
Conditional Abstraction Trees for Sample-Efficient Reinforcement Learning

Mehdi Dadvar1 Rashmeet Kaur Nayyar1 Siddharth Srivastava1

1Arizona State University, Tempe, Arizona, USA

Abstract

In many real-world problems, the learning agent
needs to learn a problem’s abstractions and solu-
tion simultaneously. However, most such abstrac-
tions need to be designed and refined by hand
for different problems and domains of applica-
tion. This paper presents a novel top-down ap-
proach for constructing state abstractions while
carrying out reinforcement learning (RL). Starting
with state variables and a simulator, it presents a
novel domain-independent approach for dynami-
cally computing an abstraction based on the disper-
sion of temporal difference errors in abstract states
as the agent continues acting and learning. Ex-
tensive empirical evaluation on multiple domains
and problems shows that this approach automati-
cally learns semantically rich abstractions that are
finely-tuned to the problem, yield strong sample
efficiency, and result in the RL agent significantly
outperforming existing approaches.

1 INTRODUCTION

It is well known that good abstract representations can play
a vital role in improving the scalability and efficiency of
reinforcement learning (RL) [Sutton and Barto, 2018, Yu,
2018, Konidaris, 2019]. However, it is not very clear how
good abstract representations could be efficiently learned
without extensive hand-coding. Several approaches [Kocsis
and Szepesvári, 2006, Anand et al., 2015, Jiang et al., 2014]
have investigated methods for aggregating concrete states
based on similarities in value functions but this approach
can be difficult to scale as the number of concrete states or
the transition graph grows.

This paper presents a novel approach for top-down construc-
tion and refinement of abstractions for sample-efficient rein-
forcement learning in factored, non-image-based domains.

Such problems include several practical applications (e.g.,
a taxi-management service), where the state is naturally
expressed in terms of values of different variables. Translat-
ing such states into images would require extensive human
effort. Our approach starts with a default, auto-generated
coarse abstraction that collapses the domain of each state
variable (e.g., the location of each taxi and each passenger
in the classic taxi world) to one or two abstract values. This
eliminates the need to consider concrete states individually,
although this initial abstraction is likely to be too coarse for
most practical problems. The overall algorithm proceeds
by interleaving the process of refining this abstraction with
learning and evaluation of policies, and results in a new form
of conditional abstraction that is automatically generated
and changes based on the current state to aid learning.

Extensive empirical evaluation on a range of well-
established discrete and continuous challenging problems
drawn from state-of-the-art RL research [Icarte et al., 2018,
Abel et al., 2020, Jin et al., 2022, Barreto et al., 2020] show
that this approach for learning conditional abstractions
enables vanilla Q-learning to outperform state-of-the-art
baselines by significantly improving its sample efficiency.
In the process, it also learns well-defined abstract repre-
sentations and draws out similarities across the state space.
Furthermore, we found that this approach requires signifi-
cantly less hyperparameter tuning in comparison to many
of the baselines.

Our approach is related to research on variable resolution
abstractions for reinforcement learning and abstraction re-
finement in model checking [Moore, 1991, Clarke et al.,
2000, Dams and Grumberg, 2018]. However, unlike exist-
ing streams of work, we develop a process that automatically
generates semantically rich conditional abstractions, where
the final abstraction on the set of values of a variable can
depend on the specific values of other variables. For in-
stance, consider a taxi-world problem (Fig. 1). Ideally, when
the taxi needs to pick up the orange passenger, a good ab-
straction would preserve precision in regions closer to the
passenger and blur out states where the taxi has a similar

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

policy (Fig. 1 (middle)). However, when the passenger is in
the taxi the abstraction should change to increase precision
around the destination to the extent required to express the
taxi’s policy for dropping off the passenger (Fig. 1 (right)).
In other words, the abstraction on a variable’s values (such
as the taxi’s location) needs to be contingent on the values
of the other variables (such as the passenger’s presence in
the taxi).

To our knowledge, this constitutes the first model-free ap-
proach for learning such conditional abstractions on-the-fly
while carrying out abstract RL. Our key contributions are
(a) formalization and algorithms for building well-defined
conditional abstraction trees (CATs) that help compute and
represent such abstractions, as well as (b) an algorithm for
interleaving RL with CAT learning. While CAT learning
could be utilized in numerous RL paradigms, this paper
focuses on developing and investigating it for non-image-
based domains with discrete actions.

This process also addresses a key challenge in planning
with abstractions: it is well known that abstractions of
Markovian transition systems such as MDPs are often non-
Markovian Singh et al. [1994], Bai et al. [2016], Srivastava
et al. [2016]. Intuitively, this is related to the fact that differ-
ent concrete states represented by an abstract state will have
different optimal actions and Q functions. More precisely,
the next abstract state depends in general on the agent’s
current concrete state, whose distribution can depend on
the entire action history rather than on only the current
abstract state and the current action. To address these prob-
lems, CAT+RL carries out RL in the abstract state space but
when it observes a high dispersion of temporal difference
(TD) errors during Q-learning CAT+RL selectively refines
the abstraction, thereby reducing the extent of relevant non-
Markov transitions in the abstract state space. In the worst
case, this process can lead to a full concretization for dis-
crete state spaces but substantial information is carried over
across refinements and the approach turns out to be highly
sample efficient in practice. We leave further analysis of
this aspect for future work and focus on the core CAT+RL
algorithm in this paper.

The presented approach for Conditional Abstraction Trees
for RL (CAT+RL) can be thought of as a dynamic abstrac-
tion scheme: it provides adjustable degrees of compression
[Abel et al., 2016] where the aggressiveness of abstraction
can be controlled by tuning the definition of variation in the
dispersion of TD errors.

2 RELATED WORK

Abstraction Refinement Several authors have considered
variable resolution abstractions and abstraction refinement
for RL (e.g., [Moore, 1991, Uther and Veloso, 1998, White-
son, 2010]). Later work by Seipp and Helmert [2018] de-

Figure 1: Consider a classic taxi world with two passengers and a
building as the drop-off location where the green area is impassable
(left). Meaningful conditional abstractions can be constructed, for
example, for situations where both passengers are at their pickup
locations (middle), or one passenger has already been picked up
(right).

veloped the concept for classical planning. However, it has
remained unclear how to formalize and develop this prin-
ciple in a manner that provides scalability and sample effi-
ciency in stochastic settings. For instance, Uther and Veloso
[1998] employ decision-tree techniques to categorize con-
crete transition histories rather than creating abstract states.
As a consequence, this approach requires a large number
of concrete samples for finding a good split using multiple
sort and search operations on concrete transitions. Whiteson
[2010] used the variation in state values as a split metric for
tile-based representations of abstract states. This approach
requires a deterministic model of the world and needs to
keep track of the Q-values of all possible refinements of an
abstract state. Additionally, the non-exclusivity of sub-tiles
considered during refinement leads to additional computa-
tion for sub-tiles that may not be used.

The approach presented in this paper addresses these long-
standing problems and develops a well-defined formaliza-
tion that enables dynamic, variable-resolution abstractions
for RL. It achieves this by developing the CAT data struc-
ture to keep track of heterogeneous abstractions and uses
the CAT to define a purely abstract RL process that runs
in concert with dispersion-guided abstraction refinement
for stochastic settings. CATs enable CAT+RL to identify
abstract states with the greatest TD dispersion and provide
the useful property that all children of an abstract state in
the CAT are mutually exclusive and exhaustive. This makes
CAT+RL’s RL process more efficient and scalable.

Offline State Abstraction Most early studies focus on
action-specific [Dietterich, 1999] and option-specific [Jons-
son and Barto, 2000] state abstraction. Further, Givan et al.
[2003] introduced the notion of state equivalence to possibly
reduce the state space size by which two states can be ag-
gregated into one abstract state if applying a mutual action
leads to equivalence states with similar rewards. Ravindran
and Barto [2004] relaxed this definition of state equivalence
by allowing the actions to be different if there is a valid
mapping between them. Offline state abstraction has further
been studied for generalization and transfer in RL [Karia
and Srivastava, 2022] and planning [Srivastava et al., 2012,

Karia et al., 2022].

Graph-Theoretic State Abstraction Mannor et al. [2004]
developed a graph-theoretic state abstraction approach that
utilizes the topological similarities of a state transition graph
(STG) to aggregate states in an online manner. Mannor’s
definition of state abstraction follows Givan’s notion of
equivalence states except they update the partial STG itera-
tively to find the abstractions. Another comparable method
by Chiu and Soo [2010] carries out spectral graph analysis
on STG to decompose the graph into multiple sub-graphs.
However, most graph-theoretic analyses on STG, such as
computing the eigenvectors in Chiu and Soo’s work, can
become infeasible for problems with large state spaces.

Monte-Carlo Tree Search (MCTS) MCTS approaches
offer viable and tractable algorithms for large state-space
Markovian decision problems [Kocsis and Szepesvári,
2006]. Jiang et al. [2014] demonstrated that proper abstrac-
tion effectively enhances the performance of MCTS algo-
rithms. However, their clustering-based state abstraction
approach is limited to the states enumerated by their algo-
rithm within the partially expanded tree, which makes it
ineffectual when limited samples are available to the plan-
ning/learning agent. Anand et al. [2015] advanced Jiang’s
method by comprehensively aggregating states and state-
action pairs aiming to uncover more symmetries in the do-
main. Owing to their novel state-action pair abstraction
extending Givan and Ravindran’s notions of abstractions,
Anand et al.’s method results in higher quality policies com-
pared to other approaches based on MCTS. However, their
bottom-up abstraction scheme makes their method compu-
tationally vulnerable to problems with significantly larger
state space size. Moreover, their proposed state abstraction
method is limited to the explored states since it applies to
the partially expanded tree.

3 BACKGROUND

Markov decision Processes (MDPs) [Bellman, 1957, Put-
erman, 2014] are defined as a tuple ⟨S,A, T ,R, γ⟩, where
S and A denote the state and action spaces respectively.
Generally, a concrete state s ∈ S can be defined as a set of
n state variables such that V = {vi|i = 1, . . . , n}. In this
paper, we focus on problems where the state is defined using
a set of variables. T : S × A × S → [0, 1] is a transition
probability function,R : S ×A → R is a reward function,
and γ is the discount factor. A policy π is a solution to an
MDP, denoted as π : S → A. We consider the RL settings,
where an agent needs to interact with an environment that
can be modeled as an MDP with unknown T . The objective
is to learn an optimal policy that maximizes the long-term
cumulative reward for this MDP.

When the size of the space state increases significantly, most
RL algorithms fail to solve the given MDP due to the curse

of dimensionality. Abstraction is a dimension reduction
mechanism by which the original problem representation
maps to a new reduced problem representation [Giunchiglia
and Walsh, 1992]. We adopt the general definition of state
abstraction proposed by Li et al. [2006].

Definition 1 Let M = ⟨S,A, T ,R, γ⟩ be a ground MDP
from which an abstract MDP M̄ = ⟨S̄,A, T̄ , R̄, γ⟩ can be
derived via a state abstraction function ϕ : S → S̄, where
the abstract state mapped to concrete state s is denoted as
ϕ(s) ∈ S̄ and ϕ−1(s̄) is the set of concrete states associ-
ated to s̄ ∈ S̄. Further, a weighting function over concrete
states is denoted as w(s) with s ∈ S s.t. for each s̄ ∈ S̄,∑

s∈ϕ−1(s̄) w(s) = 1, where w(s) ∈ [0, 1]. Accordingly,
the abstract transition probability function T̄ and reward
function R̄ are defined as follows:

R̄(s̄, a) =
∑

s∈ϕ−1(s̄)

w(s)R(s, a),

T̄ (s̄, a, s̄′) =
∑

s∈ϕ−1(s̄)

∑
s′∈ϕ−1(s̄)

w(s)T (s, a, s′).

In this work, we consider a uniform weighting function,
i.e., w(s) = 1 for all concrete states. When it comes to
the decision-making in an abstract MDP, all concrete states
associated with an abstract state s̄ ∈ S̄ are perceived iden-
tically. Accordingly, the relation between abstract policy
π̄ : S̄ → A and the concrete policy π : S → A can
be defined as π(s) = π̄(ϕ(s)) for all s ∈ S. Further, the
value functions for an abstract MDP are denoted as V π̄(S̄),
V ∗(S̄), Qπ̄(S̄, a), and Q∗(S̄, a).

4 OUR APPROACH

4.1 OVERVIEW

Starting with state variables and a simulator, we develop
a domain-independent approach for dynamically comput-
ing an abstraction based on the dispersion of TD errors in
abstract states. The idea of dynamic abstraction is to learn
a problem’s solution and abstractions simultaneously. We
propose a top-down abstraction refinement mechanism by
which the learning agent effectively refines an initial coarse
abstraction through acting and learning. We illustrate this
mechanism with an example.

Example 1 Consider a 4x4 Wumpus world consisting of
a pit at (2,2) and a goal at (4,4). In this domain, every
movement has a reward -1. Reaching the goal results in
a positive reward of 10 and the agents receive a negative
reward -10 for falling into the pit. The goal and the pit
are the terminal states of the domain. The agent’s actions
include moving to non-diagonal adjacent cells at each time
step s.t. A = {up, down, left, right}.

L

U

R

DD

S1

Coarse
Abstrac�on

S2

S3 S4

Refined
Abstrac�on

U

UU

R

RR

L

L
L

D D

1

2

3

4

1 2 3 4

Figure 2: An example of dynamic heterogeneous abstraction
refinement for a Wumpus world.

Considering Example 1, Fig. 2 (left) shows a potential ini-
tial coarse abstraction in which the domain of each state
variable (here x and y coordinates) is split into two ab-
stract values and S̄1 and S̄4 contain the pitfall and goal
location respectively. As a result, when learning, the agent
will observe a high standard deviation on the TD errors of
(S̄1, right), (S̄1, down), (S̄4, right), and (S̄4, down) be-
cause of the presence of terminal states with large negative
or positive rewards. Guided by this dispersion of TD errors,
the initial coarse abstraction should be refined to resolve
the observed variations. Fig. 2 (right) exemplifies an effec-
tive abstraction refinement for Example 1 demonstrated as
a heatmap of TD errors. Notice that the desired abstrac-
tion is a heterogeneous abstraction on the domains of state
variable values where the abstraction on a variable depends
on the value of the other variables: let x and y domains
be {1, 2, 3, 4}. When y > 2, the domain of x (originally
{1, 2, 3, 4}) is abstracted into sets {1, 2}, {3}, and {4}, but
when y ≤ 2, the domain of x is abstracted into sets {1},
{2}, and {3, 4}.

4.2 CONDITIONAL ABSTRACTION TREES

Recall that the value of a state variable vi inherently falls
within a known domain. Partitioning these domains is one
possible way to construct state abstractions. The abstraction
of one state variable is conditioned on a specific range of
any other state variables. Accordingly, we need to maintain
and update such conditional abstractions via structures that
we call Conditional Abstraction Trees (CATs).

Fig. 3 (right) exemplifies a partially expanded CAT for the
problem in Example 1. The tree’s root node contains the
global ranges (the first range refers to the horizontal loca-
tion x and the second range refers to the vertical location
y) for both of these state variables representing an initial
coarse abstraction (in white). The annotations visualize how
this initial abstraction can be further refined w.r.t. a state
variable resulting in new conditional abstractions (repetitive
annotations are not shown for the sake of readability). The
refinement procedure of the Wumpus world associated with
each level of the tree is also displayed in Fig. 3 (left).

Given the set of state variables V , we define an abstract state

refi
ne on x

refine on y

refine on y

re
fin

e o
n x

poten�al abstrac�ons
for further refinement

Θinit

Θ1 Θ2

Θ3 Θ4 Θ5 Θ6

Θ7 Θ8

[1,4]
[1,4]

[1,2]
[1,4]

[3,4]
[1,4]

[1,2]
[1,2]

[1,2]
[3,4]

[3,4]
[1,2]

[3,4]
[3,4]

[3,4)
[3,4]

(3,4]
[3,4]

1

2
3
4

1 2 3 4

Figure 3: This figure illustrates a Conditional Abstraction Tree
(CAT) for Example 1. Ranges written inside the nodes represent
θi ∈ Θ. Each node represents a conditional abstraction.

using the set of partitions, one for each variable vi, where
each partition θi is an interval of the form [li, hi]. Thus,
the coarse abstract state for Example 1 could be defined
by θ1 = [1, 4] and θ2 = [1, 2]. An abstraction is defined
as Θ = {θi|i = 1, . . . , n}, where n = |V|. In fact, CAT
is a hierarchical abstraction tree starting with an initial ab-
straction Θinit that represents the original range for each
state variable vi ∈ s s.t. Θinit = {θi|i = 1, . . . , n and li =
vmin
i and hi = vmax

i }, where vmin
i and vmax

i denote the
lower and upper bounds on the range of vi respectively. In
Example 1, there are two state variables so the initial ab-
straction is Θinit = {[1, 4], [1, 4]}. The initial abstraction
also induces the starting coarse abstraction since the range
for each state variable suggests that all values for all state
variables are compressed into one abstract state.

This initial coarse abstraction induced by the initial abstrac-
tion Θinit needs to be further refined so that the learning
agent can improve its performance through a more fined
representation. Let Θ be an abstraction. We define a refine-
ment function δ(Θ, i, f) that splits the range of partition
θi ∈ Θ of state variable vi into f equal ranges resulting in
f new abstractions. Now, we formally define the refinement
function δ(Θ, i, f).

Definition 2 Let Θ = ⟨θ1, . . . , θn⟩ be an abstract state for
a domain with variables v1, . . . , vn. We define the f-split re-
finement of Θ w.r.t. variable i as δ(Θ, i, f) = {Θ1, . . . ,Θf}
where all Θj’s are the same as Θ on every θk for k ̸= i.
θi = [l, h] is partitioned with f new boundaries at least
∥θ∥/f values apart: l, l1, l2, . . . , lf−1, h where lx = l +
x× ⌊[(h− l)/f]⌋.

Next, we need to define the relation between two given
abstractions in the form of Θ in order to determine if one is
obtained by refining the other.

Algorithm 1: State Abstraction
FindAbstract (CAT ξ, Θstart, s):

1: if (∀vi ∈ s)(vi ∈ θstarti) then
2: if Θstart ∈ Lξ then
3: return Θstart

4: else
5: children← Children(Θstart)
6: for Θchild ∈ children do
7: if (∀vi ∈ s)(vi ∈ θchildi) then
8: FindAbstract (ξ, Θchild, s)

Definition 3 Let Ψ be the set containing all possible ab-
stractions. Given Θa,Θb ∈ Ψ, we say Θb is obtained by
refining Θa, denoted as Θb ▷Θa, iff (∀i ∈ [1, n])(θbi ⊆ θai).
Moreover, Θb ▷ Θa ≡ Θa ◁ Θb. Although this definition
determines an ancestral relation between Θa and Θb, we
need to know the factor f by which Θa has been refined
to determine if Θb is the direct result of refining Θa. We
say Θb is obtained directly by refining Θa, denoted as
Θb ⊵ Θa, iff ∃ i (θbi ⊂ θai), (∀k ̸=i ∈ [1, n])(θbk = θak)
and |θbi | × f = |θai |.

With these definitions in hand, we can now formally define
CAT as a tree to construct and maintain the hierarchy of
conditional partitions. A CAT, denoted as ξ, represents a tree
structure specifying the hierarchy of conditional abstractions
in the form of Θ.

Definition 4 A conditional abstraction tree (CAT) is de-
fined as ξ = {N,E}, where N is the set of nodes and E
is the set of edges. Each node in N corresponds to an ab-
straction Θ, s.t. N = {Θm|m ∈ [1, nξ]}, where nξ is the
cardinality of CAT and the root node of the tree is the initial
abstraction Θinit. Every parent Θp and child Θc nodes in
ξ are connected via an edge ecp s.t. ecp =⇒ Θc ⊵ Θp.
Lξ = {Θm|(∀k ∈ [1, nξ])(Θk ⋭ Θm)} is defined as the
set of leaf nodes representing the set of abstract states.

Given a CAT ξ and a concrete state s, the mapping ϕ(s) :
S → S̄ can be done via a level-order tree search start-
ing from Θinit. The corresponding abstract state s̄ is the
node Θfound iff ∀i ∈ [1, n] vi ∈ θfound

i (inclusion condi-
tion) and Θfound is a leaf node, i.e., Θfound ∈ Lξ. Alg. 1
computes the ϕ : S → S̄ mapping for a given concrete
state s under CAT ξ, starting from CAT’s root node Θinit.
FindAbstract(ξ,Θstart, s) starts the level-order search
from Θstart and it always finds the corresponding abstract
state when Θstart = Θinit. This algorithm checks the inclu-
sion condition first for Θstart (Line 1 in Alg. 1). If ΘStart

is not a leaf node, the algorithm checks the inclusion con-
dition for children of Θstart (Line 7 in Alg. 1) and if a
child satisfies the condition, FindAbstract gets invoked
recursively (Line 8 in Alg. 1).

Any state abstraction under a given CAT ξ induces an ab-
stract representation of the underlying concrete MDP M .
Thus, an MDP M can have two abstract representations M̄a

and M̄b under two CATs ξa and ξb respectively. We define a
relational operation to decide which abstract MDP is finer.

Definition 5 Given MDPs M̄a and M̄b abstracted under
ξa and ξb, we say M̄a is strictly finer than M̄b, denoted as
M̄a ≻ M̄b, iff ∀Θa ∈ Lξa ∃Θb ∈ Lξb (Θa ⊵ Θb). We
also say M̄a is finer than M̄b, denoted as M̄a ⪰ M̄a, iff
∀Θa ∈ Lξa ∃Θb ∈ Lξb (Θa ⊵ Θb ∨Θa = Θb).

4.3 LEARNING DYNAMIC ABSTRACTIONS

Definition 4 formalizes the abstraction tree by which the
mapping ϕ(s) : S → S̄ can be performed using a level-
order search (see Alg. 1), while Definition 2 explains how
a node of a CAT can be refined w.r.t. a state variable vi
through the refinement function δ(Θ, i, f). However, our
objective is to interleave RL training with phases of abstrac-
tion refinement leading to an enhanced abstract policy π̄ for
a given concrete MDP M . To this end, CAT+RL consists of
three phases explained below:

Learning phase. Starting with an initial coarse abstraction,
the RL agent interacts with the environment and learns
an abstract policy π̄. The learning phase of CAT+RL is
a standard RL routine where the agent learns the abstract
policy π̄ through ϕ(s) : S → S̄ mapping under a CAT. We
employ a vanilla Q-leaning algorithm on the abstract state
space as the underlying RL algorithm of CAT+RL.

Abstraction evaluation phase. Since the initial coarse ab-
straction is likely to be too coarse, CAT+RL should re-
fine the CAT ξ to construct a more effective abstraction.
To identify the abstract states that need further refinement,
CAT+RL starts the abstraction evaluation phase to collect
some samples of TD errors throughout the Q-learning pro-
cess over abstract states. Thus, in the abstraction evaluation
phase, the RL agent continues interacting with the envi-
ronment via epsilon-greedy variant of the fixed abstract
policy π̄ and CAT+RL evaluates the existing abstraction
under the CAT ξ by logging the dispersion of TD errors
over abstract states. Let β(M, ξ, π̄, neval) denote the evalua-
tion function which runs the underlying RL routine for neval

episodes with the fixed stochastic abstract policy for a given
MDP M and CAT ξ. Throughout the abstraction evaluation
phase, the observed dispersion of TD errors is defined as
Γ = {dm|m ∈ [1, nvisited]}, where nvisited is the number
of visited abstract states during the abstraction evaluation
phase and dm denotes the set of logged Qπ̄(s̄, a) values for
a visited abstract state s̄. When the abstraction evaluation
phase is done, β returns the dispersion of TD errors in the
form of Γ.

Refinement phase. Once the abstraction evaluation phase is
terminated, the dispersion of TD errors Γ will be avail-
able from which the refinement phase of CAT+RL can

be initiated. In Γ there might be multiple logs of TD er-
rors for the same pair of abstract state and action (s̄, π̄(a)).
Since the policy was fixed until the agent changes an ab-
stract state throughout the abstraction evaluation phase, a
high variation of TD errors of the same pair of (s̄, π̄(a))
indicates that the abstract state s̄ is unstable, i.e., repre-
sents significantly disparate concrete states, and requires
further refinement. Therefore, the first step of the refinement
phase is to find the top k unstable states of the CAT ξ. Let
UnstableStates(Γ) denote a function that finds the set
of unstable states in the form of Θ based on Γ. For each vis-
ited abstract state in Γ, UnstableStates calculates the
maximum normalized standard deviation of TD errors over
all actions. Then, UnstableStates uses k-means clus-
tering technique to find and return the top k unstable states
among all of the visited abstract states in Γ. Each unstable
state can be refined by splitting into f new states w.r.t a state
variable i following the definition of f-split refinement in
Definition. 2. However, the question is: what state variable
should CAT+RL blame for the observed instability in an
unstable state? As discussed, CAT+RL learns an abstract
policy π̄ over abstract states so it maintains and updates the
Q-table for abstract states to find the optimal abstract policy.
However, for problems with discrete state space, CAT+RL
can also maintain and update the Q-table for concrete states.
This concrete Q-table can be further used for various ap-
plications such as finding contributing state variables for
an unstable state. Let UnstableVar(Γ,Θ) denote a func-
tion that refines an unstable state, in the form of Θ, w.r.t a
state variable that results in the most consistent new abstract
states. Basically, splitting an abstract state over a state vari-
able results in f new abstract states. Now, for each newly
created abstract state, CAT+RL calculates the normalized
standard deviation of the TD errors. Intuitively, if all con-
crete states under any of the newly created abstract states
have TD errors with small standard deviation for the same
action a, then splitting over that state variable would be
the near-optimal refinement and can potentially decrease/re-
solve the instability in the abstract state. UnstableVar
repeats this process for all state variables and chooses the
one that minimizes the normalized standard deviation of the
underlying TD errors on the concrete level. In Sec. D of the
supplementary document, we also presented an alternative
approach for UnstableVar that aggressively refines an
abstract state w.r.t all state variables.

CAT+RL repeats the learning, evaluation, and refinement
phases sequentially until the RL agent learns an abstract
policy π̄ and a CAT ξ that successfully and effectively learns
the solution and abstractions to the MDP M .

4.4 CAT+RL ALGORITHM

Alg. 2 illustrates the procedure by which the agent learns
an MDP’s solution and abstractions simultaneously through
learning, evaluation, and refinement phases explained in

Algorithm 2: Learning Dynamic Abstractions
Input: M,f
Output: M̄, ξ, π̄

1: initialize Θinit, ξ, and Q̄
2: for episode = 1, nepi do
3: s← reset()
4: for steps in episode do
5: s̄← FindAbstract(ξ,Θinit, s)
6: a← π̄(s̄)
7: s′, r̄, done← step(extend(a))
8: s̄′ ← FindAbstract(ξ,Θinit, s

′)
9: π̄ ← trainπ̄(s̄, s̄′, a, r̄)

10: s, s̄← s′, s̄′

11: if M̄ needs refinement then
12: Γ← evaluate(M, ξ, π̄, neval)
13: unstable← UnstableStates(Γ)
14: for each Θ in unstable do
15: i← UnstableVar(Γ,Θ)
16: nodes← refine(Θ, i, f)
17: ξ ← UpdateTree(ξ,Θ, nodes)
18: return M̄, ξ, π̄

Sec. 4.3. First, the initial coarse abstraction needs to be
automatically constructed through initializing Θinit, based
on the known ranges for each state variable vi. Then, a CAT
ξ is constructed for Θinit with only the root node (Line 1 in
Alg. 2).

The initial ξ induces an abstract MDP M̄ for the given MDP
M . Then, the learning phase of CAT+RL starts by employ-
ing the Q-learning routine (Lines 2 to 10 in Alg. 2). In this
phase, CAT+RL implements a vanilla Q-learning over ab-
stract states and updates Q-values based on samples in the
form of ⟨s̄, a, s̄′, r̄⟩. r̄ is computed according to the formula-
tion presented in Definition 1, and s̄ and s̄′ are returned by
the function that we illustrated in Alg. 1. Once the samples
are transformed into the form explained above, CAT+RL
updates the abstract Q-table in Line 9 of Alg. 2.

Induced by the computed state abstraction, extended actions
(taking a concrete action repeatedly until the agent reaches a
new abstract state, blockage, or a terminal concrete state) are
applied to the environment instead of the concrete actions
(Line 7 in Alg. 2). CAT+RL checks the refinement condition
(Line 11 in Alg. 2) at the end of each learning episode to
initiate an abstraction evaluation phase.

We set CAT+RL to check the recent success rate of the RL
agent every ncheck episodes where the refinement condition
evaluates to true if the success rate is below some threshold
tsucc. The choice of the refinement condition introduces a
trade-off. On one hand, we want to obtain a near-optimal
abstraction that enables the agent to learn the solution ef-
fectively. On the other hand, the abstract policy π̄ should be
trained enough to be used in the abstraction evaluation phase

for refinement purposes. When the refinement condition is
true, the algorithm runs the evaluation function β for neval

episodes (Line 12 in Alg. 2). Subsequently, the refinement
phase (Lines 13 to 17 in Alg. 2) starts by finding the top k
unstable states (Line 13 in Alg. 2). Next, CAT+RL finds the
contributing state variable for each unstable state (Line 15
in Alg. 2) and refines it w.r.t. to the contributing state vari-
able (Line 16 in Alg. 2). After refining each unstable state,
CAT+RL updates the CAT ξ by adding the new abstract
states to the abstraction tree (Line 17 in Alg. 2).

5 EMPIRICAL EVALUATION

To assess the performance of CAT+RL, we implemented
the method in Python 1 and evaluated it in five domains. We
executed all deep learning experiments for our baselines on
two GeForce RTX 3070 GPUs with 8 GB memory running
Ubuntu 18.04 and all of our other experiments on 5.0 GHz
Intel i9 CPUs with 64 GB RAM running Ubuntu 18.04. We
investigated the following questions:

(1) Does CAT+RL improve the sample efficiency of
vanilla Q-learning beyond state-of-the-art baselines
without any expert knowledge?

(2) Does CAT+RL increase the scalability of its underlying
RL algorithm beyond existing methods?

(3) Does CAT+RL learns symmetric structures of tasks?

Selection of test problems For the selection of test prob-
lems, we did an extensive literature study to ensure that the
chosen problems are drawn from contemporary research
and are challenging for state-of-the-art methods. As a re-
sult, we conducted empirical analyses on three domains
with discrete states: Office World adapted from Icarte et al.
[2018], Wumpus World derived from Russell and Norvig
[2020], Taxi World introduced by Dietterich [2000] and
adapted from the OpenAI Gym environment Taxi-v3 2, and
two domains with continuous states: Water World based
on Karpathy [2015], Icarte et al. [2018] and Mountain Car
from Brockman et al. [2016]. We adopted significantly large
instances of these domains (except for Mountain Car which
has a fixed problem size) compared to the ones used in
the previous work in non-imaged-based RL. Besides, all
of these domains are stochastic problems with varying di-
mensionality (from 2 to 14). Aside from the main empirical
evaluations that are reported in Sec. 5.1, we conducted addi-
tional scalability studies (see the supplementary document)
on the Office World domain, as a case study, to ensure that
the selected test problems challenge the scalability of the
state-of-the-art baselines and CAT+RL. The details regard-
ing the domains and task descriptions are included in the
supplementary document.

1https://github.com/AAIR-lab/CAT-RL.git
2https://www.gymlibrary.ml/environments/toy_text/taxi/

Selection of baselines For the comparative study, we se-
lected the following baselines: (1) Option-critic Bacon et al.
[2017], (2) JIRP Xu et al. [2020], (3) tabular Q-learning
Watkins and Dayan [1992], (4) DQN Mnih et al. [2013],
(5) A2C Mnih et al. [2016], and (5) PPO Schulman et al.
[2017]. Option-critic is a Hierarchical RL (HRL) approach
that discovers options autonomously while learning option
policies simultaneously. JIRP, a symbolic state-of-the-art RL
method, automatically infers reward machines and policies
for RL. We chose these state-of-the-art methods as baselines
as they automatically learn different abstract representations
such as options and reward machines without requiring
any human-engineered inputs. We also chose state-of-the-
art deep RL methods: DQN, A2C, and PPO as baselines
since multiple layers in their neural network architectures
progressively construct state abstractions. We use their im-
plementations from the Stable-Baselines3 3 framework by
Raffin et al. [2019].

Hyperparameters Throughout the empirical evaluations,
we ran CAT+RL with tsucc = 0.8, neval = 100, ncheck =
100, and varying values of k for different domains. One
important advantage of CAT+RL over Deep-RL baselines
is that CAT+RL has only four parameters, as mentioned
earlier, and performs robustly regardless of the value of its
parameters as long as they are not set to drastically large
or small values within their ranges. On the other hand, we
have done extensive hyperparameter tuning for the baselines.
The details about the used neural network architectures,
parameters, and hyperparameters for baselines and CAT+RL
are included in the supplementary document.

We report the mean success rates averaged over the last
100 training episodes along with the standard deviations
computed from 10 independent runs for each method and
domain. We also report the normalized cumulative reward
obtained by evaluating the agent on 10 simulation runs, after
stopping training at intervals of 10 episodes. We now discuss
our results and analysis in detail below.

5.1 RESULTS

Fig. 4 (top) shows a comparison of success rates achieved
by all the methods on all the domains. In Office World,
CAT+RL outperforms all the baselines and almost converges
to a success rate of 1 in around 2k episodes, whereas, PPO
and DQN achieve approximate success rates of 0.8 and
0.65 respectively in around 2.5k episodes and have a high
standard deviation. In Wumpus World, CAT+RL converges
to a success rate of 1 within 4k episodes and significantly
outperforms all the baselines which struggle to learn due
to the complexity introduced by pitfalls, obstacles, and size
of the environment. In Taxi World, CAT+RL achieves the
best performance within 12k episodes of training, while

3https://github.com/DLR-RM/stable-baselines3

Figure 4: (Top) Success rates (mean and standard deviation) for 10 independent runs averaged over the last 100 training episodes for
all the methods, and (Bottom) normalized cumulative reward for 10 simulation runs obtained every 10 training episodes for CAT+RL
(ours) and the second-best performing baseline for Office World, Wumpus World, Taxi World, Water World, and Mountain Car. Here,
discrete/continuous refers to the state space of the domain.

Q-learning performs better than all other baselines reaching
a success rate of 0.75 in 20k episodes. In the Water World
domain, CAT+RL learns slightly faster than PPO while all
other baselines perform poorly, whereas, CAT+RL learns
significantly faster compared to DQN, which is the best
baseline, in the Mountain Car domain. We performed further
evaluations on CAT+RL and the second-best performing
baseline on each domain as shown in Fig. 4 (bottom) by
evaluating the policies learned by the agent and comparing
the normalized cumulative reward achieved.

Domain |S| |S̄| |S|/|S̄|
Water World ∞ 49144 ∞
Mountain Car ∞ 13 ∞
Taxi World 18000 1552 11.59
Office World 5184 124 41.80
Wumpus World 4096 157 26.09

Table 1: Sizes of concrete state spaces and abstract state
spaces for the test problems.

Table. 1 draws a comparison between the sizes of the con-
crete state space and the abstract state space under CAT+RL.
As a result of the significant reduction in the size of the con-
crete state space explained by the abstraction factor in Ta-
ble. 1, CAT+RL outperforms GPU-based DRL approaches
in terms of sample efficiency without relying upon expen-
sive computational hardware and without the correspond-
ing hyperparameter tuning. Additional run-time analyses of
CAT+RL and the best-performing baselines are presented

in the supplementary document.

5.2 ANALYSIS

We now present our analysis of the three key questions
mentioned in Sec. 5.

1. Sample efficiency in the absence of input expert knowl-
edge The results presented in Section 5.1 demonstrate that
CAT+RL’s sample efficiency is superior to all baselines
in both discrete and continuous domains. This is categori-
cally the effect of the learned conditional abstractions by
CAT+RL made available to the vanilla Q-learning algorithm.
This effect can be perceived from two perspectives: 1) the
meaningful conditional abstractions that are automatically
constructed by CAT+RL spotlight the most informative as-
pects of the state space, leading to more sample-efficient
learning; and 2) the Q-learning agent benefits from higher
levels of exploration over state and action spaces due to the
nature of abstraction. This intense exploration can cause
more penalization of the agent at the early stages of learn-
ing (see cumulative rewards of CAT+RL in Taxi and Office
worlds in Fig. 4) but eventually leads to faster learning and
superior performance reflected in the success rate.

2. Scalability to larger tasks RL algorithms that learn pol-
icy π from a concrete MDP M suffer from the curse of
dimensionality as the size of the state space increases. This
explains why most of the baselines fail to learn the Wum-
pus world, as a basic domain, when the size of the problem

increases drastically, as shown in Fig. 4. In contrast, the
top-down abstraction refinement scheme of CAT+RL scales
effectively to problems with relatively larger state space. As
a result, the abstract representations learned by CAT+RL
empowered the vanilla Q-Learning algorithm to learn those
problems relatively fast and efficiently. We conducted fur-
ther experiments on scalability and computational complex-
ity of CAT+RL and baselines and the results are presented
in the supplementary document.

P

Passenger
Loca�on

Des�na�on
Loca�on

Des�na�on
Loca�on

Abstrac�on when
Passenger loca�on=P

Abstrac�on when
Passenger loca�on=taxiConcrete Representa�on

Figure 5: Illustration of two different components of a single
CAT learned automatically by CAT+RL for a TaxiWorld problem.
Abstraction on “taxi-loc-x” and “taxi-loc-y” changes depending
on the value of the passenger-location variable.

3 (a). Abstractions identify sub-tasks within a problem
Fig. 5 illustrates the CAT-based abstraction that was com-
puted automatically by CAT+RL for a Taxi domain problem
(we are using a small problem instance for clarity in the
illustration). When a passenger needs to be picked up, CAT
abstraction preserves precision around the passenger’s lo-
cation; when the passenger is in the taxi and needs to be
dropped off, cells around the passenger’s previous location
are no longer significant for distinguishing TD errors, they
get merged together, and precision increases around the
destination location. This is learned and expressed without
human intervention by CAT+RL. It is important to realize
that these two abstractions are expressed within one learned
CAT—they are different subtrees. One subtree is “active”
when the passenger’s location is P, and the other is “active”
when the passenger’s location is the taxi. In an interval ab-
straction, both parts of the Taxi World (bottom left as well as
bottom right) would end up getting refined as episodes con-
tinue, thus losing aggregation opportunities and increasing
sample complexity. In contrast, CAT abstractions are dy-
namic (the representation changes depending on the current
state) and heterogeneous (the same variable has different
“splits” based on the values of other values). This allows
our approach to aggregate experience where possible while
dynamically increasing resolution on critical-choice paths.

3 (b). Abstractions identify symmetry across sub-tasks
One important property of CAT+RL’s framework is to con-
struct identical abstractions across the state space for similar
sub-problems. This capability of CAT+RL can be useful
in large problems where options can be generalized across

R G

Y B D

D

Figure 6: Drawing out similarities across state space of a 8×8
taxi world via CAT+RL’s automatic abstraction. Left) R, G, Y,
and B are the four predefined pickup/drop-off locations. Middle)
Location D is the destination location and the passenger is on the
top-left location; and right) Location D is the destination and the
passenger is in the taxi.

identically constructed abstractions. Fig. 6 demonstrates
two constructed conditional abstractions by CAT+RL for an
8×8 taxi world. In Fig. 6 (middle), the passenger is located
at the top-left and the destination is located at the bottom-
left of the map. Besides, in Fig. 6 (right), the passenger is
in the taxi and the destination is located at the top-left. In
both cases, the agent should reach the top-left cell of the
map which implies a similarity. CAT+RL discovered this
similarity automatically as seen from the generated identical
abstractions (highlighted area) for both cases.

6 CONCLUSION

We presented a novel approach for simultaneously learn-
ing dynamic abstract representations along with the solu-
tion to problems formulated as an MDP. The overall al-
gorithm of CAT+RL proceeds by interleaving the process
of refining a coarse initial abstraction with learning and
evaluation of policies for the underlying RL agent. We in-
troduced conditional abstraction trees to compute and rep-
resent such refined abstractions throughout the CAT+RL
procedure. Extensive empirical evaluations demonstrated
that CAT+RL effectively enables the vanilla Q-learning
algorithm to learn the solution to large discrete and contin-
uous problems, with dynamic representations, where state-
of-the-art RL algorithms are outperformed. This superior
performance of vanilla Q-learning compared to algorithms
with complex neural-network-based architectures is due to
CAT+RL’s scalable abstraction construction scheme that
effectively draws out similarities across the state space and
yields powerful sample efficiency in learning. Future work
will consider the automatic discovery of generalizable op-
tions utilizing the constructed conditional abstract represen-
tations by CAT+RL.

Acknowledgements

This work was supported in part by NSF IIS grant 1942856
and ONR grant N00014-23-1-2416.

References

David Abel, David Hershkowitz, and Michael Littman. Near
optimal behavior via approximate state abstraction. In
International Conference on Machine Learning, pages
2915–2923. PMLR, 2016.

David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip
Arumugam, Doina Precup, and Michael Littman. Value
preserving state-action abstractions. In International Con-
ference on Artificial Intelligence and Statistics, pages
1639–1650. PMLR, 2020.

Ankit Anand, Aditya Grover, Parag Singla, and Mausam.
Asap-uct: Abstraction of state-action pairs in uct. In
Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence, 2015.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-
critic architecture. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 31, 2017.

Aijun Bai, Siddharth Srivastava, and Stuart Russell. Marko-
vian state and action abstractions for mdps via hierarchi-
cal mcts. In IJCAI, pages 3029–3039, 2016.

André Barreto, Shaobo Hou, Diana Borsa, David Silver,
and Doina Precup. Fast reinforcement learning with gen-
eralized policy updates. Proceedings of the National
Academy of Sciences, 117(48):30079–30087, 2020.

Richard Bellman. A markovian decision process. Journal
of mathematics and mechanics, pages 679–684, 1957.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym, 2016.

Chung-Cheng Chiu and Von-Wun Soo. Automatic complex-
ity reduction in reinforcement learning. Computational
Intelligence, 26(1):1–25, 2010.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,
and Helmut Veith. Counterexample-guided abstraction
refinement. In International Conference on Computer
Aided Verification, pages 154–169. Springer, 2000.

Dennis Dams and Orna Grumberg. Abstraction and abstrac-
tion refinement. In Handbook of Model Checking, pages
385–419. Springer, 2018.

Thomas Dietterich. State abstraction in maxq hierarchical
reinforcement learning. Advances in Neural Information
Processing Systems, 12, 1999.

Thomas G. Dietterich. Hierarchical reinforcement learning
with the maxq value function decomposition. Journal of
artificial intelligence research, 13:227–303, 2000.

Fausto Giunchiglia and Toby Walsh. A theory of abstraction.
Artificial intelligence, 57(2-3):323–389, 1992.

Robert Givan, Thomas Dean, and Matthew Greig. Equiv-
alence notions and model minimization in markov deci-
sion processes. Artificial Intelligence, 147(1-2):163–223,
2003.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and
Sheila McIlraith. Using reward machines for high-level
task specification and decomposition in reinforcement
learning. In International Conference on Machine Learn-
ing, pages 2107–2116. PMLR, 2018.

Nan Jiang, Satinder Singh, and Richard Lewis. Improv-
ing uct planning via approximate homomorphisms. In
Proceedings of the 2014 international conference on Au-
tonomous agents and multi-agent systems, pages 1289–
1296, 2014.

Mu Jin, Zhihao Ma, Kebing Jin, Hankz Hankui Zhuo, Chen
Chen, and Chao Yu. Creativity of ai: Automatic symbolic
option discovery for facilitating deep reinforcement learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 7042–7050, 2022.

Anders Jonsson and Andrew Barto. Automated state ab-
straction for options using the u-tree algorithm. Advances
in neural information processing systems, 13, 2000.

Rushang Karia and Siddharth Srivastava. Relational Ab-
stractions for Generalized Reinforcement Learning on
Symbolic Problems. arXiv preprint arXiv:2204.12665,
2022.

Rushang Karia, Rashmeet Kaur Nayyar, and Siddharth Sri-
vastava. Learning generalized policy automata for rela-
tional stochastic shortest path problems. Advances in Neu-
ral Information Processing Systems, 35:30625–30637,
2022.

Andrej Karpathy. Reinforcejs: Waterworld demo, 2015.
URL http://cs. stanford. edu/people/karpathy/reinforce-
js/waterworld. html, 2015.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, pages 282–293. Springer, 2006.

George Konidaris. On the necessity of abstraction. Current
opinion in behavioral sciences, 29:1–7, 2019.

Lihong Li, Thomas J Walsh, and Michael L Littman. To-
wards a unified theory of state abstraction for mdps. In
AI&M, 2006.

Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein.
Dynamic abstraction in reinforcement learning via clus-
tering. In Proceedings of the twenty-first international
conference on Machine learning, page 71, 2004.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Mar-
tin Riedmiller. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Interna-
tional conference on machine learning, pages 1928–1937.
PMLR, 2016.

Andrew W Moore. Variable resolution dynamic program-
ming: Efficiently learning action maps in multivariate
real-valued state-spaces. In Machine Learning Proceed-
ings 1991, pages 333–337. Elsevier, 1991.

Martin L Puterman. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam
Gleave, Anssi Kanervisto, and Noah Dormann. Stable
baselines3, 2019.

Balaraman Ravindran and Andrew G Barto. Approximate
homomorphisms: A framework for non-exact minimiza-
tion in markov decision processes. 2004.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach Fourth Edition, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jendrik Seipp and Malte Helmert. Counterexample-guided
cartesian abstraction refinement for classical planning.
Journal of Artificial Intelligence Research, 62:535–577,
2018.

Satinder Singh, Tommi Jaakkola, and Michael Jordan. Rein-
forcement learning with soft state aggregation. Advances
in neural information processing systems, 7, 1994.

Siddharth Srivastava, Neil Immerman, and Shlomo Zilber-
stein. Applicability conditions for plans with loops: Com-
putability results and algorithms. Artificial Intelligence,
191:1–19, 2012.

Siddharth Srivastava, Stuart Russell, and Alessandro Pinto.
Metaphysics of planning domain descriptions. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 30, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

William TB Uther and Manuela M Veloso. Tree based
discretization for continuous state space reinforcement
learning. Aaai/iaai, 98:769–774, 1998.

Christopher JCH Watkins and Peter Dayan. Q-learning.
Machine learning, 8(3):279–292, 1992.

Shimon Whiteson. Adaptive tile coding. Adaptive Rep-
resentations for Reinforcement Learning, pages 65–76,
2010.

Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar,
Daniel Neider, Ufuk Topcu, and Bo Wu. Joint inference
of reward machines and policies for reinforcement learn-
ing. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 30, pages
590–598, 2020.

Yang Yu. Towards sample efficient reinforcement learning.
In IJCAI, pages 5739–5743, 2018.

A SCALABILITY STUDY

We conducted experiments (see Fig. 7) to test the scalability of CAT+RL, Q-learning, and PPO on Office World problems
with increasing complexity. It shows that CAT+RL has greater scalability than the baselines. The results also indicate that (a)
DRL methods do better on smaller problem instances that are less “complex” and are unable to handle increasing complexity
and (b) methods designed for image-based RL do not directly scale in RL problems such as those used in this work. Thus,
CAT+RL addresses the challenges with the scalability of RL to tasks whose states cannot be easily expressed as images or
robot configuration states.

0 1K 2K 3K
0.0

0.2

0.4

0.6

0.8

1.0

Office World 18x18

0 1K 2K 3K

Office World 27x27

0 1K 2K 3K

Office World 36x36

0 1K 2K 3K

Office World 45x45

0 1K 2K 3K

Office World 54x54

Episodes

S
u
cc

e
ss

 r
a
te

Q-learning PPO

Figure 7: Scalability of CAT+RL (our method), Q-learning, and PPO on Office World problems with increasing complexity i.e. increasing
ranges of state variables. The title refers to the problem size, y-axis shows average success rates and standard deviations for 10 independent
runs averaged over last 100 training episodes, and x-axis shows episodes. The maximum episode lengths used for Office World problems
with dimensions 18x18, 27x27, 36x36, 45x45, and 54x54 are 250, 500, 700, 1000, and 1500 respectively.

We replicated the scalability study with an exact condition compared to Fig. 7 except we altered the neural network
architecture of PPO to study the effect of the neural network architecture of deep RL algorithms on their scalability, as
shown in Fig. 8. To this end, we reduced the size of PPO’s network architecture from 64 to 16 neurons per hidden layer,
where two hidden layers were utilized in both cases. The results indicate that reducing the network size does not improve the
performance of PPO and rejects the hypothesis that the original architecture used in the paper for deep RL baselines might
be over parameterized or excessively large for the given test problems.

B TIME COMPLEXITY ANALYSIS

The worst case of the computational complexity of the learning and evaluation phases of CAT+RL is similar to that of the
underlying RL algorithm that it is used (Q-learning). The refinement phase consists of a CAT search for an unstable state
with a time complexity of O(n log n) and a split operation which is linear in the number of state variables.

Tab. 2 shows the time (mean and standard deviation computed for 10 runs) taken for CAT+RL, Q-learning, and PPO
for solving Office World problems with increasing problem complexity. We also compared the runtimes for CAT+RL,
Q-learning, PPO, and DQN for all domains as shown in Tab. 2. CAT+RL takes significantly less times, especially compared
to DRL baselines (atleast 10 times and atmost 50 times less than baselines) on three out of five domains. In the Office
World domain, CAT+RL takes about 1.6 times less time than DQN. In the Water World domain, DRL baselines are faster
with much lower runtimes for all the algorithms compared to other domains, and the reasons can be attributed to the low
horizon used and high stochasticity in the problems due to random initialization of the agent and ball locations. All deep
learning experiments were executed on two GeForce RTX 3070 GPUs with 8 GB memory running Ubuntu 18.04. All other
experiments were executed on 5.0 GHz Intel i9 CPUs with 64 GB RAM running Ubuntu 18.04.

We found CAT+RL to be surprisingly efficient in terms of runtime. Although Q-learning was completed before our approach
for small problems, CAT+RL is significantly faster than Q-learning when the problem size increases even when the time for

0 1K 2K 3K
0.0

0.2

0.4

0.6

0.8

1.0

Office World 18x18

0 1K 2K 3K

Office World 27x27

0 1K 2K 3K

Office World 36x36

0 1K 2K 3K

Office World 45x45

0 1K 2K 3K

Office World 54x54

Episodes

S
u
cc

e
ss

 r
a
te

Q-learning PPO

Figure 8: Scalability of CAT+RL (our method), Q-learning, and PPO with a small neural network. This is a replication of the scalability
study reported in Fig. 7 except we ran PPO with a smaller neural network architecture (two hidden layers with 16 neurons per hidden
layer).

Office World
problem size

Time (s) ± std dev
by CAT+RL

Time (s) ± std dev
by Q-learning

Time (s) ± std dev
by PPO

18x18 302.75± 29.0 97.69± 4.7 2843.42± 959.17
27x27 391.36± 28.5 441.8± 13.85 4956.8± 2458.74
36x36 535.71± 54.6 1174.84± 46.23 8428.24± 2867.52
45x45 416.41± 58.94 1322.26± 45.87 11463.28± 3309.09
54x54 1010.52± 219.98 7750.53± 308.79 15293.57± 5815.63

Table 2: Total time taken (mean and standard deviation) by CAT+RL, Q-learning, and PPO to solve Office World problems
with increasing complexity.

Problem
(size)

Time (s) ± std dev
by CAT+RL

Time (s) ± std dev
by Q-learning

Time (s) ± std dev
by PPO

Time (s) ± std dev
by DQN

Wumpus (64x64) 137.86± 11.41 2184.56± 11.90 9956.56± 5123.24 6487.406± 134.55
Taxi (30x30) 744.18± 51.78 16835.07± 243.5 34642.69±2720.662 8921.77± 1179.88
Office (36x36) 535.71± 54.6 1174.84± 46.23 8428.24± 2867.52 877.474± 291.595
Water World 804.86± 13.63 − 418.358± 30.02 271.75± 8.58
Mountain Car 36.84± 1.88 − 3851.592± 1560.44 2196.104± 347.024

Table 3: Total time taken (mean and standard deviation for 5 runs) by CAT+RL, Q-learning, PPO, and DQN to solve
Wumpus World, Taxi World, Office World, Water World, and Mountain Car problems.

abstraction refinement is taken into account. The reason for this performance boost is that, in practice, CAT+RL performs
significantly fewer computations than it would require to solve the underlying MDP due to the abstraction that it builds on
the fly. Although the abstract MDP becomes finer after each refinement phase, the state space size of this abstract MDP is
still significantly smaller than the concrete MDP.

Office World 27x27

Su
cc

es
s

R
at

e

CAT+RL Aggressive
CAT+RL Deliberative

Figure 9: Comparing aggressive and deliberative variants of CAT+RL. We ran both variants 10 times and the shadows show the standard
deviation of the measurements.

C HYPERPARAMETERS

We used standard architectures for A2C, PPO, DQN from StableBaselines3 1 and Option-Critic 2. We use the open-source
code available for the state-of-the-art baseline JIRP 3.

CAT+RL’s parameters are ncheck and the threshold value tsucc for the refinement condition, the cap k for the maximum
number of unstable states that can be refined in each refinement phase, and neval for the duration of the evaluation phase.
The same parameter values were used across all our experiments except for cap k which was set proportionally to the size of
the problem. In contrast, we had to conduct significant hyperparameter exploration for the baselines because the default
settings led to insignificant learning.

For all of the domains, we use two layers each consisting of 64 neurons in all DRL architectures except for the Mountain
Car domain where we found two layers with 128 neurons each as the best-performing architecture. Tab. 4, 5, 6, 8 show the
important hyperparameters used for all the domains and methods.

D ALGORITHMIC DETAILS

In the paper, we explained how CAT+RL finds a state variable for each found unstable state. Here, we propose another
approach for finding the state variable for the situations where the concrete Q-table is not available to CAT+RL. This
approach aggressively blames all of the state variables for each unstable state and refines each unstable state w.r.t. all state
variables. This method can be employed to avoid keeping the track of the concrete Q-table. The aggressive CAT+RL is
essentially effective where the reward is frequent with high variation in an environment. We implemented the aggressive and
the deliberative (the one discussed in the paper) variants of CAT+RL for blaming a state variable to do the refinement of
an unstable state. We analyzed the performance of both variants of CAT+RL in Office World and demonstrated that the
CAT+RL performs robustly regardless of the choice of this component, as shown in 9.

1https://github.com/DLR-RM/stable-baselines3
2https://github.com/lweitkamp/option-critic-pytorch
3https://github.com/logic-and-learning/AdvisoRL

Hyperparameters CAT+RL Q-
learning

Option-
critic

JIRP A2C DQN PPO

Threshold (tsucc) 0.8 − − − − − −
ncheck 100 − − − − − −
neval 100 − − − − − −
Cap (k) 20 − − − − − −
Exploration rate (ϵ) 1.0 1.0 1.0 0.4 − 1.0 −
Minimum exploration rate 0.05 0.05 0.05 0.05 − 0.05 −
Exploration decay 0.991 0.991 0.9991 0.9991 − − −
Exploration fraction − − − − − 1.0 −
Learning rate (α) 0.05 0.05 0.05 1e-4 7e-4 2e-4 2e-4
Discount factor (γ) 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Number of episodes 10000 10000 10000 10000 10000 10000 10000
Maximum episode length 1200 1200 1200 1200 1200 1200 1200
Options - - 8 - - - -

Table 4: Parameters used in Wumpus World.

Hyperparameters CAT+RL Q-
learning

Option-
critic

JIRP A2C DQN PPO

Threshold (tsucc) 0.8 − − − − − −
ncheck 100 − − − − − −
neval 100 − − − − − −
Cap (k) 20 − − − − − −
Exploration rate (ϵ) 1.0 1.0 1.0 0.4 − 1.0 −
Minimum exploration rate 0.05 0.05 0.05 0.05 − 0.05 −
Exploration decay 0.9992 0.9992 0.9992 0.9992 − − −
Exploration fraction − − − − − 1.0 −
Learning rate (α) 0.05 0.05 0.05 1e-4 8e-4 1e-4 3e-4
Discount factor (γ) 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Number of episodes 3000 3000 3000 3000 3000 3000 3000
Maximum episode length 1000 1000 1000 1000 1000 1000 1000
Options - - 8 - - - -

Table 5: Parameters used in Office World.

Hyperparameters CAT+RL Q-
learning

Option-
critic

JIRP A2C DQN PPO

Threshold (tsucc) 0.8 − − − − − −
ncheck 100 − − − − − −
neval 100 − − − − − −
Cap (k) 10 − − − − − −
Exploration rate (ϵ) 1.0 1.0 1.0 0.4 − 1.0 −
Minimum exploration rate 0.05 0.05 0.05 0.05 − 0.05 −
Exploration decay 0.9992 0.9992 0.9992 0.9992 − − −
Exploration fraction − − − − − 1.0 −
Learning rate (α) 0.05 0.05 0.05 5e-5 7e-4 1e-4 2e-4
Discount factor (γ) 0.999 0.999 0.999 0.999 0.999 0.999 0.999
Number of episodes 20000 20000 20000 20000 20000 20000 20000
Maximum episode length 1500 1500 1500 1500 1500 1500 1500
Options - - 8 - - - -

Table 6: Parameters used in Taxi World.

Hyperparameters CAT+RL A2C DQN PPO
Threshold (tsucc) 0.7 − − −
ncheck 150 − − −
neval 150 − − −
Cap (k) 1 − − −
Exploration rate (ϵ) 1.0 − 1.0 −
Minimum exploration rate 0.05 − 0.05 −
Exploration decay 0.999 − − −
Exploration fraction − − 1.0 −
Learning rate (α) 0.05 7e-4 1e-4 3e-4
Discount factor (γ) 0.95 0.95 0.95 0.95
Number of episodes 5000 5000 5000 5000
Maximum episode length 100 100 100 100

Table 7: Parameters used in Water World.

Hyperparameters CAT+RL A2C DQN PPO
Threshold (tsucc) 0.8 − − −
ncheck 400 − − −
neval 400 − − −
Cap (k) 1 − − −
Exploration rate (ϵ) 1.0 − 1.0 −
Minimum exploration rate 0.01 − 0.01 −
Exploration decay 0.99 − − −
Exploration fraction − − 0.1 −
Learning rate (α) 0.05 1e-4 1e-4 1e-4
Discount factor (γ) 0.99 0.99 0.99 0.99
Number of episodes 2000 2000 2000 2000
Maximum episode length 200 200 200 200

Table 8: Parameters used in Mountain Car World.

E DOMAIN DESCRIPTIONS

Office World We consider an office world scenario with dimensions 36×36 containing walls and four rooms A, B, C, and D.
The task for the agent is to collect coffee and mail and deliver them to the office. The agent can execute any action from East,
West, North, and South. On applying any action, the agent executes the action successfully with a probability of 0.8 and may
slip to one of the two adjacent cells with a probability of 0.1 each. The agent receives a reward of 1000 on completing the
task successfully and 0 otherwise.

Wumpus World We consider a Wumpus world with dimensions 64×64 containing obstacles and pits. The task for the agent
is to reach the southeast corner location from the northwest corner location in the grid while avoiding pits. The four actions
and the stochastic probabilities are the same as in the office world. If the agent’s movement is obstructed due to an obstacle,
it falls back to its location and receives a reward of -2. The agent receives -1 reward on every step and the episode ends
as soon as it enters a pit, receiving a negative reward of -1000. On reaching the correct destination location, it receives a
positive reward of 500.

Taxi World We consider a taxi world scenario with dimensions 30×30 in which there are four pick-up and drop-off locations,
one in each corner of the grid. The taxi agent starts at a random cell in the grid. The task of the taxi is to pick up a passenger
from its pick-up location and deliver at its destination drop-off location, both selected randomly. It can execute actions: East,
West, North, South, Pick-up, and Drop-off. Each move action has stochastic probabilities similar to Office world. It obtains
a reward of -1 on applying a move action and -100 on illegal pick-up and drop-off actions. Upon dropping the passenger at
the correct destination, it receives a positive reward of 500.

Water World We consider a continuous state space environment with dimensions 200×200 containing one green ball, one
red ball, and one agent represented by a black ball. Each ball moves in one direction with constant speed and bounces back

upon hitting the edges. The agent has control over its velocity via taking a move action in one of the east, west, north, and
south directions. The task for the agent is to collide with the moving green ball while avoiding the red ball. The episode
terminates when the agent collides with a ball. The agent receives a reward of 1000 and -1000 on colliding with the green
ball and the red ball respectively.

Mountain Car Mountain Car is a continuous state discrete action environment from Open AI Gym 4. The agent receives -1
reward on each step and 1000 reward on reaching the goal position. The maximum number of steps allowed in an episode is
200.

4https://www.gymlibrary.dev/environments/classic_control/mountain_car/

	Introduction
	Related Work
	Background
	Our Approach
	Overview
	Conditional Abstraction Trees
	Learning Dynamic Abstractions
	CAT+RL Algorithm

	Empirical Evaluation
	Results
	Analysis

	Conclusion
	Scalability Study
	Time Complexity Analysis
	Hyperparameters
	Algorithmic Details
	Domain Descriptions

