, the agent model is transient and only
parts of its functionality change at a time.

Bryce, Benton, and Boldt (2016) address a related prob-
lem where the system learns the updated mental model of a
user using particle filtering given prior knowledge about the
user’s mental model. However, they assume that the entity
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Figure 1: The Differential Assessment of AI System
(DAAISy) takes as input the initially known model of the
agent prior to model drift, available observations of the up-
dated agent’s behavior, and performs a selective dialog with
the black-box AI agent to output its updated model through
efficient model learning.

being modeled can tell the learning system about flaws in
the learned model if needed. This assumption does not hold
in settings where the entity being modeled is a black-box
AI system: most such systems are either implemented using
inscrutable representations or otherwise lack the ability to
automatically generate a model of their functionality (what
they can do and when) in terms the user can understand.
The problem of efficiently assessing, in human-interpretable
terms, the functionality of such a non-stationary AI system
has received little research attention.

The primary contribution of this paper is an algorithm for
differential assessment of black-box AI systems (Fig. 1).
This algorithm utilizes an initially known interpretable
model of the agent as it was in the past, and a small set of
observations of agent execution. It uses these observations to
develop an incremental querying strategy that avoids the full
cost of assessment from scratch and outputs a revised model
of the agent’s new functionality. One of the challenges in
learning agent models from observational data is that reduc-
tions in agent functionality often do not correspond to spe-
cific “evidence” in behavioral observations, as the agent may
not visit states where certain useful actions are no longer ap-
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plicable. Our analysis shows that if the agent can be placed
in an “optimal” planning mode, differential assessment can
indeed be used to query the agent and recover information
about reduction in functionality. This “optimal” planning
mode is not necessarily needed for learning about increase in
functionality. Empirical evaluations on a range of problems
clearly demonstrate that our method is much more efficient
than re-learning the agent’s model from scratch. They also
exhibit the desirable property that the computational cost of
differential assessment is proportional to the amount of drift
in the agent’s functionality.

Running Example Consider a battery-powered rover with
limited storage capacity that collects soil samples and takes
pictures. Assume that its planning model is similar to IPC
domain Rovers (Long and Fox 2003). It has an action that
collects a rock sample at a waypoint and stores it in a stor-
age iff it has at least half of the battery capacity remaining.
Suppose there was an update to the rover’s system and as
a result of this update, the rover can now collect the rock
sample only when its battery is full, as opposed to at least
half-charged battery that it needed before. Mission planners
familiar with the earlier system and unaware about the ex-
act updates in the functionality of the rover would struggle
to collect sufficient samples. This could jeopardise multiple
missions if it is not detected in time.

This example illustrates how our system could be of value
by differentially detecting such a drift in the functionality of
a black-box AI system and deriving its true functionality.

The rest of this paper is organized as follows: The next
section presents background terminology. This is followed
by a formalization of the differential model assessment prob-
lem in Section 3. Section 4 presents our approach for differ-
ential assessment by first identifying aspects of the agent’s
functionality that may be affected (Section 4.1) followed by
the process for selectively querying the agent using a primi-
tive set of queries. We present empirical evaluation of the ef-
ficiency of our approach on randomly generated benchmark
planning domains in Section 5. Finally, we discuss relevant
related work in Section 6 and conclude in Section 7.

2 Preliminaries
We consider models that express an agent’s functionalities in
the form of STRIPS-like planning models (Fikes and Nils-
son 1971; McDermott et al. 1998; Fox and Long 2003) as
defined below.
Definition 1. A planning domain model is a tuple M =
⟨P,A⟩, where P = {pr11 , . . . , prnn } is a finite set of predi-
cates with arities ri, i ∈ [1, n]; andA = {a1, . . . , ak} is a fi-
nite set of parameterized relational actions. Each action ai ∈
A is represented as a tuple ⟨header(ai), pre(ai), eff(ai)⟩,
where header(ai) represents the action header consisting
of the name and parameters for the action ai, pre(ai) rep-
resents the conjunction of positive or negative literals that
must be true in a state where the action ai is applicable, and
eff(ai) is the conjunction of positive or negative literals that
become true as a result of execution of the action ai.

In the rest of the paper, we use the term “model” to refer
to planning domain models and use closed-world assump-

tion as used in the Planning Domain Definition Language
(PDDL) (McDermott et al. 1998). Given a model M and a
set of objects O, let SM,O be the space of all states defined
as maximally consistent sets of literals over the predicate
vocabulary of M with O as the set of objects. We omit the
subscript when it is clear from context. An action a ∈ A is
applicable in a state s ∈ S if s |= pre(a). The result of exe-
cuting a is a state a(s) = s′ ∈ S such that s′ |= eff(a), and
all atoms not in eff(a) have literal forms as in s.

A literal corresponding to a predicate p ∈ P can ap-
pear in pre(a) or eff(a) of an action a ∈ A if and only if
it can be instantiated using a subset of parameters of a. E.g.,
consider an action navigate (?rover ?src ?dest) and a pred-
icate (can traverse ?rover ?x ?y) in the Rovers domain dis-
cussed earlier. Suppose a literal corresponding to predicate
(can traverse ?rover ?x ?y) can appear in the precondition
and/or the effect of navigate (?rover ?src ?dest) action. As-
suming we know ?x and ?y in can traverse, and ?src and
?dest in navigate are of the same type waypoint, the possi-
ble lifted instantiations of predicate can traverse compatible
with action navigate are (can traverse ?rover ?src ?dest),
(can traverse ?rover ?dest ?src), (can traverse ?rover ?src
?src), and (can traverse ?rover ?dest ?dest). The number of
parameters in a predicate p ∈ P that is relevant to an action
a ∈ A, i.e., instantiated using a subset of parameters of the
action a, is bounded by the maximum arity of the action a.
We formalize this notion of lifted instantiations of a predi-
cate with an action as follows:
Definition 2. Given a finite set of predicates P =
{pr11 , . . . , prnn } with arities ri, i ∈ [1, n]; and a finite set
of parameterized relational actions A = {aψ1

1 , . . . , aψk

k }
with arities ψj and parameters par(aψj

j ) = ⟨α1, . . . , αψj
⟩,

j ∈ [1, k], the set of lifted instantiations of predicates P ∗

is defined as the collection {pi(σ(x1), . . . , σ(xri)) |pi ∈
P, a ∈ A, σ : {x1, . . . , xri} → par(a)}.

2.1 Representing Models
We represent a model M using the set of all possible pal-
tuples ΓM of the form γ = ⟨p, a, ℓ⟩, where a is a parameter-
ized action header for an action in A, p ∈ P ∗ is a possible
lifted instantiation of a predicate in P , and ℓ ∈ {pre, eff} de-
notes a location in a, precondition or effect, where p can ap-
pear. A model M is thus a function µM : ΓM → {+,−, ∅}
that maps each element in ΓM to a mode in the set {+,−, ∅}.
The assigned mode for a pal-tuple γ ∈ ΓM denotes whether
p is present as a positive literal (+), as a negative literal (−),
or absent (∅) in the precondition (ℓ =pre) or effect (ℓ = eff )
of the action header a.

This formulation of models as pal-tuples allows us to view
the modes for any predicate in an action’s precondition and
effect independently. However, at times it is useful to con-
sider a model at a granularity of relationship between a pred-
icate and an action. We address this by representing a model
M as a set of pa-tuples ΛM of the form ⟨p, a⟩ where a is a
parameterized action header for an action in A, and p ∈ P ∗

is a possible lifted instantiation of a predicate in P . Each
pa-tuple can take a value of the form ⟨mpre,meff⟩, where
mpre and meff represents the mode in which p appears in the



precondition and effect of a, respectively. Since a predicate
cannot appear as a positive (or negative) literal in both the
precondition and effect of an action, ⟨+,+⟩ and ⟨−,−⟩ are
not in the range of values that pa-tuples can take. Hence-
forth, in the context of a pal-tuple or a pa-tuple, we refer to
a as an action instead of an action header.

Measure of model difference Given two models M1 =
⟨P,A1⟩ and M2 = ⟨P,A2⟩, defined over the same sets
of predicates P and action headers A, the difference be-
tween the two models ∆(M1,M2) is defined as the num-
ber of pal-tuples that differ in their modes in M1 and M2,
i.e., ∆(M1,M2) = |{γ ∈ P × A × {+,−, ∅}|µM1(γ) ̸=
µM2(γ)}|.

2.2 Abstracting Models
Several authors have explored the use of abstraction in
planning (Sacerdoti 1974; Giunchiglia and Walsh 1992;
Helmert, Haslum, and Hoffmann 2007; Bäckström and Jon-
sson 2013; Srivastava, Russell, and Pinto 2016). We define
an abstract model as a model that does not have a mode as-
signed for at least one of the pal-tuples. Let ΓM be the set
of all possible pal-tuples, and ?⃝ be an additional possible
value that a pal-tuple can take. Assigning ?⃝ mode to a pal-
tuple denotes that its mode is unknown. An abstract model
M is thus a function µM : ΓM → {+,−, ∅, ?⃝} that maps
each element in ΓM to a mode in the set {+,−, ∅, ?⃝}. Let
U be the set of all abstract and concrete models that can pos-
sibly be expressed by assigning modes in {+,−, ∅, ?⃝} to
each pal-tuple γ ∈ ΓM . We now formally define model ab-
straction as follows:
Definition 3. Given models M1 and M2, M2 is an ab-
straction of M1 over the set of all possible pal-tuples Γ iff
∃Γ2 ⊆ Γ s.t. ∀γ ∈ Γ2, µM2

(γ) = ?⃝ and ∀γ ∈ Γ \ Γ2,
µM2(γ) = µM1(γ).

2.3 Agent Observation Traces
We assume limited access to a set of observation traces O,
collected from the agent, as defined below.
Definition 4. An observation trace o is a sequence of states
and actions of the form ⟨s0, a1, s1, a2, . . . , sn−1, an, sn⟩
such that ∀i ∈ [1, n] ai(si−1) = si.

These observation traces can be split into multiple action
triplets as defined below.
Definition 5. Given an observation trace o =
⟨s0, a1, s1, a2, . . . , sn−1, an, sn⟩, an action triplet is a
3-tuple sub-sequence of o of the form ⟨si−1, ai, si⟩, where
i ∈ [1, n] and applying an action ai in state si−1 results in
state si, i.e., ai(si−1) = si. The states si−1 and si are called
pre- and post-states of action ai, respectively.

An action triplet ⟨si−1, ai, si⟩ is said to be optimal if there
does not exist an action sequence (of length ≥ 1) that takes
the agent from state si−1 to si with total action cost less than
that of action ai, where each action ai has unit cost.

2.4 Queries
We use queries to actively gain information about the func-
tionality of an agent to learn its updated model. We assume

that the agent can respond to a query using a simulator. The
availability of such agents with simulators is a common as-
sumption as most AI systems already use simulators for de-
sign, testing, and verification.

We use a notion of queries similar to Verma, Marpally,
and Srivastava (2021), to perform a dialog with an au-
tonomous agent. These queries use an agent to deter-
mine what happens if it executes a sequence of actions
in a given initial state. E.g., in the rovers domain, the
rover could be asked: what happens when the action sam-
ple rock(rover1 storage1 waypoint1) is executed in an ini-
tial state {(equipped rock analysis rover1), (battery half
rover1), (at rover1 waypoint1)}?

Formally, a query is a function that maps an agent to a
response, which we define as:
Definition 6. Given a set of predicates P , a set of actions
A, and a set of objects O, a query Q⟨s, π⟩ : A → N × S
is parameterized by a start state sI ∈ S and a plan π =
⟨a1, . . . , aN ⟩, where S is the state space over P and O, and
{a1, . . . , aN} is a subset of action space over A and O. It
maps agents to responses θ = ⟨nF , sF ⟩ such that nF is the
length of the longest prefix of π that A can successfully ex-
ecute and sF ∈ S is the result of that execution.

Responses to such queries can be used to gain use-
ful information about the model drift. E.g., consider an
agent with an internal model MA

drift as shown in Tab. 1.
If a query is posed asking what happens when the ac-
tion sample rock(rover1 storage1 waypoint1) is executed
in an initial state {(equipped rock analysis rover1), (bat-
tery half rover1), (at rover1 waypoint1)}, the agent would
respond ⟨0, {(equipped rock analysis rover1), (battery half
rover1), (at rover1 waypoint1)}⟩, representing that it was
not able to execute the plan, and the resulting state was
{(equipped rock analysis rover1), (battery half rover1), (at
rover1 waypoint1)} (same as the initial state in this case).
Note that this response is inconsistent with the model MA

init,
and it can help in identifying that the precondition of action
sample rock(?r ?s ?w) has changed.

3 Formal Framework
Our objective is to address the problem of differential assess-
ment of black-box AI agents whose functionality may have
changed from the last known model. Without loss of gen-
erality, we consider situations where the set of action head-
ers is same because the problem of differential assessment
with changing action headers can be reduced to that with
uniform action headers. This is because if the set of actions
has increased, new actions can be added with empty precon-
ditions and effects to MA

init, and if it has decreased, MA
init can

be reduced similarly. We assume that the predicate vocabu-
lary used in the two models is the same; extension to situ-
ations where the vocabulary changes can be used to model
open-world scenarios. However, that extension is beyond the
scope of this paper.

Suppose an agentA’s functionality was known as a model
MA

init = ⟨P,Ainit⟩, and we wish to assess its current func-
tionality as the model MA

drift = ⟨P,Adrift⟩. The drift in the
functionality of the agent can be measured by changes in the



Model Precondition Effect

MA
init (equipped rock analysis?r)

(battery half ?r)
(at ?r ?w)

→(rock sample taken?r)
(store full ?r ?s)
¬(battery half ?r)
(battery reserve ?r)

MA
drift (equipped rock analysis?r)

(battery full ?r)
(at ?r ?w)

→(rock sample taken ?r)
(store full ?r ?s)
¬(battery full ?r)
(battery half ?r)

Table 1: sample rock (?r ?s ?w) action of the agent A in
MA

init and a possible drifted model MA
drift.

preconditions and/or effects of all the actions in Ainit. The
extent of the drift between MA

init and MA
drift is represented as

the model difference ∆(MA
init,M

A
drift).

We formally define the problem of differential assessment
of an AI agent below.

Definition 7. Given an agent A with a functionality model
MA

init, and a set of observations O collected using its current
version of Adrift with unknown functionality MA

drift, the dif-
ferential model assessment problem ⟨MA

init,M
A
drift,O,A⟩ is

defined as the problem of inferringA in form of MA
drift using

the inputs MA
init, O, and A.

We wish to develop solutions to the problem of differ-
ential assessment of AI agents that are more efficient than
re-assessment from scratch.

3.1 Correctness of Assessed Model
We now discuss the properties that a model, which is a so-
lution to the differential model assessment problem, should
satisfy. A critical property of such models is that they should
be consistent with the observation traces. We formally define
consistency of a model w.r.t. an observation trace as follows:

Definition 8. Let o be an observation trace
⟨s0, a1, s1, a2, . . . , sn−1, an, sn⟩. A model M = ⟨P,A⟩
is consistent with the observation trace o iff
∀i ∈ {1, .., n} ∃a ∈ A and ai is a grounding of ac-
tion a s.t. si−1 |= pre(ai) ∧ ∀ l ∈ eff(ai) si |= l.

In addition to being consistent with observation traces, a
model should also be consistent with the queries that are
asked and the responses that are received while actively in-
ferring the model of the agent’s new functionality. We for-
mally define consistency of a model with respect to a query
and a response as:

Definition 9. Let M = ⟨P,A⟩ be a model; O be a set of ob-
jects; Q = ⟨sI , π = ⟨a1, . . . an⟩⟩ be a query defined using
P,A, and O, and let θ = ⟨nF , sF ⟩, (nF ≤ n) be a response
to Q. M is consistent with the query-response ⟨Q, θ⟩ iff
there exists an observation trace ⟨sI , a1, s1, . . . , anF

, snF
⟩

that M is consistent with and snF
̸|= pre(anF+1) where

pre(anF+1) is the precondition of anF+1 in M .

We now discuss our methodology for solving the problem
of differential assessment of AI systems.

4 Differential Assessment of AI Systems
Differential Assessment of AI Systems (Alg. 1) -- DAAISy
-- takes as input an agent A whose functionality has drifted,
the modelMA

init = ⟨P,A⟩ representing the previously known
functionality of A, a set of arbitrary observation traces O,
and a set of random states S ⊆ S. Alg. 1 returns a set of
updated models MA

drift, where each model MA
drift ∈ MA

drift
represents A’s updated functionality and is consistent with
all observation traces o ∈ O.

A major contribution of this work is to introduce an ap-
proach to make inferences about not just the expanded func-
tionality of an agent but also its reduced functionality using a
limited set of observation traces. Situations where the scope
of applicability of an action reduces, i.e., the agent can no
longer use an action a to reach state s′ from state s while
it could before (e.g., due to addition of a precondition lit-
eral), are particularly difficult to identify because observing
its behavior does not readily reveal what it cannot do in a
given state. Most observation based action-model learners,
even when given access to an incomplete model to start with,
fail to make inferences about reduced functionality. DAAISy
uses two principles to identify such a functionality reduc-
tion. First, it uses active querying so that the agent can be
made to reveal failure of reachability, and second, we show
that if the agent can be placed in optimal planning mode,
plan length differences can be used to infer a reduction in
functionality.

DAAISy performs two major functions; it first identifies a
salient set of pal-tuples whose modes were likely affected
(line 1 of Alg. 1), and then infers the mode of such af-
fected pal-tuples accurately through focused dialog with the
agent (line 2 onwards of Alg. 1). In Sec. 4.1, we present
our method for identifying a salient set of potentially af-
fected pal-tuples that contribute towards expansion in the
functionality of the agent through inference from available
arbitrary observations. We then discuss the problem of iden-
tification of pal-tuples that contribute towards reduction in
the functionality of the agent and argue that it cannot be per-
formed using successful executions in observations of sat-
isficing behavior. We show that pal-tuples corresponding to
reduced functionality can be identified if observations of op-
timal behavior of the agent are available (Sec. 4.1). Finally,
we present how we infer the nature of changes in all affected
pal-tuples through a query-based interaction with the agent
(Sec. 4.2) by building upon the Agent Interrogation Algo-
rithm (AIA) (Verma, Marpally, and Srivastava 2021). Iden-
tifying affected pal-tuples helps reduce the computational
cost of querying as opposed to the exhaustive querying strat-
egy used by AIA. We now discuss the two major functions
of Alg. 1 in detail.

4.1 Identifying Potentially Affected pal-tuples
We identify a reduced set of pal-tuples whose modes were
potentially affected during the model drift, denoted by Γδ ,
using a small set of available observation traces O. We draw
two kinds of inferences from these observation traces: in-
ferences about expanded functionality, and inferences about
reduced functionality. We discuss our method for inferring



Algorithm 1: Differential Assessment of AI Systems
Input:MA

init, O, A, S
Output:MA

drift

1: Γδ ← identify affected pals()
2: Mabs←set pal-tuples inMA

init corresponding to Γδ to ?⃝
3: MA

drift ← {Mabs}
4: for each γ in Γδ do
5: for each Mabs inMA

drift do
6: Mabs ←Mabs × {γ+, γ−, γ∅}
7: Msieved ← {}
8: if action corresponding to γ: γa in O then
9: spre ← states where γa applicable(O, γa)

10: Q← ⟨spre \ {γp ∪ ¬γp}, γa ⟩
11: θ ← ask query(A, Q)
12: Msieved ← sieve models(Mabs, Q, θ)
13: else
14: for each pair ⟨Mi,Mj⟩ inMabs do
15: Q← generate query(Mi,Mj , γ, S)
16: θ ← ask query(A, Q)
17: Msieved ← sieve models({Mi,Mj}, Q, θ)
18: end for
19: end if
20: Mabs ←Mabs\Msieved
21: end for
22: MA

drift ←Mabs

23: end for

Γδ for both types of changes in the functionality below.

Expanded functionality To infer expanded functionality
of the agent, we use the previously known model of the
agent’s functionality and identify its differences with the
possible behaviors of the agent that are consistent with O.
To identify the pal-tuples that directly contribute to an ex-
pansion in the agent’s functionality, we perform an analysis
similar to Stern and Juba (2017), but instead of bounding
the predicates that can appear in each action’s precondition
and effect, we bound the range of possible values that each
pa-tuple in MA

drift can take using Tab. 2. For any pa-tuple,
a direct comparison between its value in MA

init and possible
inferred values in MA

drift provides an indication of whether it
was affected.

To identify possible values for a pa-tuple ⟨p, a⟩, we first
collect a set of all the action-triplets from O that contain the
action a. For a given predicate p and state s, if s |= p then
the presence of predicate p is represented as pos, similarly,
if s |= ¬p then the presence of predicate p is represented as
neg. Using this representation, a tuple of predicate presence
∈ {(pos,pos), (pos,neg), (neg,pos), (neg,neg)} is determined
for the pa-tuple ⟨p, a⟩ for each action triplet ⟨s, a, s′⟩ ∈ O
by analyzing the presence of predicate p in the pre- and
post-states of the action triplets. Possible values of the pa-
tuple that are consistent with O are directly inferred from
the Tab. 2 using the inferred tuples of predicate presence.
E.g., for a pa-tuple, the values ⟨+,−⟩ and ⟨∅,−⟩ are consis-
tent with (pos, neg), whereas, only ⟨∅,+⟩ is consistent with

⟨mpre,meff⟩ (pos,pos) (pos,neg) (neg,pos) (neg,neg)

⟨+,−⟩ ✗ ✓ ✗ ✗
⟨+, ∅ ⟩ ✓ ✗ ✗ ✗

⟨−,+⟩ ✗ ✗ ✓ ✗
⟨−, ∅ ⟩ ✗ ✗ ✗ ✓

⟨ ∅ ,+⟩ ✓ ✗ ✓ ✗
⟨ ∅ ,−⟩ ✗ ✓ ✗ ✓
⟨ ∅ , ∅ ⟩ ✓ ✗ ✗ ✓

Table 2: Each row represents a possible value ⟨mpre,meff⟩
for a pa-tuple ⟨p, a⟩. Each column represents a possible tuple
representing presence of predicate p in the pre- and post-
states of an action triplet ⟨si, a, si+1⟩ (discussed in Sec.4.1).
The cells represent whether a value for pa-tuple is consistent
with an action triplet in observation traces.

(pos, pos) and (neg, pos) tuples of predicate presence that
are inferred from O.

Once all the possible values for each pa-tuple in MA
drift

are inferred, we identify pa-tuples whose previously known
value in MA

init is no longer possible due to inconsistency
with O. The pal-tuples corresponding to such pa-tuples are
added to the set of potentially affected pal-tuples Γδ . Our
method also infers the correct modes of a subset of pal-
tuples. E.g., consider a predicate p and two actions triplets in
O of the form ⟨s1, a, s′1⟩ and ⟨s2, a, s′2⟩ that satisfy s1 |= p
and s2 |= ¬p. Such an observation clearly indicates that p
is not in the precondition of action a, i.e., mode for ⟨p, a⟩
in the precondition is ∅. Such inferences of modes are used
to update the known functionality of the agent. We remove
such pal-tuples, whose modes are already inferred, from Γδ .

A shortcoming of direct inference from successful execu-
tions in available observation traces is that it cannot learn
any reduction in the functionality of the agent, as discussed
in the beginning of Sec. 4. We now discuss our method to
address this limitation and identify a larger set of potentially
affected pal-tuples.

Reduced functionality We conceptualize reduction in
functionality as an increase in the optimal cost of going from
one state to another. More precisely, reduction in functional-
ity represents situations where there exist states si, sj such
that the minimum cost of going from si to sj is higher in
MA

drift than in MA
init. In this paper, this cost refers to the num-

ber of steps between the pair of states as we consider unit
action costs. This notion encompasses situations with reduc-
tions in reachability as a special case. In practice, a reduction
in functionality may occur if the precondition of at least one
action in MA

drift has new pal-tuples, or the effect of at least
one of its actions has new pal-tuples that conflict with other
actions required for reaching certain states.

Our notion of reduced functionality captures all the vari-
ants of reduction in functionality. However, for clarity, we
illustrate an example that focuses on situations where pre-
condition of an action has increased. Consider the case from
Tab. 1 where A’s model gets updated from MA

init to MA
drift.



The action sample rock’s applicability in MA
drift has reduced

from that in MA
init as A can no longer sample rocks in sit-

uations where the battery is half charged but needs a fully
charged battery to be able to execute the action. In such sce-
narios, instead of relying on observation traces, our method
identifies traces containing indications of actions that were
affected either in their precondition or effect, discovers ad-
ditional salient pal-tuples that were potentially affected, and
adds them to the set of potentially affected pal-tuples Γδ .

To find pal-tuples corresponding to reduced functional-
ity of the agent, we place the agent in an optimal plan-
ning mode and assume limited availability of observation
traces O in the form of optimal unit-cost state-action tra-
jectories ⟨s0, a1, s1, a2, . . . , sn−1, an, sn⟩. We generate op-
timal plans using MA

init for all pairs of states in O. We hy-
pothesize that, if for a pair of states, the plan generated us-
ing MA

init is shorter than the plan observed in O, then some
functionality of the agent has reduced.

Our method performs comparative analysis of optimality
of the observation traces against the optimal solutions gen-
erated usingMA

init for same pairs of initial and final states. To
begin with, we extract all the continuous state sub-sequences
from O of the form ⟨s0, s1, . . . , sn⟩ denoted by Odrift as they
are all optimal. We then generate a set of planning problems
P using the initial and final states of trajectories in Odrift.
Then, we provide the problems in P to MA

init to get a set of
optimal trajectories Oinit. We select all the pairs of optimal
trajectories of the form ⟨oinit, odrift⟩ for further analysis such
that the length of oinit ∈ Oinit for a problem is shorter than
the length of odrift ∈ Odrift for the same problem. For all
such pairs of optimal trajectories, a subset of actions in each
oinit ∈ Oinit were likely affected due to the model drift. We
focus on identifying the first action in each oinit ∈ Oinit that
was definitely affected.

To identify the affected actions, we traverse each pair of
optimal trajectories ⟨oinit, odrift⟩ simultaneously starting from
the initial states. We add all the pal-tuples corresponding to
the first differing action in oinit to Γδ . We do this because
there are only two possible explanations for why the action
differs: (i) either the action in oinit was applicable in a state
using MA

init but has become inapplicable in the same state
in MA

drift, or (ii) it can no longer achieve the same effects in
MA

drift as MA
init. We also discover the first actions that are ap-

plicable in the same states in both the trajectories but result
in different states. The effect of such actions has certainly
changed in MA

drift. We add all the pal-tuples corresponding
to such actions to Γδ . In the next section, we describe our
approach to infer the correct modes of pal-tuples in Γδ .

4.2 Investigating Affected pal-tuples
This section explains how the correct modes of pal-tuples in
Γδ are inferred (line 2 onwards of Alg.1). Alg. 1 creates an
abstract model in which all the pal-tuples that are predicted
to have been affected are set to ?⃝ (line 2). It then iterates
over all pal-tuples with mode ?⃝ (line 4).

Removing inconsistent models Our method generates
candidate abstract models and then removes the abstract

models that are not consistent with the agent (lines 7-18 of
Alg. 1). For each pal-tuple γ ∈ Γ, the algorithm computes a
set of possible abstract modelsMabs by assigning the three
mode variants +,−, and ∅ to the current pal-tuple γ in model
Mabs (line 6). Only one model in Mabs corresponds to the
agent’s updated functionality.

If the action γa in the pal-tuple γ is present in the set
of action triplets generated using O, then the pre-state of
that action spre is used to create a state sI (lines 9-10). sI is
created by removing the literals corresponding to predicate
γp from spre. We then create a queryQ=⟨sI , ⟨γa⟩⟩ (line 10),
and pose it to the agent A (line 11). The three models are
then sieved based on the comparison of their responses to the
query Q with that of A’s response θ to Q (line 12). We use
the same mechanism as AIA for sieving the abstract models.

If the action corresponding to the current pal-tuple γ be-
ing considered is not present in any of the observed action
triplets, then for every pair of abstract models inMabs (line
14), we generate a query Q using a planning problem (line
15). We then pose the query Q to the agent (line 16) and
receive its response θ. We then sieve the abstract models
by asking them the same query and discarding the models
whose responses are not consistent with that of the agent
(line 17). The planning problem that is used to generate the
query and the method that checks for consistency of abstract
models’ responses with that of the agent are used from AIA.

Finally, all the models that are not consistent with the
agent’s updated functionality are removed from the possi-
ble set of modelsMabs. The remaining models are returned
by the algorithm. Empirically, we find that only one model
is always returned by the algorithm.

4.3 Correctness
We now show that the learned drifted model representing
the agent’s updated functionality is consistent as defined in
Def. 8 and Def. 9. The proof of the theorem is available in
the extended version of the paper (Nayyar, Verma, and Sri-
vastava 2022).
Theorem 1. Given a set of observation traces O generated
by the drifted agent Adrift, a set of queries Q posed to Adrift

by Alg. 1, and the modelMA
init representing the agent’s func-

tionality prior to the drift, each of the models M = ⟨P,A⟩
inMA

drift learned by Alg. 1 are consistent with respect to all
the observation traces o ∈ O and query-responses ⟨q, θ⟩ for
all the queries q ∈ Q.

There exists a finite set of observations that if collected
will allow Alg. 1 to achieve 100% correctness with any
amount of drift: this set corresponds to observations that al-
low line 1 of Alg. 1 to detect a change in the functionality.
This includes an action triplet in an observation trace hinting
at increased functionality, or a shorter plan using the previ-
ously known model hinting at reduced functionality. Thus,
models learned by DAAISy are guaranteed to be completely
correct irrespective of the amount of the drift if such a finite
set of observations is available. While using queries signifi-
cantly reduces the number of observations required, asymp-
totic guarantees subsume those of passive model learners
while ensuring convergence to the true model.



5 Empirical Evaluation
In this section, we evaluate our approach for assessing a
black-box agent to learn its model using information about
its previous model and available observations. We imple-
mented the algorithm for DAAISy in Python1 and tested it
on six planning benchmark domains from the International
Planning Competition (IPC) 2. We used the IPC domains as
the unknown drifted models and generated six initial do-
mains at random for each domain in our experiments.

To assess the performance of our approach with increas-
ing drift, we employed two methods for generating the initial
domains: (a) dropping the pal-tuples already present, and (b)
adding new pal-tuples. For each experiment, we used both
types of domain generation. We generated different initial
models by randomly changing modes of random pal-tuples
in the IPC domains. Thus, in all our experiments an IPC do-
main plays the role of ground truth M∗

drift and a randomized
model is used as MA

init.
We use a very small set of observation traces O (single

observation trace containing 10 action triplets) in all the ex-
periments for each domain. To generate this set, we gave
the agent a random problem instance from the IPC corre-
sponding to the domain used by the agent. The agent then
used Fast Downward (Helmert 2006) with LM-Cut heuris-
tic (Helmert and Domshlak 2009) to produce an optimal
solution for the given problem. The generated observation
trace is provided to DAAISy as input in addition to a ran-
domMA

init as discussed in Alg. 1. The exact same observation
trace is used in all experiments of the same domain, without
the knowledge of the drifted model of the agent, and irre-
spective of the amount of drift.

We measure the final accuracy of the learned model
MA

drift against the ground truth model M∗
drift using the mea-

sure of model difference ∆(MA
drift,M

∗
drift). We also mea-

sure the number of queries required to learn a model with
significantly high accuracy. We compare the efficiency of
DAAISy (our approach) with the Agent Interrogation Algo-
rithm (AIA) (Verma, Marpally, and Srivastava 2021) as it is
the most closely related querying-based system.

All of our experiments were executed on 5.0 GHz Intel
i9 CPUs with 64 GB RAM running Ubuntu 18.04. We now
discuss our results in detail below.

5.1 Results
We evaluated the performance of DAAISy along 2 direc-
tions; the number of queries it takes to learn the updated
model MA

drift with increasing amount of drift, and the cor-
rectness of the model MA

drift it learns compared to M∗
drift.

Efficiency in number of queries As seen in Fig. 2, the
computational cost of assessing each agent, measured in
terms of the number of queries used by DAAISy, increases
as the amount of drift in the model M∗

drift increases. This is
expected as the amount of drift is directly proportional to the

1Code available at https://github.com/AAIR-lab/DAAISy
2https://www.icaps-conference.org/competitions
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Figure 2: The number of queries used by DAAISy (our ap-
proach) and AIA (marked on y-axis), as well as accuracy
of model computed by DAAISy with increasing amount of
drift. Amount of drift equals the ratio of drifted pal-tuples
and the total number of pal-tuples in the domains (nPals).
The number of action triplets in the observation trace used
for each domain is 10.

number of pal-tuples affected in the domain. This increases
the number of pal-tuples that DAAISy identifies as affected
as well as the number of queries as a result. As demonstrated
in the plots, the standard deviation for number of queries re-
mains low even when we increase the amount of drift, show-
ing the stability of DAAISy.

Comparison with AIA Tab. 3 shows the average number
of queries that AIA took to achieve the same level of accu-
racy as our approach for 50% drifted models, and DAAISy
requires significantly fewer queries to reach the same levels
of accuracy compared to AIA. Fig. 2 also demonstrates that
DAAISy always takes fewer queries as compared to AIA to
reach reasonably high levels of accuracy.

This is because AIA does not use information about the
previously known model of the agent and thus ends up
querying for all possible pal-tuples. DAAISy, on the other
hand, predicts the set of pal-tuples that might have changed
based on the observations collected from the agent and thus
requires significantly fewer queries.

Correctness of learned model DAAISy computes mod-
els with at least 50% accuracy in all six domains even when
they have completely drifted from their initial model, i.e.,
∆(MA

drift,M
∗
drift) = nPals. It attains nearly accurate models

for Gripper and Blocksworld for upto 40% drift. Even in
scenarios where the agent’s model drift is more than 50%,
DAAISy achieves at least 70% accuracy in five domains.
Note that DAAISy is guaranteed to find the correct mode
for an identified affected pal-tuple. The reason for less than
100% accuracy when using DAAISy is that it does not pre-
dict a pal-tuple to be affected unless it encounters an obser-



Domain #Pals AIA DAAISy

Gripper 20 15.0 6.5
Miconic 36 32.0 7.7
Satellite 50 34.0 9.0
Blocksworld 52 40.0 11.4
Termes 134 115.0 27.0
Rovers 402 316.0 61.0

Table 3: The average number of queries taken by AIA to
achieve the same level of accuracy as DAAISy (our ap-
proach) for 50% drifted models.

vation trace conflicting with MA
init. Thus, the learned model

MA
drift, even though consistent with all the observation traces,

may end up being inaccurate when compared to M∗
drift.

Discussion AIA always ends up learning completely accu-
rate models, but as noted above, this is because AIA queries
exhaustively for all the pal-tuples in the model. There is a
clear trade-off between the number of queries that DAAISy
takes to learn the model as compared to AIA and the correct-
ness of the learned model. As evident from the results, if the
model has not drifted much, DAAISy can serve as a better
approach to efficiently learn the updated functionality of the
agent with less overhead as compared to AIA. Deciding the
amount of drift after which it would make sense to switch
to querying the model from scratch is a useful analysis not
addressed in this paper.

6 Related Work
White-box model drift Bryce, Benton, and Boldt (2016)
address the problem of learning the updated mental model
of a user using particle filtering given prior knowledge about
the user’s mental model. However, they assume that the en-
tity being modeled can tell the learning system about flaws
in the learned model if needed. Eiter et al. (2005, 2010) pro-
pose a framework for updating action laws depicted in the
form of graphs representing the state space. They assume
that changes can only happen in effects, and that knowledge
about the state space and what effects might change is avail-
able beforehand. Our work does not make such assumptions
to learn the correct model of the agent’s functionalities.

Action model learning The problem of learning agent
models from observations of its behavior is an active area
of research (Gil 1994; Yang, Wu, and Jiang 2007; Cress-
well, McCluskey, and West 2009; Zhuo and Kambhampati
2013; Arora et al. 2018; Aineto, Celorrio, and Onaindia
2019). Recent work addresses active querying to learn the
action model of an agent (Rodrigues et al. 2011; Verma,
Marpally, and Srivastava 2021). However, these methods do
not address the problem of reducing the computational cost
of differential model assessment, which is crucial in non-
stationary settings.

Online action model learning approaches learn the model
of an agent while incorporating new observations of the
agent behavior (Čertický 2014; Lamanna et al. 2021a,b).

Unlike our approach, they do not handle cases where (i) the
new observations are not consistent with the older ones due
to changes in the agent’s behavior; and/or (ii) there is reduc-
tion in functionality of the agent. Lindsay (2021) solve the
problem of learning all static predicates in a domain. They
start with a correct partial model that captures the dynamic
part of the model accurately and generate negative examples
by assuming access to all possible positive examples. Our
method is different in that it does not make such assump-
tions and leverages a small set of available observations to
infer about increased and reduced functionality of an agent’s
model.

Model reconciliation Model reconciliation litera-
ture (Chakraborti et al. 2017; Sreedharan et al. 2019;
Sreedharan, Chakraborti, and Kambhampati 2021) deals
with inferring the differences between the user and the
agent models and removing them using explanations. These
methods consider white-box known models whereas our
approach works with black-box models of the agent.

7 Conclusions and Future Work
We presented a novel method for differential assessment of
black-box AI systems to learn models of true functional-
ity of agents that have drifted from their previously known
functionality. Our approach provides guarantees of correct-
ness w.r.t. observations. Our evaluation demonstrates that
our system, DAAISy, efficiently learns a highly accurate
model of agent’s functionality issuing a significantly lower
number of queries as opposed to relearning from scratch. In
the future, we plan to extend the framework to more general
classes, stochastic settings, and models. Analyzing and pre-
dicting switching points from selective querying in DAAISy
to relearning from scratch without compromising the cor-
rectness of the learned models is also a promising direction
for future work.
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Bäckström, C.; and Jonsson, P. 2013. Bridging the Gap Be-
tween Refinement and Heuristics in Abstraction. In Proc.
IJCAI.
Bryce, D.; Benton, J.; and Boldt, M. W. 2016. Maintaining
Evolving Domain Models. In Proc. IJCAI.
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