
From Reals to Logic and Back:
Learning World Models for Planning from Raw Data

Naman Shah1, 2, * , Jayesh Nagpal1, and Siddharth Srivastava1

1School of Computing and Augmented Intelligence, Arizona State Univeristy, Tempe, AZ, USA
2Brown University, Providence, RI, USA

naman shah@brown.edu, nagpal.jayesh@asu.edu, siddharths@asu.edu

Abstract

Humans build generalizable world models for planning from
sparse amounts of data. Today’s robots however, are ex-
tremely limited in their ability to create world models that
generalize, and rely upon expert human input to obtain the
world models necessary for solving complex tasks. This de-
pendence is particularly prominent and limiting in settings
where test tasks feature more objects and longer horizons than
those encountered during learning. We present the first ap-
proach for autonomously learning generalizable, logic-based
world models for planning, starting from small batches of
unannotated high-dimensional, real-valued robot trajectories.
Our approach uses unsupervised learning to invent a rela-
tional vocabulary in first-order logic along with high-level
actions and logic-based models for the invented actions. Em-
pirical results show that generalizable world models can be
learned from just a handful of robot trajectories; that the
learned models include but go beyond the classical, hand-
crafted conceptualizations of useful relations and actions; and
that the learned models allow robot planning to scale to tasks
that were previously beyond the scope of planning without
hand-crafted models.

1 Introduction
Enabling robots to learn how to accomplish complex tasks is
essential for autonomous, reliable robotics. Recent research
makes progress on robust training and adaptation for tasks
with either short horizons (e.g., picking up an object or clos-
ing a door) (Hafner et al. 2023) and behavior cloning for
longer horizons in settings where test tasks have only mi-
nor differences from training scenarios (Fu, Zhao, and Finn
2024). This is in large part because the ability to learn from
simple problems and then solve more complex problems re-
quires the invention and transfer of generalizable, abstract
concepts and world models. For instance, all the concepts
necessary for clearing a table cluttered with cups are present
in one robot trajectory that picks up and places a cup (with
no annotations or segmenting). It should be possible to clear
a table scattered with cups given handful of demonstrations
for picking and placing a single cup. Yet, this problem re-
mains a difficult generalization task for robotics – in large
part due to the lack of methods for learning without human

*Work primarily done at Arizona State University

intervention, a transferrable conceptual vocabulary that can
support the learning of generalizable world models.

Classically, such problems are solved in AI using logic-
based world models that are crafted by humans. The result-
ing approaches offer impressive robustness on tasks that are
within the scope of the model (Srivastava et al. 2014; Gar-
rett, Lozano-Pérez, and Kaelbling 2020; Shah et al. 2020),
but require extensive domain-engineering effort and are lim-
ited to the problem domains envisaged prior to deployment.
This precludes the deployment of autonomous robots in dy-
namic scenarios where environments and tasks can differ
from their idealized design-stage conceptions – precisely the
scenarios where autonomy is needed.

This paper presents the first approach to learning logic-
based world models from raw demonstrations of robot tra-
jectories without any human annotation, segmenting, or
guidance about primitive controllers, actions, or concepts.
Our results show that in a variety of mobile manipulation
tasks, this approach enables the robot to autonomously in-
vent a generalizable concept vocabulary and learn general-
izable world models using these self-invented concepts. The
robot is then able to reason and plan over the learned mod-
els to solve new tasks that feature much longer execution
horizons and many more objects in a zero-shot fashion.

Prior research on the topic indicates that partial world
models can be learned if the agent is provided with prim-
itive concepts (Silver et al. 2022, 2023) or primitive ac-
tions (Konidaris, Kaelbling, and Lozano-Pérez 2018). This
paper shows for the first time that it is possible to learn such
models entirely from raw data, without human input of such
primitives. It develops a transferrable notion of “salient re-
gions of the state space” in terms of relational critical re-
gions, which yield new approaches for inventing a general
form of a logical predicate vocabulary from solutions to sim-
ple problems. This vocabulary turns out to be sufficient for
autonomously inventing high-level “actions” that take the
agent from one salient region to another, and for learning
powerful logic-based world models for such actions. The re-
sulting knowledge allows the agent to solve, in zero-shot
fashion, problems that are much larger than those used for
learning the concepts and actions.



Auto-Invent Symbolic Representation
(Relations, Actions, and Action Model)Unannotated, unsegmented trajectories

Learning
Planning with learned 

representations

Training structures built 
using training trajectories 

Construct more complicated structures

Test Robot and Structures

Training: Test:

Relations: 

Parallel(?p1 - plank, ?p2 - plank)
OnTop(?p1 - plank, ?p2 - plank)
…
Holding (?g1 - gripper, ?p2 - plank)

Actions: 

Grasp (?g1 - gripper, ?p2 - plank) 
Requires: Empty (?g1), ¬Holding (?g1, ?p2) 
Causes: ¬Empty (?g1), Holding (?g1, ?p2)

Overall objective 
Given unannotated and unsegmented training trajectories in simple environments, 

learn generalizable knowledge to be able to zero-shot solve significantly larger and complex problems.

Figure 1: Our overall approach. We start with a set of demonstrations on relatively simple tasks using a simple robot and learn a
symbolic model in the form of a set of relations and high-level actions. This symbolic model can be used with any off-the-shelf
planner for solving unseen complex long-horizon planning problems with other similar robots.

2 Preliminaries
We consider a setting where the environment comprises ob-
jects and robots. A state of each object each defined as a
6D pose of the object. A robot, a special object, is a kine-
matic chain of links and joints, with its state as ⟨Pbase, x⟩.
Here, Pbase is the 6D pose of the first link, and x is the joint
value for each joint. For an environment with objects O =
⟨o1, . . . on, r1, . . . rm⟩, the state space is X = Xri ×Xoj for
every robot ri ∈ O and object oj ∈ O. A collision function
c divides the state space X into two sets: Xfree (collision-free
states) and Xobs (colliding states).

Native robot actions allow robots to alter their state, in-
cluding configuration and base link pose, enabling move-
ment and object manipulation within the environment. A
primitive action a defines a deterministic function a : x 7→
x′. Environment states x ∈ X and x′ ∈ X indicate that ap-
plying action a in state x results in state x′. We define a robot
planning problem as follows:

Definition 1 A robot planning domain is defined as a tuple
⟨O, T ,X ,A, xi,Xg⟩ where O is a set of objects, T is a set
of object types, X is a state space, and A is an uncountably
infinite set of native deterministic actions. xi ∈ Xfree is an
initial state of the environment, and Xg ⊆ X is a set of goal
states. A solution to a planning problem is a sequence of
native actions a0, . . . , an such that an(. . . (a0(xi))) ∈ Xg .

Symbolic abstractions We consider symbolic world mod-
els as first-order logic models and represent them using the
PDDL representation (McDermott et al. 1998). The PDDL
domain consists of two components ⟨V,A⟩. Here, V is a
set of symbolic relations, and Ā is a set of high-level robot
actions. Relations R ∈ V parameterized by typed param-
eters describe object relations. Relations R ∈ V can be
grounded with objects, called r when ungrounded and r′

when grounded. Grounded relations R′ act as Boolean clas-

sifiers, true in a low-level state x (denoted R′
x = 1) if the re-

lation holds for the grounded objects in state x. An abstrac-
tion function α : x 7→ s′ evaluates all grounded relations
in a low-level state x ∈ X to yield an abstract grounded
state s′ ∈ 2V

′
. A symbolic grounded state s′ is a set of true

grounded relations in the low-level state x, referred to as s′,
while the symbolic lifted state is s (s ∈ 2V ).
Ā outlines symbolic lifted actions using lifted relations

V . Each action ā ∈ Ā has typed symbolic parameters. ā
is defined as a tuple ⟨preā, effā⟩, where preā is a conjunc-
tive formula of parameterized relations V . The action’s ef-
fect effa is a tuple effā = ⟨addā, delā⟩ adding relations addā
and removing relations delā from the state once the action ā
is executed. Actions ā can be grounded to specific objects,
resulting in grounded actions ā′, generating grounded pre-
condition preā′ and effect effā′ . A grounded action ā′ is ap-
plicable in a state s only if preā′ |= s. Every deterministic
grounded action ā′ ∈ Ā′ maps each symbolic state si to a
new state sj .

Symbolic plans cannot be executed by a robot. It needs to
be converted to a sequence of primitive actions that a robot
can execute. Task and motion planning approaches use ab-
stract symbolic models along with pose generators for com-
puting a sequence of primitive actions for planning prob-
lems. A pose generator defines an inverse abstraction func-
tion. Let ΓR be a pose generator for a lifted symbolic pred-
icate R ∈ V . For a grounded relation R′, a pose genera-
tor ΓR′ = {x|x ∈ X ∧ R′

x = 1}. A pose generator for a
grounded state s′ is defined as

⋂
∀R′∈s′ ΓR′ .

Critical regions We use the concept of critical regions for
automatically inventing a predicate vocabulary. Molina, Ku-
mar, and Srivastava (2020) and Shah and Srivastava (2022)
propose the concept of a critical region in the configura-
tion space of a robot for learning propositional symbolic ab-



Training Demonstations

Relational Critical Region
(RCR)

(a)

Identifying Relational Critical Regions

Pick(?Gripper, ?X_OBJ) Place(?Gripper, ?X_OBJ)

(d)

Pick(Gripper, Can)

(c)
¬Holding(Gripper, Can) Holding(Gripper, Can)

Place(Gripper, Can)

Zero-Shot Generalization

Lifted symbolic relation
(Holding(?Gripper, ?Can))

  Generative model

New Unseen Test Task

Action Invention

Relation Invention

(b)

World-Model Learning

Auto-Generated World Model Task and Motion Plan

(e)

Initial State

Goal State

Pick(?Gripper, ?X_OBJ) Place(?Gripper, ?X_OBJ)

Figure 2: Illustration of our overall method. We start with a set of unlabeled, unsegmented training demonstrations and learn
relational salient region predictors (a). Each of these generative predictors define a unique relation between a pair of objects
(b) and actions that make this relation true or false (c). Given a new test task, we use the learned predictors to generate salient
regions and high-level robot actions (d) that support off-the-shelf task and motion planning (e).

stractions. Critical regions generalize the concepts of hubs
or access points and bottlenecks or pinch points in a sin-
gle concept. Earlier work defines critical regions in a goal-
agnostic manner, however, in this work we consider goal-
conditioned critical regions. Intuitively, as the name sug-
gests, goal-conditioned critical regions learn critical regions
for a specific training problem. In this work, we learn
goal-conditioned critical regions for each training task and
combine them in order to compute the set of critical re-
gions. Given a robot with a configuration space X , goal-
conditioned regions are defined as follows.

Definition 2 Given a set of solutions for a robot plan-
ning problem T , the measure of criticality of a Lebesgue-
measurable open set ρ ⊆ X , µ(ρ), is defined as
limsn→+r

f(r)
v(sn)

where f(r) is a fraction of observed motion
plans solving the task T that pass through sn, v(sn) is the
measure of sn under a reference density (usually uniform),
and →+ denotes the limit from above along any sequence
{sn} of sets containing ρ (ρ ⊆ sn, ∀n).

3 Learning Relational Vocabulary
We postulate that high-level robotic actions currently crafted
by experts are effectively transitions to and from certain
salient regions within the environment and that such regions
can be automatically discerned. A region is deemed salient
if it is essential for the completion of a specified task. For

instance, as illustrated in Fig. 2, where the gripper is tasked
with picking up the can, the area surrounding the can, from
which it can be grasped, constitutes a salient region. The
”Pick” and ”Place” actions correspondingly transition the
gripper into and out of this salient region. Our hypothesis
is that if we can automatically identify such salient regions,
such high-level actions can also be invented autonomously,
subsequently enabling autonomous formulations of general-
izable concepts for long-horizon problems.

3.1 Relational Critical Regions
We start by characterizing such salient regions in the en-
vironment as relational critical regions (RCRs). Critical
regions (CRs) (Shah and Srivastava 2022) help identify
these regions in the robot’s configuration space (LaValle
2006). However, for long-horizon reasoning involving vari-
ous objects, salient regions are in the relative space between
objects, not the robot’s configuration space. For instance,
Fig 2(a) shows the salient region for the gripper and the can
(shaded red) in their relative space, regardless of the can’s
location, forming a relational critical region. We thus extend
critical regions to the relative state spaces between object
pairs and introduce relational critical regions. Given a pair
of objects, we define a relational critical region as a region of
the relative state space that has a high density of successful
solutions given a distribution of tasks. Formally, we define
relational critical regions as follows.



!!	(!$%&'!, !$%&'") !!	(!$%&'", !$%&'#) !!	(!$%&'#, !$%&'$)
(parallel planks) (on top and horizontal) (on top and vertical)

Building Keva Structures

rt	(*+,+-!, -%,$.!)
(robot (base) near table)

gc	(/*0!!.*!, 1%&!)
(gripper holding can)

tc	(-%,$.!, 1%&!)
(can on the table)

Delivering Items in a Cafe

g!	(/*0!!.*!, !$%&'!)
(gripper holding the plan)(gripper holding the plank)

Figure 3: Different relations invented by our approach and their corresponding critical regions. Each image shows one binary
predicate and its semantic interpretation. The red dots show sampled possible poses for the object in the relational critical
region.

Definition 3 Let T be a robot planning problem and DT
be a set of solution trajectories for the planning problem T.
Let o1, o2 ∈ O be a pair of objects, and let X o1

o2 define the
relative state space for object o2 in the relative reference
frame of the object o1. The measure of the criticality of a
Lebesgue-measurable open set ρ ⊆ X o1

o2 , µ(ρ), is defined
as limsn→+ρ

f(ρ)
v(sn)

where f(ρ) is a fraction of observed so-
lution trajectories solving for the planning problem T that
contains a relative pose P o1o2 such that, P o1o2 ∈ ρ v(sn) is the
measure of sn under a reference density (usually uniform),
and →+ denotes the limit from above along any sequence
{sn} of sets containing ρ (ρ ⊆ sn, ∀n).

We begin with training demonstrations that solve simple
tasks, converting them to trajectories between object pairs in
the relative space. Using Def. 3, we identify relative critical
regions Ψ for these tasks. Our method employs multivari-
ate Gaussian mixture models to learn generative multivariate
Gaussian predictors for each region. Formally, let Ψij ⊂ Ψ
represent relational critical regions for object types τi and
τj . With a threshold ϵ, the Gaussian mixture model (GMM)
estimates Gaussian parameters µψ and Σψ for every region
ψ ∈ Ψij ensuring support for each pose P ∈ ψ exceeds pre-
defined threshold ϵ. We say a relative pose po2o1 is in the rela-
tional critical region ψ (denoted by po2o1 ∈ ψ) iff ψ(po2o1) = 1,
i.e., support for the relative pose po2o1 under the Gaussian pa-
rameters µψ and Σψ is greater than ϵ. For implementation,

we use label from the OpenCV python package1 to extract
connected components in a region, utilizing that number as
components for the multivariate mixture model in the scikit-
learn package2.

3.2 Generating Relational Vocabulary
elational critical regions represent salient regions in the
environment. However, they are insufficient for generaliz-
able long-horizon reasoning; high-level reasoning requires
abstract actions, which in turn require a relational vocab-
ulary to represent pre- and post-conditions of these ac-
tions. Therefore, for each relational critical region pre-
dicted by the learned multivariate Gaussian predictors, our
method invents one unique binary relation between the cor-
responding objects. E.g., the relational critical region shown
in Fig. 2(a) represents the relation concept equivalent to
Holding(Gripper, Can) relation between the gripper
and the can, and it is true when the gripper is in the shaded
red region around the can.

More specifically, let Oτi and Oτj be the set of objects of
type τi and τj , respectively, and let Ψij be a set of relation
critical regions predictors between Oτi and Oτj . We define
a unique binary relation Rkij : Oτi × Oτj → {true, false}
for each relation region predictor ψk ∈ Ψij such that
Rkij(oi, oj) = true iff for the relative pose pojoi , ψk(pojoi ) = 1.

1https://github.com/opencv/opencv-python
2https://scikit-learn.org/1.5/modules/mixture.html



Packing a Box

Building Structures

Setting up a Dinner Table

Training Problems
(1-3 objects)

Test Tasks 
(10-17x more objects than training)  

(a) (b)

Figure 4: Generalization across different tasks. (a) shows the training tasks used to learn relational region predictors and (b)
shows the test tasks used to evaluate the overall method. We show that the predictors learned from very simple tasks can
generalize to significantly complex test tasks that include more complex goals, more complex environments, and a larger number
of objects (up to 18x). Note: training demonstrations for Keva and Jenga structures include same structures but different robots
to match the gripper configuration of the robot used while testing.

Here, pojoi is the pose of the object oi relative to the object oj .
We define two additional types of boolean relations. First,

given the sets of objects Oτi and Oτj , we define a relation
R′
ij : Oτi×Oτj → {true, false} such thatR′

ij(oi, oj) =⇒
∀k

[
¬Rkij(oi, oj)

]
. Second, we define a relation for each re-

lational region predictor for representing the occupancy of
the predicted region. Intuitvely, this models the free volume
in the predicted region. E.g., the relational critical region be-
tween a gripper and the object (Fig. 2) can be only occu-
pied by a single object but the relational critical region for
a table and a can (Fig. 3 can be occupied by multiple cans.
Specifically, given the sets of objects Oτi and Oτj , a set of
relational regions predictors Ψij , we define a boolean rela-

tion for each relational region predictor ψk ∈ Ψij , R
free
ij :

Oτi → {true, false} that is true iff for objects oi ∈ Oτi
and oj ∈ Oτj , ρfree(ψ

k, oi) > ρ(oj). Here, ρfree(ψ
k, oi) is

the free volume of the region predicted by ψk for the object
oi and ρ(oj) is the volume of the object oj ∈ Oτj .

Given a new task T and the set of objects OT , we use the
automatically learned relational region predictors to predict
the critical regions for objects and then generate the rela-
tional vocabulary VT for the new task T . This vocabulary
now can be used to represent each configuration x ∈ XT as
a high-level state as a set of true relations given the configu-
ration x.



4 Synthesis of Generalizable Actions and
World Models

The last step in the overall world model learning algo-
rithm is to synthesize generalizable and transferrable ac-
tions, models, and action interpreters. Recall that we hy-
pothesized that high-level actions are transitions to and
from relational critical regions. E.g., the transition in
and out from the relational critical region in Fig. 2 in-
duces high-level actions Pickup(Gripper, Object)
and Place(Gripper, Object) respectively. There-
fore, we use the predicted critical regions in training tasks to
invent robot high-level actions. However, using the exhaus-
tive enumeration of the set of predicted regions may lead to
a large number of actions, most of which may be infeasible
to realize. Instead, we create high-level robot actions that
facilitate transitions between abstract states in our training
demonstrations for forming the relational concept vocabu-
lary. This approach ensures that all the created actions are
practically achievable for the robot.

We invent high-level robot actions as transitions between
high-level states in the training demonstrations. First, we
convert every native action transition ⟨x0, . . . xn⟩ to abstract
transitions ⟨s′0, . . . , s′n⟩ using the learned relational vocab-
ulary V and the set of objects O. Here, each abstract state
s′i = {Rk(oi, oj)|∀oi, oj ∈ O,∀Rk ∈ V, x |= Rk(oi, oj)}.
We then convert these grounded abstract transitions to lifted
transitions ⟨s0, . . . , sn⟩ by replacing specific objects in the
training transitions and replacing them with placeholder ob-
jects of the object type. Next, for each transitionCij = si →
sj , we compute sets of added and deleted relations such that
C+
ij = sj \ si and C−

ij = si \ sj and cluster all transi-
tions from the training demonstrations that induce the same
⟨C+

ij , C
−
ij ⟩. Each cluster induces a high-level action āi ∈ Ā.

Once a set of high-level actions Ā is identified, we use as-
sociative learning to learn a symbolic model for each high-
level action ā ∈ Ā. A symbolic model for an action is rep-
resented in terms of its symbolic effects, symbolic precon-
ditions, and action parameters. Our approach also learns the
symbolic model for each high-level action using the set of
training demonstrations Dtrain as follows.

In our setting, effect of an action ā is represented as
effā = ⟨addā, delā⟩. Each cluster ci ∈ C is generated by
clustering transitions the sets of changed relations. These
changed relations correspond to added and removed rela-
tions as an effect of executing the action induced by the clus-
ter. Therefore, for an action āi induced by the cluster ci with
a set of changed relations Ci = ⟨+Ci,− Ci⟩, addāi =+ Ci
and delāi =

−Ci.
To learn the precondition of an action, we take the inter-

section of all states where the action is applicable. Given
a set of relations, this approach generates a maximal pre-
condition that is conservative yet sound (Wang 1994; Stern
and Juba 2017). We learn the precondition of an action
ā ∈ Ā corresponding to a cluster c = ⟨Si → Sj , Cij⟩
preā = ∩s∈Si

s.
Each action can have spurious preconditions correspond-

ing to static relations that do not change when the action is
applied, but are still true in all the pre-states. Therefore, we

remove relations from the learned precondition that (i) are
not parameterized by any of the objects that are changed by
the action and (ii) are not changed at any point in any of the
demonstrations. This removes any predicate from the pre-
condition that is spurious with respect to the data.

Once the precondition and effect of an action are learned,
the final step is to learn the parameters of the action that can
be replaced with objects in order to ground the action. In this
step, the relations in precondition and effect are processed in
order. These relations are processed in alphanumeric order
and each of their parameters is added to the action’s parame-
ter list, if not already added. This process leads to an ordered
list of parameters of the action, which can be grounded with
compatible objects.

5 Empirical Evaluation
We evaluate our method in five different settings that re-
flect real-world complex challenges. These settings involve
different robots operating in both simulated and real-world
environments. In two of these settings, robots (YuMi and
Fetch) use Keva planks and Jenga planks, respectively, to
build various structures based on input goals. Another two
settings simulate a café environment where the robot acts as
an assistant to deliver food items in one case (simulated),
and to set up dining utensils (bowls and glasses) on tables
in another (real-world). Finally, we assess our approach in a
factory setting where the robot needs to efficiently pack all
objects into a small box. In each setting, we collect train-
ing demonstrations in the simulator and evaluate the learned
models either in the simulator (for the café, Keva structures,
and packing tasks) or in the real world (for the dining table
and Jenga structures).

The closest existing line of work is known as behavior
cloning. These approaches (Brohan et al. 2022; Zhao et al.
2024; Black et al. 2024) use similar training demonstra-
tions as our approach; however, instead of learning struc-
tured world models, they learn a single latent policy that
directly predicts primitive robot actions. These approaches
suffer from two major limitations: (i) lack of generalization,
i.e., the learned policies only apply to the training settings
with the same objects and configurations, and (ii) low sam-
ple efficiency, i.e., they require a large number of training
demonstrations.

Generalization We emphasize that a generalist robot must
have the ability to generalize to different quantities and con-
figurations of objects, i.e., it must have a high generalization
factor. We define the generalization factor as the ratio of the
maximum number of objects in test tasks to the maximum
number of objects in training tasks. In all of our settings,
we learn our relational world models in training environ-
ments with only 1-3 objects and evaluate their performance
on tasks that involve significantly more objects and different
settings than the training tasks. Fig. 5(a) shows the general-
ization factor for our approach in the test tasks. These gen-
eralization factors are computed over 12 unique test tasks
for each setting with varying numbers of objects or problem
settings. In the café settings , we successfully tested our ap-
proach with 20 and 8 objects in simulated and real-world set-



(a) (b) (c)

Figure 5: Empirical evaluation of the system. (a) shows the generalization achieved by our approach. The x-axis shows the
problem setting, and the y-axis shows the generalization factor (ration of maximum number of test objects to the maximum
number of training objects). (b) shows the robustness of our approach along with the comparison with Code-as-policies. The
x-axis shows the amount of training demonstrations used to learn the world model, and the y-axis shows the fraction of test
tasks that our approach can solve. (c) shows the succinctness of the learned world models. The x-axis shows the fraction of
the total training demonstrations used (similar to (b)), the y-axis shows the number of high-level actions invented in the world
model. The shaded region shows the training actions used to solve the test tasks.

tings, respectively, while the training tasks contained at most
two objects, and i.e., the generalization factor was 20 for
the simulated setting and 4 for the real-world experiments.
Similarly, for the Keva and Jenga settings, we learned the
world model in settings with 3 plans and successfully scaled
to building structures with 30 Keva planks in simulated set-
tings (generalization factor of 10) using the YuMi robot and
18 Jenga planks in real-world settings (generalization factor
of 6) using the Fetch robot. An important note is that we only
scale up to 4x objects in the box packing setting, as the box
can only accommodate 4 cans, and the training environment
included only a single can.

Sample efficiency and robustness The next area where
current methods are limited is sample efficiency—the num-
ber of training demonstrations needed to learn a policy.
Many approaches require a substantial amount of train-
ing data, often tens of thousands of examples for each
task (Brohan et al. 2022; Zhao et al. 2024). In contrast, our
method demonstrates exceptional sample efficiency, requir-
ing a maximum of only 200 training demonstrations to learn
generalizable world models. These demonstrations consist
of an equal mix of successful (50%) and failed (50%) at-
tempts across all training tasks. To further evaluate our ap-
proach, we reduce the number of training demonstrations
used to learn the world models and test them on a com-
plex set of tasks, assessing the overall system’s robustness.
Figure 5(b) illustrates that our method can effectively learn
useful world models using as few as 40 successful training
demonstrations.

Performance Foundation models (OpenAI 2024; Touvron
et al. 2023) have recently emerged as a popular option
for creating implicit abstractions. Several methods have at-
tempted to take advantage of the information retrieval capa-

bilities of foundation models to address long-horizon robot
planning challenges (Rana et al. 2023; Yu et al. 2023; Liang
et al. 2023; Driess et al. 2023; Wu et al. 2023; Han et al.
2024). However, foundation models often struggle to rec-
ognize robot- and problem-specific requirements for these
abstractions and fail to handle complex tasks effectively.
Additionally, it has been shown that foundation models
possess limited reasoning abilities for long-horizon plan-
ning (Valmeekam et al. 2023a,b; Kambhampati et al. 2024).
In our empirical study, we compared two state-of-the-art
approaches using the same test tasks: (i) a stochastic task
and motion planner (Shah et al. 2020) that employs expert-
crafted world models, and (ii) Code as Policies (CoP) (Liang
et al. 2023), which utilizes large language models (LLMs)
trained on internet-scale data. As expected, STAMP, with its
expert-crafted world models, was able to solve all test tasks.
In contrast, CoP was only able to solve very simple tasks that
involved at most XX objects. (Fig. 5(b)). It is important to
note that we had to modify CoP to re-attempt tasks when
it initially failed, creating a feedback loop. Additionally, we
also provided expert-crafted high-level actions as input in
the form of Python interfaces that CoP can use to execute
different high-level robot actions—a core component of the
world model that our approach automatically learns.

Succinctness Different approaches have sought to learn
various components of world models. However, many of
these approaches learn a significant number of relations and
actions that are not useful for solving test tasks. We also as-
sess the quality of the automatically learned world models
through our approach in terms of succinctness, which refers
to the number of invented relations and actions, as well as
the number of those relations and actions utilized for solv-
ing the test tasks. Figure 5(c) illustrates the succinctness of
the automatically learned world models. In most cases, the



learned world model consists of only a few actions and rela-
tions, with almost 90% of these learned actions and relations
being employed to solve the test tasks. This demonstrates the
reusability and transferability of the learned world models.

Interpretability One of the main advantages of our
approach is that the learned relationships and high-
level actions are semantically interpretable and intu-
itive for humans. Figure 3 illustrates a few auto-
matically learned relationships by our method, which
closely resemble human-understandable concepts, such
as On(Object, Table), Near(Robot, Table),
and Parallel(Plank1, Plank2). These relation-
ships not only aid humans in understanding and verifying
the automatically learned world models but also facilitate
easier specification and communication of tasks to robots.

6 Related Work
The presented approach directly relates to various concepts
in task and motion planning, model learning, and abstraction
learning. However, to the best of our knowledge, this is the
first work that automatically invents generalizable symbolic
predicates and high-level actions simultaneously using a set
of low-level trajectories.

Task and motion planning approaches (Srivastava et al.
2014; Dantam et al. 2018; Garrett, Lozano-Pérez, and Kael-
bling 2020; Shah et al. 2020) develop approaches for au-
tonomously solving long-horizon robot planning problems.
These approaches are complementary to the presented ap-
proach as they focus on using provided abstractions for
efficiently solving the robot planning problems. Shah and
Srivastava (2022, 2024) learn state and action abstractions
for long-horizon motion planning problems. Orthogonal re-
search (Mishra et al. 2023; Cheng et al. 2023; Fang et al.
2023) learn implicit abstractions (action interpreters or ab-
stract actions) for TAMP in the form of generative models.
However, these approaches do not learn generalizable rela-
tional representations as well as complex high-level relations
and actions which is the focus of our work.

Several approaches invent symbolic vocabularies given a
set of high-level actions (or skills) (Konidaris, Kaelbling,
and Lozano-Pérez 2014; Ugur and Piater 2015; Konidaris,
Kaelbling, and Lozano-Pérez 2015; Andersen and Konidaris
2017; Konidaris, Kaelbling, and Lozano-Pérez 2018; Bonet
and Geffner 2019; James, Rosman, and Konidaris 2020).
Ahmetoglu et al. (2022); Asai et al. (2022); Liang and
Boularias (2023) learn symbolic predicates in the form of
latent spaces of deep neural networks and use them for high-
level symbolic planning. However, these approaches assume
high-level actions to be provided as input. On the other hand,
the approach presented in this paper automatically learns
high-level actions along with symbolic predicates.

Numerous approaches (Yang, Wu, and Jiang 2007; Cress-
well, McCluskey, and West 2009; Zhuo and Kambham-
pati 2013; Aineto, Celorrio, and Onaindia 2019; Verma,
Marpally, and Srivastava 2021) have focused on learning
preconditions and effects for high-level actions, i.e., action
model. A few approaches (Čertický 2014; Lamanna et al.
2021) have also focused on continually learning action mod-

els while collecting experience in the environment. Bryce,
Benton, and Boldt (2016) and Nayyar, Verma, and Srivas-
tava (2022) focus on updating a known model using in-
consistent observations. However, these approaches require
a set of symbolic predicates and/or high-level action sig-
natures as input whereas our approach automatically in-
vents these predicates and actions. Several approaches (Sil-
ver et al. 2021; Verma, Marpally, and Srivastava 2022; Chit-
nis et al. 2022; Silver et al. 2022; Kumar et al. 2023; Sil-
ver et al. 2023) have been able to automatically invent high-
level actions that are induced by state abstraction akin to
the presented approach. However, unlike our approach, these
approaches do not automatically learn symbolic predicates
and/or low-level samplers and require them as input.

LLMs for robot planning Recent years have also seen
significantly increased interest in using foundational models
such as LLM (large language model), VLM (visual language
model), and transformers for robot planning and control ow-
ing to their success in other fields such as NLP, text gener-
ation, and vision. Several approaches (Brohan et al. 2022;
Goyal et al. 2023; Shridhar, Manuelli, and Fox 2023; Vuong
et al. 2023) use transformer architecture for learning reactive
policies for short-horizon robot control problems. Problems
tackled by these approaches are analogous to individual ac-
tions learned by our approach.

Several directions of research explore the use of LLMs for
utilize LLMs as high-level planners to generate sequences
comprising of high-level, expert crafted actions (Yu et al.
2023; Liang et al. 2023; Huang et al. 2022; Rana et al. 2023;
Lin et al. 2023; Huang et al. 2023b; Ahn et al. 2023). These
methods make progress on the problem of near-natural lan-
guage communication with robots and are complementary
to the proposed work. However, there is a strong evidence
against the soundness of LLMs as planners. Valmeekam
et al. (2023a) show that LLMs are only ∼ 36% accurate as
planners even in simple block stacking settings not involving
more than 5 object.

On the other hand, approaches that utilize LLMs to trans-
late user requirements to formal specifications (Yu et al.
2023; Ding et al. 2023; Liu et al. 2023b,a; Kwon et al. 2023;
Huang et al. 2023a) are complimentary to our approach.
These approaches input a set of symbolic predicates and use
LLMs for automatically generating symbolic goals from nat-
ural language specifications. These goals can be further used
by existing planners.

7 Conclusion
This paper presents the first known approach for using con-
tinuous low-level demonstration to invent symbolic state and
action abstractions that generalize to different robots and un-
seen problem settings. Thorough evaluation in simulated and
real-world settings shows that the learned abstractions are
efficient and sound, as well as generate comprehensible ab-
stractions. In the future, we aim to utilize these automatically
learned abstractions to allow non-experts to operate robots.
We also aim to extend our approach to account for stochas-
ticity in the environment while providing strong theoretical
guarantees on learned world models.



References
Ahmetoglu, A.; Seker, M. Y.; Piater, J.; Oztop, E.; and Ugur,
E. 2022. DeepSym: Deep symbol generation and rule learn-
ing for planning from unsupervised robot interaction. JAIR,
75: 709–745.
Ahn, M.; Brohan, A.; Brown, N.; Chebotar, Y.; Cortes, O.;
David, B.; Finn, C.; Fu, C.; Gopalakrishnan, K.; Hausman,
K.; Herzog, A.; Ho, D.; Hsu, J.; Ibarz, J.; Ichter, B.; Irpan,
A.; Jang, E.; Ruano, R. J.; Jeffrey, K.; Jesmonth, S.; Joshi,
N. J.; Julian, R.; Kalashnikov, D.; Kuang, Y.; Lee, K.-H.;
Levine, S.; Lu, Y.; Luu, L.; Parada, C.; Pastor, P.; Quiambao,
J.; Rao, K.; Rettinghouse, J.; Reyes, D.; Sermanet, P.; Siev-
ers, N.; Tan, C.; Toshev, A.; Vanhoucke, V.; Xia, F.; Xiao,
T.; Xu, P.; Xu, S.; Yan, M.; and Zeng, A. 2023. Do as I can,
not as I say: Grounding language in robotic affordances. In
Proc. CoRL.
Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
Action Models With Minimal Observability. AIJ, 275: 104–
137.
Andersen, G.; and Konidaris, G. 2017. Active exploration
for learning symbolic representations. In Proc. NeurIPS.
Asai, M.; Kajino, H.; Fukunaga, A.; and Muise, C. 2022.
Classical planning in deep latent space. JAIR, 74: 1599–
1686.
Black, K.; Brown, N.; Driess, D.; Esmail, A.; Equi, M.; Finn,
C.; Fusai, N.; Groom, L.; Hausman, K.; Ichter, B.; et al.
2024. pi 0: A Vision-Language-Action Flow Model for
General Robot Control. arXiv preprint arXiv:2410.24164.
Bonet, B.; and Geffner, H. 2019. Learning first-order sym-
bolic representations for planning from the structure of the
state space. In Proc. ECAI.
Brohan, A.; Brown, N.; Carbajal, J.; Chebotar, Y.; Dabis,
J.; Finn, C.; Gopalakrishnan, K.; Hausman, K.; Herzog, A.;
Hsu, J.; Ibarz, J.; Ichter, B.; Irpan, A.; Jackson, T.; Jesmonth,
S.; Joshi, N. J.; Julian, R.; Kalashnikov, D.; Kuang, Y.; Leal,
I.; Lee, K.-H.; Levine, S.; Lu, Y.; Malla, U.; Manjunath,
D.; Mordatch, I.; Nachum, O.; Parada, C.; Peralta, J.; Perez,
E.; Pertsch, K.; Quiambao, J.; Rao, K.; Ryoo, M.; Salazar,
G.; Sanketi, P.; Sayed, K.; Singh, J.; Sontakke, S.; Stone,
A.; Tan, C.; Tran, H.; Vanhoucke, V.; Vega, S.; Vuong, Q.;
Xia, F.; Xiao, T.; Xu, P.; Xu, S.; Yu, T.; and Zitkovich, B.
2022. RT-1: Robotics Transformer for Real-World Control
at Scale. arXiv:2212.06817.
Bryce, D.; Benton, J.; and Boldt, M. W. 2016. Maintaining
Evolving Domain Models. In Proc. IJCAI.
Čertický, M. 2014. Real-Time Action Model Learning with
Online Algorithm 3SG. Applied AI, 28(7): 690–711.
Cheng, S.; Garrett, C.; Mandlekar, A.; and Xu, D. 2023.
NOD-TAMP: Multi-Step Manipulation Planning with Neu-
ral Object Descriptors. In CoRL 2023 LEAP Workshop.
Chitnis, R.; Silver, T.; Tenenbaum, J. B.; Lozano-Pérez, T.;
and Kaelbling, L. P. 2022. Learning neuro-symbolic rela-
tional transition models for bilevel planning. In Proc. IROS.
Cresswell, S.; McCluskey, T.; and West, M. 2009. Acquisi-
tion of Object-Centred Domain Models from Planning Ex-
amples. In Proc. ICAPS.

Dantam, N. T.; Kingston, Z. K.; Chaudhuri, S.; and Kavraki,
L. E. 2018. An incremental constraint-based framework for
task and motion planning. IJRR, 37(10): 1134–1151.
Ding, Y.; Zhang, X.; Paxton, C.; and Zhang, S. 2023. Task
and motion planning with large language models for object
rearrangement. In Proc. IROS.
Driess, D.; Xia, F.; Sajjadi, M. S. M.; Lynch, C.; Chowd-
hery, A.; Ichter, B.; Wahid, A.; Tompson, J.; Vuong, Q.;
Yu, T.; Huang, W.; Chebotar, Y.; Sermanet, P.; Duckworth,
D.; Levine, S.; Vanhoucke, V.; Hausman, K.; Toussaint, M.;
Greff, K.; Zeng, A.; Mordatch, I.; and Florence, P. 2023.
PaLM-E: An Embodied Multimodal Language Model. In
Proc. ICML.
Fang, X.; Garrett, C. R.; Eppner, C.; Lozano-Pérez, T.; Kael-
bling, L. P.; and Fox, D. 2023. DiMSam: Diffusion Models
as Samplers for Task and Motion Planning under Partial Ob-
servability. In CoRL 2023 LEAP Workshop.
Fu, Z.; Zhao, T. Z.; and Finn, C. 2024. Mobile ALOHA:
Learning Bimanual Mobile Manipulation with Low-Cost
Whole-Body Teleoperation. In Conference on Robot Learn-
ing (CoRL).
Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2020.
PDDLStream: Integrating Symbolic Planners and Blackbox
Samplers via Optimistic Adaptive Planning. In Proc. ICAPS.
Goyal, A.; Xu, J.; Guo, Y.; Blukis, V.; Chao, Y.-W.; and Fox,
D. 2023. RVT: Robotic View Transformer for 3D Object
Manipulation. In Proc. CoRL.
Hafner, D.; Pasukonis, J.; Ba, J.; and Lillicrap, T. 2023.
Mastering diverse domains through world models. arXiv
preprint arXiv:2301.04104.
Han, M.; Zhu, Y.; Zhu, S.-C.; Wu, Y. N.; and Zhu, Y. 2024.
InterPreT: Interactive Predicate Learning from Language
Feedback for Generalizable Task Planning. In Proc. R:SS.
Huang, W.; Abbeel, P.; Pathak, D.; and Mordatch, I. 2022.
Language models as zero-shot planners: Extracting action-
able knowledge for embodied agents. In Proc. ICML.
Huang, W.; Wang, C.; Zhang, R.; Li, Y.; Wu, J.; and Fei-
Fei, L. 2023a. VoxPoser: Composable 3D Value Maps for
Robotic Manipulation with Language Models. In Proc.
CoRL.
Huang, W.; Xia, F.; Xiao, T.; Chan, H.; Liang, J.; Florence,
P.; Zeng, A.; Tompson, J.; Mordatch, I.; Chebotar, Y.; Ser-
manet, P.; Brown, N.; Jackson, T.; Luu, L.; Levine, S.; Haus-
man, K.; and Ichter, B. 2023b. Inner Monologue: Embod-
ied Reasoning through Planning with Language Models. In
Proc. CoRL.
James, S.; Rosman, B.; and Konidaris, G. 2020. Learning
portable representations for high-level planning. In Proc.
ICML.
Kambhampati, S.; Valmeekam, K.; Guan, L.; Verma, M.;
Stechly, K.; Bhambri, S.; Saldyt, L. P.; and Murthy, A. B.
2024. Position: LLMs Can’t Plan, But Can Help Planning in
LLM-Modulo Frameworks. In Proc. ICML.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Pérez, T. 2014.
Constructing symbolic representations for high-level plan-
ning. In Proc. AAAI.



Konidaris, G.; Kaelbling, L. P.; and Lozano-Pérez, T. 2015.
Symbol acquisition for probabilistic high-level planning. In
Proc. IJCAI.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Pérez, T. 2018.
From Skills to Symbols: Learning Symbolic Representa-
tions for Abstract High-Level Planning. JAIR, 61: 215–289.
Kumar, N.; McClinton, W.; Chitnis, R.; Silver, T.; Lozano-
Pérez, T.; and Kaelbling, L. P. 2023. Learning Efficient
Abstract Planning Models that Choose What to Predict. In
Proc. CoRL.
Kwon, M.; Xie, S. M.; Bullard, K.; and Sadigh, D. 2023.
Reward design with language models. In Proc. ICLR.
Lamanna, L.; Saetti, A.; Serafini, L.; Gerevini, A.; and
Traverso, P. 2021. Online Learning of Action Models for
PDDL Planning. In Proc. IJCAI.
LaValle, S. M. 2006. Planning Algorithms. USA: Cam-
bridge University Press. ISBN 0521862051.
Liang, J.; and Boularias, A. 2023. Learning category-level
manipulation tasks from point clouds with dynamic graph
CNNs. In Proc. ICRA.
Liang, J.; Huang, W.; Xia, F.; Xu, P.; Hausman, K.; Ichter,
B.; Florence, P.; and Zeng, A. 2023. Code as policies: Lan-
guage model programs for embodied control. In Proc. ICRA.
Lin, K.; Agia, C.; Migimatsu, T.; Pavone, M.; and Bohg, J.
2023. Text2Motion: From natural language instructions to
feasible plans. Autonomous Robots.
Liu, B.; Jiang, Y.; Zhang, X.; Liu, Q.; Zhang, S.;
Biswas, J.; and Stone, P. 2023a. LLM+P: Empowering
large language models with optimal planning proficiency.
arXiv:2304.11477.
Liu, W.; Du, Y.; Hermans, T.; Chernova, S.; and Paxton,
C. 2023b. StructDiffusion: Language-guided creation of
physically-valid structures using unseen objects. In Proc.
RSS.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D. S.; and Wilkins, D. 1998. PDDL –
The Planning Domain Definition Language. Technical Re-
port CVC TR-98-003/DCS TR-1165, Yale Center for Com-
putational Vision and Control.
Mishra, U. A.; Xue, S.; Chen, Y.; and Xu, D. 2023. Gener-
ative skill chaining: Long-horizon skill planning with diffu-
sion models. In Proc. CoRL.
Molina, D.; Kumar, K.; and Srivastava, S. 2020. Learn and
Link: Learning Critical Regions for Efficient Planning. In
Proc. ICRA.
Nayyar, R. K.; Verma, P.; and Srivastava, S. 2022. Differen-
tial Assessment of Black-Box AI Agents. In Proc. AAAI.
OpenAI. 2024. ChatGPT.
Rana, K.; Haviland, J.; Garg, S.; Abou-Chakra, J.; Reid, I.;
and Suenderhauf, N. 2023. SayPlan: Grounding Large Lan-
guage Models using 3D Scene Graphs for Scalable Robot
Task Planning. In Proc. CoRL.
Shah, N.; and Srivastava, S. 2022. Using Deep Learning to
Bootstrap Abstractions for Hierarchical Robot Planning. In
Proc. AAMAS.

Shah, N.; and Srivastava, S. 2024. Hierarchical Planning and
Learning for Robots in Stochastic Settings Using Zero-Shot
Option Invention. In Proc. AAAI.
Shah, N.; Vasudevan, D. K.; Kumar, K.; Kamojjhala, P.; and
Srivastava, S. 2020. Anytime Integrated Task and Motion
Policies for Stochastic Environments. In Proc. ICRA.
Shridhar, M.; Manuelli, L.; and Fox, D. 2023. Perceiver-
actor: A multi-task transformer for robotic manipulation. In
Proc. CoRL.
Silver, T.; Athalye, A.; Tenenbaum, J. B.; Lozano-Pérez, T.;
and Kaelbling, L. P. 2022. Learning Neuro-Symbolic Skills
for Bilevel Planning. In Proc. CoRL.
Silver, T.; Chitnis, R.; Kumar, N.; McClinton, W.; Lozano-
Pérez, T.; Kaelbling, L. P.; and Tenenbaum, J. 2023. Predi-
cate Invention for Bilevel Planning. In Proc. AAAI.
Silver, T.; Chitnis, R.; Tenenbaum, J.; Kaelbling, L. P.; and
Lozano-Pérez, T. 2021. Learning Symbolic Operators for
Task and Motion Planning. In Proc. IROS.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined Task and Motion Plan-
ning Through an Extensible Planner-Independent Interface
Layer. In Proc. ICRA.
Stern, R.; and Juba, B. 2017. Efficient, Safe, and Probably
Approximately Complete Learning of Action Models. In
Proc. IJCAI.
Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Couairon, R.; Moreau, T.; Pino, J.; Joulin, A.; Grave, E.; and
Lample, G. 2023. LLaMA: Open and Efficient Foundation
Language Models. https://ai.facebook.com/research/large-
language-models.
Ugur, E.; and Piater, J. 2015. Bottom-up learning of object
categories, action effects and logical rules: From continu-
ous manipulative exploration to symbolic planning. In Proc.
ICRA.
Valmeekam, K.; Marquez, M.; Sreedharan, S.; and Kamb-
hampati, S. 2023a. On the Planning Abilities of Large Lan-
guage Models–A Critical Investigation. In Proc. NeurIPS.
Valmeekam, K.; Olmo, A.; Sreedharan, S.; and Kambham-
pati, S. 2023b. Large Language Models Still Can’t Plan
(A Benchmark for LLMs on Planning and Reasoning about
Change). In Proc. NeurIPS.
Verma, P.; Marpally, S. R.; and Srivastava, S. 2021. Asking
the Right Questions: Learning Interpretable Action Models
Through Query Answering. In Proc. AAAI.
Verma, P.; Marpally, S. R.; and Srivastava, S. 2022. Discov-
ering User-Interpretable Capabilities of Black-Box Planning
Agents. In Proc. KR.
Vuong, Q.; Levine, S.; Walke, H. R.; Pertsch, K.; Singh, A.;
Doshi, R.; Xu, C.; Luo, J.; Tan, L.; Shah, D.; Finn, C.; Du,
M.; Kim, M. J.; Khazatsky, A.; Yang, J. H.; Zhao, T. Z.;
Goldberg, K.; et al. 2023. Open X-Embodiment: Robotic
Learning Datasets and RT-X Models. In CoRL 2023 TGR
Workshop.
Wang, X. 1994. Learning Planning Operators by Observa-
tion and Practice. In Proc. AIPS.



Wu, J.; Antonova, R.; Kan, A.; Lepert, M.; Zeng, A.; Song,
S.; Bohg, J.; Rusinkiewicz, S.; and Funkhouser, T. 2023.
TidyBot: personalized robot assistance with large language
models. Autonomous Robots, 47(8): 1087–1102.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning Action Mod-
els from Plan Examples Using Weighted MAX-SAT. AIJ,
171(2-3): 107–143.
Yu, W.; Gileadi, N.; Fu, C.; Kirmani, S.; Lee, K.-H.; Arenas,
M. G.; Chiang, H.-T. L.; Erez, T.; Hasenclever, L.; Humplik,
J.; Ichter, B.; Xiao, T.; Xu, P.; Zeng, A.; Zhang, T.; Heess,
N.; Sadigh, D.; Tan, J.; Tassa, Y.; and Xia, F. 2023. Language
to Rewards for Robotic Skill Synthesis. In Proc. CoRL.
Zhao, T. Z.; Tompson, J.; Driess, D.; Florence, P.;
Ghasemipour, S. K. S.; Finn, C.; and Wahid, A. 2024.
ALOHA Unleashed: A Simple Recipe for Robot Dexterity.
In Proc. CoRL.
Zhuo, H. H.; and Kambhampati, S. 2013. Action-model ac-
quisition from noisy plan traces. In Proc. IJCAI.


