
Abstract
Computing goal-directed behavior is essential to
designing efficient AI systems. Due to the compu-
tational complexity of planning, current approaches
rely primarily upon hand-coded symbolic action
models and hand-coded heuristic function gener-
ators for efficiency. Learned heuristics for such
problems have been of limited utility as they are
difficult to apply to problems with objects and ob-
ject quantities that are significantly different from
those in the training data. This paper develops a
new approach for learning generalized heuristics in
the absence of symbolic action models using deep
neural networks that utilize an input abstraction
function but are agnostic to object names and quan-
tities. It uses an abstract state representation to fa-
cilitate data-efficient, generalizable learning. Em-
pirical evaluation on a range of benchmark domains
shows that in contrast to prior approaches, gener-
alized heuristics computed by this method can be
transferred easily to problems with different objects
and with object quantities much larger than those in
the training data.

1 Introduction
Given the computational complexity of automated planning
[Bylander, 1991; Bylander, 1994], search-based planning al-
gorithms often employ heuristics for efficiency [Hoffmann
and Nebel, 2001; Bonet and Geffner, 2001; Helmert and
Domshlak, 2009]. Designing good domain-wide heuristics as
well as good domain-independent heuristic-generation princi-
ples such as “delete-relaxation” [Hoffmann and Nebel, 2001]
often requires a careful study of the representation language
or the structure of the underlying problems; the resulting
heuristic generating functions (HGFs) are limited to planning
problems where the agent’s action models can be expressed
using the same representation language.

This paper addresses the problem of learning domain-wide,
generalizable heuristics without relying upon symbolic action
models. A key requirement of the problem is that the learned
heuristic be generalizable in the sense that it can effectively
transfer to problems with different object names and/or ob-
ject quantities. Recently, techniques that use deep learning

to learn domain-wide [Groshev et al., 2018] and domain-
independent [Shen et al., 2020] heuristics have demonstrated
that it is possible to learn heuristics for planning.

The current landscape of learning heuristics using deep
learning has two major limitations (see Sec. 6 for details).
Firstly, most existing algorithms require either handwritten,
symbolic action models or domain-specific network archi-
tectures. Approaches that utilize Graph Neural Networks
(GNNs) (e.g., Shen et al. [2020]) require action models to be
expressed in a representational language such as the Planning
Domain Definition Language (PDDL) [Fox and Long, 2003].
Groshev et al. [2018] need domain-specific network archi-
tectures and input representations. Second, most approaches
require large amounts of training data as input, which in turn
requires good off-the-shelf planners, undermining the utility
of learning heuristics in order to solve planning problems.

Recently, we introduced Generalized Heuristic Networks
(GHNs) [Karia and Srivastava, 2021] as a technique for
learning heuristics without requiring symbolic action mod-
els. GHNs utilize abstraction with deep learning to learn
heuristic generating functions (HGFs). Our results showed
that domain-wide heuristics synthesized using GHNs can ef-
ficiently generalize to problems which contain object quan-
tities much larger than that in the training set. Furthermore,
we developed leapfrogging as a few-shot meta learning tech-
nique that enables learning techniques such as GHNs to learn
heuristics even in the absence of training data.

Our prior work used canonical abstractions (see Karia and
Srivastava [2021]), which is a hand-coded abstraction tech-
nique. In this paper, we expand the framework of GHNs to
allow for a flexible input interface that can encompass dif-
ferent abstraction functions including those that are learned
automatically without requiring any human input. We com-
pare obtained results with our prior work and show that GHNs
can learn efficient, generalizable heuristics even when using
several different abstraction functions.

The rest of this paper is organized as follows. Sec. 2
presents the necessary formal framework. Sec. 3 defines
the learning problem and describes our approach for learn-
ing followed by a description of using the learned heuristic
for planning (Sec. 4). Sec. 5 discusses obtained results. Sec.
6 summarizes related work followed by conclusions (Sec. 7).
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2 Formal Framework
A planning problem is a tuple Γ = 〈O,P,A, sinit, g, δ〉 where
O is a set of objects, P is a set of predicates and A is a set
of unit-cost actions. Object types can be expressed as unary
predicates. The state space S for a planning problem as de-
fined above is the set of all possible assignments of truth
values to predicates in P instantiated with objects from O.
sinit ∈ S is the initial state and g is a goal condition expressed
as a conjunctive first-order logic formula over the instanti-
ated atoms. δ : S × A → S determines the transition func-
tion. Different planning problems from an application do-
main (e.g. Logistics) share the same P and A components
and these components together define a planning domain, D.
While a number of representations have been developed to ex-
press domain-wide, “lifted” actions [Fikes and Nilsson, 1971;
Fox and Long, 2003; Sanner, 2010; Srivastava et al., 2014];
such actions could also be implemented using arbitrary gen-
erative models or simulators. We assume w.l.o.g., that an
action a ∈ A can be parameterized as a(o1, . . . , on) where
o1, . . . , on ∈ O; we do not place any representational require-
ments on the specifications of A. This makes our algorithms
independent of action model representations.

A solution to Γ is a plan π = a0, . . . , an−1 which is a
sequence of actions inducing a trajectory τ = s0, . . . , sn such
that s0 ≡ sinit, δ(si, ai) = si+1 and sn |= g. The plan length
|π|si from a state si is the number of states starting from si+1

in τ .
A planning heuristic is a function h : S → R+

0 ∪ {∞},
where h(s) estimates the cost of reaching the goal state from
a state s. A heuristic is admissible if it never over-estimates
the cost to reach the goal for any state. We define a heuristic
generating function (HGF) as a function that maps a planning
problem to a heuristic. HGFs can be domain-independent
(e.g. delete-relaxation) or domain-specific. Typically, search
algorithms maintain a priority queue of promising paths and
use the heuristic function to compute the keys in this queue
[Russell and Norvig, 2010]. For example, the priority key
used in A* is f(n) = g(n) + h(n) where g(n) is the length
of the path to a search node n and h(n) is the heuristic value
of the state represented in n; the node expanded is the one
with the minimum value of f(n) [Hart et al., 1968].

We define an abstraction function, α : s → s, as a func-
tion that takes as input a concrete state s and returns an ab-
stract representation of the state s. The abstraction function
is many-to-one in that several concrete states can map to the
same abstract state. We do not place any representational re-
quirements on the formulation allowing our approach to be
used with several different abstraction functions.

3 The Generalized Heuristic Learning
Problem

We define the problem of learning generalized heuristics from
training data as follows:

Definition 3.1. (Learning Generalized Heuristics) Given a
dataset of trajectories of the form Ξ = {〈π, τ, g,O〉} for
a domain D = 〈P,A〉 where O is a set of objects, g is a
goal formula, τ = s0, . . . , sn, π = a0, . . . , an−1 contain

states and parameterized actions from a planning problem
〈D,O, sinit, g, δ〉 such that s0 ≡ sinit, δ(si, ai) = si+1 and
sn |= g, learn a domain-wide generalized heuristic function
hD s.t. hD(s, g′, O′) estimates, for any planning problem
Γ′ = 〈D,O′, s′init, g

′, δ′〉 and any state s in the state space of
Γ′, the distance from s to a state s′ s.t. s′ |= g′.

In the self-training variant of the problem, we replace the
trajectory dataset with a generator for the domain that can cre-
ate problem instances with a given range of objects. Our over-
all approach for model-agnostic planning involves solving
these learning problems by training a Generalized Heuristic
Network (GHN) (Sec. 3) and using the learned GHN for plan-
ning (Sec. 4). This gives us a domain-independent method
for learning domain-specific heuristic generating functions
(HGFs) using either training data or problem generators. In
the standard planning paradigm, GHNs would play a role
similar to that of HGFs, which are currently hand-coded. Our
algorithms for learning GHNs are model-agnostic in that they
use only the action names and parameters, the true atoms of a
state, the goal formula, and the objects in the problem, which
could be provided by a blackbox simulator.

Vanilla learning for generalized heuristics To gather the
training data T , we first generate a set of problem instances
and use an off-the-shelf solver to compute a plan for each
problem to form a library of trajectories Ξ = {〈π, τ, g,O〉}.
Next, for each trajectory ξ ∈ Ξ, we form tuples (s, a, |π|s)
that are then converted to (s, s, a, |π|s) using an abstraction
function and added to T . As a part of the data generation
process, we maintain a set of features Φ, actions A, and the
maximum number of action parameters Amax that occurred
in the training data. Together, they define the input-output
dimensions of the network. Once T has been generated, we
use standard optimization techniques to minimize the loss.

Self-training generalized heuristics using leapfrogging
The training data generation method discussed above as-
sumes access to a planner that can already solve training prob-
lems from the domain. In the absence of such a planner,
we utilize leapfrogging [Groshev et al., 2018] with a prob-
lem generator to interleave the learning of successively more
general GHNs with the computation of training data using
the GHNs being learned. Initially, problem instances with
very few objects Γ′0 are solved to generate training data T0.
These instances are small enough that blind search (without
any heuristics) can be used to find solutions. We then use T0
to learn a GHN leap0. Next, leap0 is used to solve larger plan-
ning problems, thereby creating training data T1 for the next
iteration, and so on. We use the problem generator to gener-
ate problem instances in batches Γ′0, . . . ,Γ

′
i where problems

in Γ′i have more objects than those in Γ′i−1 and generate Ti by
using leapi−1 to solve Γ′0, . . . ,Γ

′
i. We then learn a new GHN

leapi using Ti. Since GHNs learn knowledge independent of
the number of objects, this iterative approach allows GHNs
to effectively scale even in the absence of training datasets.

3.1 Network Architecture
We propose a general network architecture that is illustrated
in Fig. 1. We use two networks, (a) the Action Network that
predicts the action and its parameters, and (b) the Plan Length



Figure 1: The network architecture used in this paper. Activations for NNA, (NN1, . . . ,NNAmax ) and NNlen are SoftMax, Sigmoid and ReLU
respectively. Each Dense-32 block contains two ReLU activated, fully-connected hidden layers with 32 tensors each. ΨA and Ψlen are
functions that convert the abstract state into vectors for the action and plan length networks respectively (described in Sec. 3.1).

Network that predicts the plan length. We found this archi-
tecture to be the most promising in our experiments.

The output of the action network is a vector NNA of length
|A| representing the action probability, and a set of vectors
NN1, ...,NNAmax whose length is determined by the abstrac-
tion function. The output of the plan length network is a
real-valued number NNlen that represents the predicted plan
length. The action network allows for policy-based search
since it allows for selecting an action whereas the plan length
network can be used as a heuristic function.

The input to the neural network is an abstract state s which
is converted to a vector representation by functions ΨA(s)
and Ψlen(s) for the action and plan length network respec-
tively. We assume that these functions are hand-coded based
on the abstraction used. These functions along with the ab-
straction function as defined in Sec. 2 allow for using different
abstraction functions as the input to the GHN, i.e., we are not
restricted to any particular form of abstraction.

4 Planning Using Generalized Heuristic
Networks

Searching using the learned heuristic network GHNs can
be used in standard graph-based search algorithms like A* or
GBFS using a blackbox simulator for action application and
retrieving the atoms of a state. Given a node in the search
tree, we use the output of the plan length network, NNlen to
determine which node to expand next.

Using NNlen to compute the key in the priority queue in
a search algorithm like A* or GBFS only changes the order
in which the algorithm expands nodes. The actual (or real)
path cost, g(n) is used to determine if a visited state has been
reached by a cheaper path under standard operation of the
algorithm. The following result follows from the properties
of such algorithms when used with a closed list [Russell and
Norvig, 2010].

Theorem 4.1. Planning with A* or GBFS using NNlen is
sound and complete on finite state spaces.

Hybrid heuristic function Sometimes, using the pre-
dicted path length, NNlen as the heuristic value in Greedy Best
First Search (GBFS) can lead to poor performance since the
predicted value is often approximate. To mitigate this, we
propose a way to combine outputs of both the networks to
form a hybrid heuristic that helps bias the search algorithm to
expand promising states in the state space while adhering to
the policy predicted by the network. We refer the reader to
our prior work for more details.

5 Empirical Evaluation
We implemented GHN learning and tested the learned GHNs
with various search algorithms (referred to as GHN/algorithm
in the remainder of this section). Our implementation1 uses
Pyperplan, a popular Python-based platform for implement-
ing and evaluating planning algorithms [Alkhazraji et al.,
2020].

Summary of observations Our results indicate that even
though they do not use action models, (a) GHNs are com-
petitive when compared against hand-coded HGFs, (b) in the
absence of externally generated training data, leapfrogging
is an effective self-training technique, (c) GHNs successfully
transfer to problems with more objects than those in the train-
ing data, and (d) GHNs remain competitive even when the un-
derlying abstraction function changes. We discuss the con-
figuration and methods used for evaluating these hypotheses
below. An extensive analysis of our results including addi-
tional problem domains is available in the appendix [Karia
and Srivastava, 2020].

5.1 Empiricial Setup
We ran our experiments on Agave compute instances pro-
vided by Arizona State University. Each compute node is
configured with an Intel Xeon E5-2680 v4 CPU composed of
28 cores and 128GB of RAM.

1Code available at https://github.com/AAIR-lab/GHN

https://github.com/AAIR-lab/GHN


Domain Training Problem Parameters Test Problem Parameters
Blocksworld blocks ∈ [2, 8] blocks ∈ [2, 48]

Childsnack children, trays ∈ [1, 3],
gluten ratio=0, sandwich ratio = 1

children, trays ∈ [1, 12],
gluten ratio=0, sandwich ratio = 1

Visitall grid dimension ∈ [2, 4], holes ∈ [0, 25]%,
goals ∈ [80, 100]%

grid dimension ∈ [2, 12], holes ∈ [0, 25]%,
goals ∈ [80, 100]%

Spanner spanners ∈ [1, 7], nuts ∈ [1, 7]
locations ∈ [1, 7]

spanners ∈ [1, 12], nuts ∈ [1, 12]
locations ∈ [1, 12]

Miconic floors ∈ [2, 8], cars ∈ [1, 8] locations ∈ [2, 16], cars ∈ [1, 24]
Goldminer rows ∈ [2, 4], columns ∈ [2, 4] rows ∈ [2, 8], columns ∈ [2, 8]

Logistics cities ∈ [1, 3], city size=2,
airplanes ∈ [1, 3], packages ∈ [1, 4]

cities ∈ [1, 4], city size=2,
airplanes ∈ [1, 5], packages ∈ [1, 8]

Gripper balls ∈ [1, 8] balls ∈ [1, 32]

Table 1: Problem generator parameters used in the generation of training and test problems.

Figure 2: Performance of our approach (blue, solid) using canonical abstraction, the closest baseline implemented in an interpreted language
(red, dashes) and the IPC-winning planner FD (gray, dotted). Y-axis represents the percentage of problems solved among 500 problems.

Baselines We could not find any existing domain-
independent systems capable of learning HGFs without us-
ing symbolic action models. Due to the absence of suit-

able baselines, we compared our approach with planners
and algorithms that utilize significant hand-coded, domain-
specific information in the form of action models with hand-



Figure 3: Performance of leapfrogging (using canonical abstraction) as a method for self-training. X-axis represents the bins for each domain.
Each bin is composed of 100 test problems.

coded, domain-independent HGFs. Since such planners re-
quire domain models, we conducted an extensive evaluation
using benchmarks from the International Planning Compe-
tition (IPC) [Long and Fox, 2003] that are used to evaluate
such planners. While IPC winners use optimized C/C++ im-
plementations, our approach is implemented in Python—an
interpreted language that would result in slower performance
than compiled languages for identical algorithms. Despite
these differences in inputs and the slower performance pro-
file of the underlying language, we found that our implemen-
tation was competitive with IPC planners.

We used 6 action-model based baselines: hand-coded
HGFs {hff, lmcut} combined with search algorithms {A*,
GBFS}; FF, a well-known competition winner implemented
in C [Hoffmann and Nebel, 2001]; and FD LAMA, the
lama-first [Richter and Westphal, 2010] configuration of Fast
Downward [Helmert, 2006], also a state-of-art competition
planner written in C++. hff and lmcut are implementations of
the hFF [Hoffmann and Nebel, 2001] and lmcut [Helmert and
Domshlak, 2009] heuristics in Pyperplan. We denote these
baselines as hff/A*, hff/GBFS, lmcut/A*, lmcut/GBFS, FF,
and FD respectively. The first four baselines are implemented
on the same platform (Pyperplan) as our algorithm (GHN/G-
BFS) and thus are particularly well-suited for comparative as-

sessment of the strengths and weaknesses of our approach.
Abstraction functions To showcase the flexibility of the

input interface of GHNs, we implemented two different
abstraction functions for converting concrete states to ab-
stract states. We used canonical abstractions from our prior
work which is a hand-coded abstraction technique. We also
present results with qualitative features [Bonet et al., 2019;
Francès et al., 2021] where the abstraction function is learned
automatically without requiring any human input. Please see
our prior work for information about the network interface for
canonical abstractions. For qualititative features, we repre-
sent Ψlen(s) as φ(s) and ΨA(s) as [[φ(s)]] which converts each
feature to its boolean counterpart (see Bonet et al.; Francès et
al. [2019; 2021] for a formal definition). We did not utilize
the action network for this abstraction function.

Test domains and problems Our evaluation consists of 13
benchmark domains from the IPC: Blocksworld, Childsnack,
Ferry♣, Goldminer, Grid♣, Gripper, Grippers♣, Logistics,
Miconic, Sokoban♣, Sokoban2♣, Spanner, and Visitall. We
generated problems randomly from problem generators used
by organizers of the IPC [Fawcett et al., 2011]. Problem sizes
were scaled by increasing the number of objects along mul-
tiple dimensions in the generator parameters. This does not
necessarily increase the problem difficulty but does increase



the size of the state space. Due to space constraints, analysis
for domains labeled ♣ is included in the appendix. Table 1
shows the range of generator parameters that were used for
generating the training and test problems for our experiments.

Setup for self-training GHNs using leapfrogging We cat-
egorized sets of problems with increasing sizes into “bins” to
showcase how leapfrogging can learn heuristics with just a
problem generator in the absence of input training data. The
bins were indexed as B0, B1, and B2 with the number of
objects monotonically increasing across several dimensions.
B+ denotes problems containing more objects than all prob-
lems in the training data. The ith leapfrog iteration, GHN-
leapi, was trained on problem sizes ranging in B0, . . . , Bi

using GHN-leapi−1 to generate the training plans. Training
data for GHN-leap0 was generated using FF, however, even
blind search could be used.

Training configuration We used the common network ar-
chitecture paradigm illustrated in Fig. 1 to create and train
all the domain-specific GHNs. Please refer to the appendix
for the network hyperparameters used for training. The to-
tal training problems generated for GHN-leap0, GHN-leap1,
GHN-leap2 consisted of 100, 200, and 400 problems.

For our setup of vanilla GHN learning, GHN-vanilla used
the same training problems as GHN-leap2 but was trained
directly by using FF to solve the problems and generate the
training data. Each GHN used canonical abstractions (see
Karia and Srivastava [2021]) for the input interface unless
stated otherwise.

Test configuration To demonstrate iterative improve-
ments in learned GHNs using leapfrogging, we used a test
set of 400 problems (100 per bin) which are generated non-
uniformly according to the ranges representing each bin. For
example, in the Visitall domain we divided the problems
based on the size n of the square grid; B0: n = 2, B1: n = 3,
B2: n = 4, B+: n ∈ {5, . . . , 12}. Bin setups for other do-
mains can be found in the appendix.

The final leapfrog iteration, GHN-leap2 and the baselines
were run on a different test set of 500 uniformly generated
problems using the parameters described in Table 1.

Evaluation metrics We focus on satisficing planning and
evaluate our approach as well as the baselines on the total
number of problems solved, the time taken, and the number
of nodes expanded during computation.

5.2 Results and Analysis
All the baselines and GHN/GBFS (GHN-leap2) were allo-
cated a time limit of 600 seconds per problem. There were no
restrictions on memory usage. Since no single baseline out-
performs the others in every domain, we compare GHN/G-
BFS against the baseline configurations that outperformed
their counterparts in a majority of the domains that we con-
sidered. For Pyperplan baselines this was hff/GBFS; between
FD and FF, FD outperformed FF in most of the domains.
Complete results for all baseline configurations are available
in the appendix.

Fig. 2 and Fig. 3 summarize the key results for GHNs
trained using canonical abstractions as the abstraction func-
tion. GHN/GBFS solves more problems than hff/GBFS(FD)
in 6(1) of 13 domains, equal problems in 6(9) domains, and

fewer problems in 1(3). When the problems solved were the
same, GHN/GBFS outperformed hff/GBFS(FD) in 2(4), and
underperformed on 4(5) of the domains in terms of the nodes
expanded. Our analysis of the length of computed plans using
GHNs indicates that GHNs are competitive with both hff/G-
BFS and FD and often produce cheaper plans than the base-
lines. Representatives of all of these categories are included
in the analysis below. Our main observations are as follows:

(a) GHNs are competitive when compared against hand-
coded HGFs It is clear from Fig. 2 that despite not hav-
ing access to symbolic action models and hand-coded HGFs,
GHNs are comparable against approaches using action mod-
els and hand-coded HGFs. Compared to Pyperplan baselines,
GHNs often solve more problems and usually expend lesser
effort when the number of solved problems are similar. The
number of nodes expanded by GHNs is often orders of mag-
nitude lower than the number expanded by hff/GBFS. This
difference is small enough in smaller problems that the aver-
age time to solve a problem is slightly higher for GHNs due to
overheads like loading the network. However, the advantages
of GHNs become apparent in larger problems where GHNs
can solve more problems, often requiring less time per prob-
lem despite using neural network inference to compute the
heuristic value.

GHNs are also competitive when compared with FD, of-
ten expanding significantly fewer nodes and solving the same
number of problems. However, despite expanding fewer
nodes, GHNs are unable to compete with compiled, opti-
mized competition planners in terms of the time taken to solve
a problem. A notable exception is the Spanner domain, where
FD was unable to solve many problems in B+ and required
more time to solve the problems than GHNs. The Spanner do-
main was specifically designed to not work well with “delete-
relaxation” heuristics like those used in FD. This indicates
that GHNs are able to learn knowledge of the problem struc-
ture that is orthogonal to existing heuristic generating con-
cepts used in generating the training data.

(b) In the absence of externally generated training data,
leapfrogging is an effective self-training technique Fig. 3
shows that leapfrogging is data-efficient and can learn heuris-
tics that are comparable to, and sometimes outperform, GHN-
vanilla which used externally generated training data. We an-
alyze leapfrogging by considering the Visitall domain where
GHN-vanilla, whose training data was generated using FF, is
able to solve all problems in B+. GHN-leap0, which was
the first iteration of leapfrogging was unable to solve any
problems in B+. Additionally, the performance was increas-
ingly worse than GHN-vanilla on bins B1 and B2 indicating
that the generalization capability of this iteration was limited.
As the leapfrog iterations increased, the performance of the
leapfrog GHNs steadily increased and the final leapfrog iter-
ation, GHN-leap2 was able to solve all problems in B+, ex-
pending similar effort as GHN-vanilla in terms of the nodes
expanded. Similar trends can be observed in other domains.
This showcases leapfrogging as an effective few-shot learning
technique for generating training data in a handsfree fashion.

(c) GHNs successfully transfer to problems with more ob-
jects than those in the training data As can be seen in Fig.
3, even though GHNs do not have access to action models,



Figure 4: Performance of GHNs using abstraction features that were learned automatically (green, solid, left), GHNs using canonical ab-
straction (blue, solid, right), the closest baseline implemented in an interpreted language (red, dashes) and the IPC-winning planner FD (gray,
dotted). Y-axis represents the percentage of problems solved among 500 problems (same set as that of Fig. 2).

GHN-leap2 (GHN/GBFS) and GHN-vanilla easily transfer to
problems in B+ which consist of a greater number of objects
than those in the training data. This highlights the advantages
of abstraction techniques that can be used to learn HGFs that
easily transfer to problems with more objects, and can be used
even in the absence of action models.

GHNs appear to perform best in domains whose problems
have structured solutions. We now discuss results on se-
lect domains where GHNs did not outperform the baselines.
GHNs could not generalize well on the Logistics domain and
were outperformed by every baseline. We investigated the
reasons for the poor performance and found that one of the
reasons was the nature of training data produced. The plans
for Logistics are quite diverse leading to a large network loss
and consequently poor search performance. One reason for
this diversity could be due to the tighter coupling of objects
in Logistics as is mentioned in [Rivlin et al., 2020].

(d) GHNs remain competitive even when the underlying
abstraction function changes. We implemented the ab-
straction function learned by the D2L framework [Francès et
al., 2021] and used it as the input interface to GHNs. Due to
the difficulty in integrating the pipeline, we ran on a limited
set of 4 domains. We used the same training sets, test sets and
the same leapfrogging process as the GHNs that used canon-
ical abstraction. The results (Fig. 4) show that even when us-
ing abstraction features that are automatically learned without
any human-input, GHNs are able to learn heuristics that can
outperform the baselines. These results show that the input
interface of GHNs is flexible while retaining the ability to
learn generalizable heuristics.

GHNs using automatically learned abstractions are able to
outperform GHNs using canonical abstractions in domains
like Gripper. We investigated the reasons and found that the
abstraction features learned for Gripper captured the informa-
tion of the total number of balls held by the robot. This was

not accurately captured in canonical abstractions since they
were not expressed by unary predicates.

On domains like Spanner, the learned abstraction per-
formed worse than that of canonical abstraction (Fig. 2). We
hypothesize that this could be due to the set of features
learned being insufficient to describe spanner effectively. For
example, one feature learned was one that counts the number
of objects that are not held. This feature counts both the to-
tal spanners and nuts not held. We manually added another
feature, spanners-carried(man), that counts the number of
spanners carried by the agent. This change enables the GHN
to beat both FD and Pyperplan baselines and performance is
similar to GHNs that used hand-coded abstraction functions.
However, it is interesting that even when the abstraction func-
tion learned is not ideal, GHNs are still able to outperform
Pyperplan baselines.

Our results show that in a similar search setting, once
the problem state spaces grow large enough, and despite us-
ing lesser information (no action models), GHNs outperform
Pyperplan-based implementations, and in some cases, com-
petition planners in the time required to solve a problem.
While the computational costs of heuristic estimates using
hand-coded HGFs for these problems remains fixed, the com-
putational cost of GHNs has plenty of room for improve-
ments. One such improvement in our implementation would
be to eliminate the data structure conversion overhead that
was added as a result of using FastDownward’s PDDL parser
instead of Pyperplan’s for our internal state representation.
Other optimizations such as reducing network inference costs
will naturally reduce the time required to solve a problem and
will bridge the gap with optimized competition planners.

6 Related Work
Our work builds upon the broad literature on learning for
planning [Celorrio et al., 2012; Celorrio et al., 2019]. Our ap-



proach relates the most closely with other methods for learn-
ing for planning that utilize deep learning.

Value iteration networks [Tamar et al., 2016] embed the
standard value iteration computation within the network.
While this method demonstrates successful learning, it en-
codes the input as an image, limiting its effectiveness in solv-
ing problems whose states do not have a natural representa-
tion as images. Groshev et al. [2018] learn generalized reac-
tive policies and heuristics using a convolutional neural net-
work (CNN). One drawback of their approach is that their
network architecture and input feature vector representation
are domain-dependent and require a domain expert to pro-
vide them. Feature vectors of GHNs on the other hand depend
only on the abstraction function.

ASNets [Toyer et al., 2018] learn generalized policies by
a network composed of alternating action and proposition
layers. ASNets have a fixed receptive field that can po-
tentially limit generalizability. STRIPS-HGNs [Shen et al.,
2020] learn domain-independent HGFs by approximating the
shortest path over the delete-relaxed hypergraph of a STRIPS
[Fikes and Nilsson, 1971] problem. To do this, they define
a Hypergraph Network Block, utilizing message passing to
increase the receptive field of the network. The generaliz-
ability of their network depends on the number of message
passing steps which can be a limiting factor as problem sizes
scale up to much larger than the training data. GBFS-GNNs
[Rivlin et al., 2020] learn policies using network blocks sim-
ilar to STRIPS-HGNs but do not use the delete-relaxed ver-
sion of the problem. Since they do not learn heuristics, they
use rollout during search. A common limitation of ASNets,
STRIPS-HGNs, and GBFS-GNNs is that they require access
to symbolic action models expressed in a language such as
PDDL [Fox and Long, 2003]. While GNN-based approaches
restrict states to be expressed in a relational manner, GHNs
do not possess such a limitation and can be used with many
different abstractions.

Curriculum learning [Bengio et al., 2009] shows that ef-
fective learning is possible by organizing the training data in
the form of a schedule. However, unlike leapfrogging, this
method assumes that training data is available. Bootstrap
learning [Arfaee et al., 2010] incrementally learns a heuristic
for solving a class of problems by using the heuristic learned
in the current iteration to generate training data for the next
iteration. However, the learned heuristic cannot generalize to
problem instances with a different number of objects.

Techniques for generalized planning [Winner and Veloso,
2007; Srivastava et al., 2008; Bonet et al., 2009; Srivastava et
al., 2011; Bonet et al., 2019; Francès et al., 2021] primarily
focus on computing algorithm-like plans and policies that can
be used to solve a broad class of problems. These approaches
do not generate heuristics, instead, the plan itself is computed
for an arbitrary number of objects. A key limitation of these
approaches compared to GHNs is that they do not provide
general guarantees of completeness.

7 Conclusions
Our approach for synthesizing domain-independent HGFs
differs from these prior efforts along multiple dimensions.

Instead of relying on specialized network blocks, we use a
rich input representation that is model-agnostic i.e. inde-
pendent of action models. Using abstraction, we abstract
away problem-dependent information like object names but
retain the ability to capture the state structure, allowing the
learned domain-wide heuristic to transfer to problems with a
greater number of objects. Our empirical evaluation shows
that GHNs are competitive and efficiently transfer to prob-
lems with object counts larger than those in the training data.
We showed that GHNs can learn competitive heuristics even
when the abstraction function changes and even if the ab-
straction is not ideal. Finally, in the absence of training data,
we introduce leapfrogging as a few-shot learning technique
that can be used to incrementally generate new training data
and gradually improve the quality of the learned heuristic in
a handsfree fashion.
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Thiébaux, and Lexing Xie. Action schema networks: Gen-
eralised policies with deep learning. In AAAI, 2018.

[Winner and Veloso, 2007] Elly Zoe Winner and Manuela
Veloso. Loopdistill: Learning domain-specific planners
from example plans. In ICAPS workshop, 2007.

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf

	Introduction
	Formal Framework
	The Generalized Heuristic Learning Problem
	Network Architecture

	Planning Using Generalized Heuristic Networks
	Empirical Evaluation
	Empiricial Setup
	Results and Analysis

	Related Work
	Conclusions



