
Learn and Link: Learning Critical Regions for Efficient Planning
(Extended Version)

Daniel Molina, Kislay Kumar, Siddharth Srivastava
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University
Tempe, Arizona 85281

Abstract— This paper presents a new approach to learning
for motion planning (MP) where critical regions of an environ-
ment are learned from a given set of motion plans and used
to improve performance on new environments and problem
instances.

We introduce a new suite of sampling-based motion plan-
ners, Learn and Link. Our planners leverages critical regions
to overcome the limitations of uniform sampling, while still
maintaining guarantees of correctness inherent to sampling-
based algorithms. We also show that convolutional neural
networks (CNNs) can be used to identify critical regions for
motion planning problems. We evaluate Learn and Link against
planners from the Open Motion Planning Library (OMPL)
using an extensive suite of experiments on challenging motion
planning problems. We show that our approach requires far
less planning time than existing sampling-based planners.

I. INTRODUCTION

The motion planning (MP) problem deals with finding a
feasible trajectory that takes a robot from a start configuration
to a goal configuration without colliding with obstacles.
From a computational complexity point of view, even a
simple form of the MP problem is NP-hard [1]. In order to
achieve computational efficiency, motion planning methods
relax requirements of completeness. Sampling-based motion
planners, such as Rapidly-exploring Random Trees (RRT) [2]
and Probabilistic Roadmaps (PRM) [3], rely on probabilistic
completeness, which assures a solution, if one exists, as
the number of samples approaches infinity. Sampling-based
motion planners sample a set of states from the configura-
tion space (C-space) and check their connectivity without
ever explicitly constructing any obstacles. This can reduce
computation time considerably, especially as environments
increase in complexity. Their performance, however, hinges
on the distribution from which points in the C-space are
sampled. Uniform samplers can fail in common situations,
such as in Figure 1, where the robot needs to traverse narrow
regions of measure close to zero under a uniform density in
the C-space.

In this work, we propose a new version of sampling-
based motion planners with associated learning paradigms
that inherit the probabilistic completeness properties of RRTs
and PRMs, and are designed to be able to utilize learned
sampling distributions. In particular, our Learn and Link
(LL) suite of planners can utilize learned information about
critical regions of the C-space, which are less likely to be

Fig. 1. Critical regions [green] predicted by our CNN for a transportation
task through narrow channels.

sampled under a uniform distribution (e.g., narrow corridors
[4]) but are critical for solutions since most solutions for
a given, desired class of problems pass through them. This
notion relates to the notion of landmarks, or parts of the
state space that are necessary for reaching the goal in discrete
planning problems [5]. However, critical regions are not only
useful for reaching the goal, but are also less likely to be
reached under a stochastic search paradigm.

Naive approaches for using critical regions (either learned
or hand-coded) in existing sampling-based motion planners
tend to fail: merely increasing the probability of sampling
from those such regions does not improve the performance
of RRT planners because the parts of the tree(s) closest to
the critical regions tend to be those that are crashing into the
walls adjacent to them. Even when allowing a PRM planner
to select configurations from the critical regions as vertices
in its roadmap, its simple local planner is unable to connect
the vertices in the critical regions to those uniformly sampled
unless a considerable amount of time is used in the roadmap
building process. The LL planners presented in this paper
leverage the positives of these planners while having the
necessary modifications to properly utilize critical regions.

We also present a new approach for learning critical
regions using convolutional neural networks (CNNs) [6],

[7]. We show that when used with our LL planners, this
approach can lead to immense speedups in motion planning
when image-based training data is available for the planning
environment. Since our model only gives base poses, when
dealing with higher dimensional planning, we append each
configuration pulled from the critical regions with a random,
collision-free configuration for the additional DOF values
prior to calling our planners. Although this learning pipeline
is limited to image-based representations, our planners use
critical regions as inputs and can work with any approach
that provides an estimate of the critical regions for a
given environment. Our approach is advantageous over pure
sampling-based planners and pure learners: it leverages learn-
ing from experience to outperform sampling-based planners,
but avoids the possibility of missing solutions that limits pure
imitation learning, and remains probabilistically complete.

Fig. 2. An example of a roadmap created using LL-RM (a) versus a
vanilla PRM (b) for a Barrett WAM arm transportation task. Both planners
are given 1 second to build their roadmap using 30 vertices. The green points
are states that were created when linking the vertices of the roadmap, the
blue points are the vertices of the roadmap that were uniformly sampled,
and the red points are the vertices of the roadmap that came from the critical
regions. Thus, we can see the extreme difference in C-space coverage using
the same amount of time.

The rest of this paper is organized as follows. We begin
with a survey of prior work that our approach draws upon in
Section II. Section III defines the notion of critical regions;
followed by Section IV, which presents the LL planners and
discusses their properties. Section V presents our approach
for learning critical regions using CNNs. Finally Section VI
presents the results of our empirical evaluation on a range
of motion planning problems.

II. RELATED WORKS

Several methods have been proposed to guiding sampling-
based motion planners to solutions. Heuristically-guided
RRT [8] uses a probabilistic implementation of heuristic
search concepts to create a reasonable bias towards explo-
ration, as well as exploiting known good paths. Although
this approach was able to produce less expensive paths, it
required a high computational price. Anytime RRTs [9] reuse
information from previous RRTs to improve on the path by
rejecting samples which have a higher heuristic cost. Batch
Informed Trees (BIT*) [10] uses a heuristic to efficiently
search a series of increasingly dense implicit random geomet-
ric graphs while reusing previous information. In contrast,

our method guides our sampling-based motion planners to
solutions without the need of a heuristic through leveraging
critical regions.

The coupling of learning and MP has been extensively
investigated in the past. As discussed in the introduction,
naive approaches for using learning to bias sampling in
stochastic motion planners don’t perform well. Recent work
by Ichter et al. uses a Conditional Variational Autoencoder
to bias sample points for MP conditioned on encoded en-
vironment variables [11]. This encoding is generalizable to
higher dimensions, however it requires structuring the data
to encompass the state of the robot, the environment, the
obstacles (encoded as occupancy grid), and the start and
goal configurations. Moreover, during inference, the network
model requires this expensive data structuring again, which
can take around 50 seconds. In contrast, we focus on image-
based learning where data can be easily generated for training
using a top-view camera. Moreover, inferences can also
be made using a top-view image of the environment in
less than 5 seconds. Havoutis et al. use topology to learn
sub-manifold approximations that are defined by a set of
possible trajectories in the C-space [12]. This requires either
motion plans that are generated through a motion capture
device, or hand-crafted partial plans. Pan et al. use instance-
based learning where prior collision results are stored as an
approximate representation of the collision space and the
free C-space [13]. This is used to make cheaper probabilistic
queries. Although their method shows significant improve-
ment in some environments, their work is limited in finding
solutions through narrow passages between obstacles where
optimal solution may lie. In our work, the network learns
the position of regions that are critical for a given class of
MP problems, but have a low probability of getting sampled
under a uniform distribution, such as narrow regions. Using
the identified critical regions with our LL planners, we show
a reduction in average planning time of 57%-99%, and higher
success rates, compared to OMPL’s RRT, RRT-Connect, and
PRM planners.

III. FORMAL FRAMEWORK

Given a robot R, an environment E, and a class of MP
problems M, we define the measure of criticality of a
Lebesgue-measurable open set r ⊆Rn, µ(r), as ltsn→+r

f (r)
v(sn)

,
where f (sn) is the fraction of observed motion plans solving
tasks from M that pass through sn, v(sn) is the measure
of sn under a reference (usually uniform) density, and →+

denotes the limit from above along any sequence {sn} of sets
containing r (r ⊆ sn for all n). Note that µ(r) is zero when
f (r) = 0. While µ(r) can be infinite for a region, for all
practical purposes we consider regions r with v(r)> 0 under
the uniform density. Intuitively, regions with high criticality
measures are those that are vital for solutions to problems
in M, but have a low probability of being sampled under a
uniform density.

IV. LEARN AND LINK PLANNERS

In this section we discuss the methods that make
up our planners. We describe both the single query
planner, LLP, and the multi-query planner, LL-RM. A
Python implementation of the planners can be found at
https://aair-lab.github.io/ll.html.

A. Learn and Link Planner

LLP is Learn and Link’s single query planner. This version
differs from LL-RM in that we do not seed our roadmap
using vertices that were uniformly sampled (i.e. m = 0), and
we pass in the start and goal configurations right away to
algorithm 1. We do this so that instead of building a general
roadmap that spreads across the entire environment, we
build a biased roadmap in which subgraphs rooted from the
start and goal configurations are connected using additional
subgraphs rooted at critical regions to speed up single query
planning.

We first describe algorithm 1 in LLP mode. In lines
14−17, n random collision-free configurations are added as
vertices to the roadmap from the critical regions identified by
the model. In lines 18−21, m = 0 configurations are added
as vertices to the roadmap using a uniform sampler. Since
we are in LLP mode, in lines 22−26, subgraphs rooted from
the start and goal configurations are added to the roadmap.
For the remainder of the algorithm, we attempt to link the
subgraphs spawned from the vertices in the roadmap. In line
28, a random sample is taken to grow the current subgraph
in its direction. In line 29, an attempt is made to extend
the current subgraph to qnew, a new configuration in the
direction of qrand . If adding qnew to the graph results in a
collision, i.e. EXTEND returns Trapped, qnew is not added
to the graph; otherwise it is added. In line 30, a connectivity
attempt occurs to link the current subgraph to the remaining
graphs in the roadmap; once all the subgraphs have been
connected, Linked is returned and the roadmap is complete.
By this point, since we are in LLP mode, the start and
goal configurations have been linked into a single graph.
To extract a path P connecting both points we use Dijkstra’s
algorithm [14] in line 32. If the conditions in lines 29−30 are
not satisfied, we shift to the next subgraph in the roadmap,
using a round-robin approach, in line 36. If an explicit sample
cap is reached, i.e. S 6= ∞, without a solution path being
found, an empty path, indicating a failure, is returned.

Algorithm 2 is used in an attempt to link a subgraph
to the remaining graphs in the roadmap (lines 9− 11), to
remove dead graphs from consideration (line 12), and to
check whether all the subgraphs in the roadmap have been
linked (line 13). A subgraph is considered dead once it has
been linked and added to another graph. Once only one graph
remains in the roadmap list, Linked is returned to indicate
that the roadmap is connected.

Algorithms 3 and 4 are methods reused and adapted from
RRT-Connect to work with graphs instead of trees. They are
used to grow the current subgraph in the direction of the
random samples taken.

Algorithm 1 Learn and Link

1: Input
2: N: number of critical region states to include
3: M: number of uniform states to include
4: CR: list of critical region points
5: Mode: planner mode; LLP or LL-RM
6: Qstart : start configuration, if LLP mode
7: Qgoal : goal configuration, if LLP mode
8: Output
9: P: collision-free path from qstart to qgoal , if it exists

10: RM: constructed roadmap
11: procedure LL(N,M,CR,MODE,Qstart,Qgoal)
12: curr← 0
13: RM← []
14: for n = 0 to N−1 do
15: s← SAMPLE(CR)
16: Gn.init(s)
17: RM.append(Gn)

18: for m = 0 to M−1 do
19: s← SAMPLE()
20: GN+m.init(s)
21: RM.append(GN+m)

22: if mode == LLP then
23: GN+M .init(qstart)
24: GN+M+1.init(qgoal)
25: RM.append(GN+M)
26: RM.append(GN+M+1)

27: for s = 1 to S do
28: qrand ←UNIFORM()
29: if EXT END(Gcurr,qrand) 6= Trapped then
30: if LINK(RM,Gcurr,qnew) == Linked then
31: if mode == LLP then
32: P← PAT H(RM[0])
33: Return P
34: else
35: Return RM
36: Gcurr ← SWAP(RM,Gcurr)

37: Return []

B. Learn and Link Roadmap

LL-RM is Learn and Link’s multi-query planner. This
version differs from LLP in that we attempt to build a
general roadmap which can be reused multiple times for
traversing a C-space based on collision-free configurations
from the critical regions, as well as some uniformly sampled.
To solve a query, we simply try to connect the start and goal
configurations to the roadmap given by algorithm 1 in LL-
RM mode. If we are successful, we use Dijkstra’s algorithm
to obtain a plan.

When in LL-RM mode, the linking process works the
same as LLP. The only differences in LL-RM is that we
include additional vertices in the roadmap from areas which
were uniformly sampled (i.e. m > 0) in lines 18− 21, and
we return the roadmap RM, instead of a path, when the
subgraphs are connected in line 35.

Algorithm 5 is the planning component of LL-RM. In lines
9−12, two subgraphs are initialized from the start (qstart) and
goal (qgoal) configurations in an attempt to connect them to
the existing roadmap RM. In lines 13−18, the same approach
used in the building process is employed to connect the start
and goal subgraphs to the roadmap. In line 16, a solution
check occurs. If a solution is found, the path P connecting
the start and goal configurations is obtained using Dijkstra’s

https://aair-lab.github.io/ll.html

Algorithm 2 LINK

1: Input
2: RM: roadmap of graphs to be connected
3: Gcurr: current subgraph being grown
4: Qnew: most recent configuration added to Gcurr

5: Output
6: S: status of Gcurr’s link attempt
7: procedure LINK(RM,Gcurr,Qnew)
8: R← []
9: for Gi in RM \Gcurr do

10: if CONNECT (Gi,qnew) == Reached then
11: R.append(Gi)

12: RM.link and remove(R,Gcurr)
13: if |RM|== 1 then
14: S← Linked
15: else if |R|> 0 then
16: S←Connected
17: else
18: S← Advanced
19: Return S

Algorithm 3 CONNECT

1: Input
2: G: graph being grown towards q
3: Q: configuration which G is trying to connect to
4: Output
5: S: status of G’s connect attempt
6: procedure CONNECT(G,Q)
7: repeat
8: S← EXT END(G,q)
9: until S 6= Advanced

10: Return S

algorithm in line 17.

C. Probabilistic Completeness

The LL planners maintain the probabilistic completeness
property inherent to sampling-based motion planners. Since
LLP and LL-RM only add a finite set of points to seed their
roadmaps, the added critical region vertices do not reduce
the set of support (regions with non-zero probability) of its
uniform sampler, and thus, this property is preserved.

D. Distinction Between LL Planners and PRM

LLP and LL-RM work analogously to PRM, but they have
their differences. Essentially, PRM views each initial random
configuration as a vertex of a larger graph, whereas LLP
and LL-RM view each initial configuration as the start of
its own graph. Also, PRM uses a quick and simple local
planner to connect its vertices, so they do not store their local
plans; whereas LLP and LL-RM use a tree-based local plan-
ner inspired by RRT-Connect which saves all the spawned
branches when connecting two vertices and incorporates
them into the roadmap. Seeing as we store the trees spawned
by the local planner, instead of simply attempting to connect
a vertex to others within a neighborhood like in PRM, we
leverage the additional connectivity and attempt to connect
each subgraph to every other non-connected subgraph. These
differences are necessary so that subgraphs spawned from the
critical regions can be linked to those outside these regions.
We discovered that since the critical regions are in areas
that are unlikely to be reached under a stochastic search

Algorithm 4 EXTEND

1: Input
2: G: graph being grown towards q
3: Q: configuration which G is stepping toward
4: Output
5: S: status of G’s extend attempt
6: procedure EXTEND(G,Q)
7: S← Trapped
8: qnear ← NN(q,G)
9: if CONFIG(q,qnear,qnew) then

10: G.add vertex(qnew)
11: G.add egde(qnear,qnew)
12: if qnew == q then
13: S← Reached
14: else
15: S← Advanced
16: Return S

Algorithm 5 LL-RM PLAN

1: Input
2: Qstart : start configuration
3: Qgoal : goal configuration
4: RM: roadmap created using LL in LL-RM mode
5: Output
6: P: collision-free path from qstart to qgoal , if it exists
7: procedure RM-PLAN(Qstart,Qgoal,RM)
8: curr← 0
9: G1.init(qstart)

10: G2.init(qgoal)
11: RM.append(G1)
12: RM.append(G2)
13: for s = 1 to S do
14: qrand ←UNIFORM()
15: if EXT END(Gcurr,qrand) 6= Trapped then
16: if LINK(RM,Gcurr,qnew) == Linked then
17: P← PAT H(RM[0])
18: Return P
19: Gcurr ← SWAP(RM,Gcurr)

20: Return []

paradigm, it was not enough to use a simple local planner to
link the two types of subgraphs; but once they were linked,
they drastically sped up the planning process.

V. LEARNING CRITICAL REGIONS

To learn critical regions, we use an image-based approach.
This consists of two phases: a data generation phase and a
model training phase.

Fig. 3. (a) An example training environment overlain with motion traces.
(b) Model input obtained post raster scan. (c) Motion trace image based on
µ-criticality of each pixel. (d) Saliency map obtained from the motion trace
image. (e) Label obtained after binning the saliency map based on pixel
intensity.

A. Data Generation

For each instance of an environment, we begin by ran-
domly selecting a set of 50 motion planning problems

from M {Π1, ...,Π50} and running an off-the-shelf motion
planner to generate a corresponding set of motion plans
{τ1, ...,τ50}. We do this multiple times for each handmade
environment (see Figure 5) to make sure we fully cover its
critical regions; 179 instances per environment in our dataset.
In our data generation process, we utilize an OpenRAVE
[15] implementation of OMPL’s RRT-Connect planner by
https://github.com/personalrobotics, though
any motion planner can be used instead.

We construct the 224x224 training images for each in-
stance using a raster scan and a saliency model. We describe
the process for an SE(2) robot (see Figure 3), though it
can be extended to mobile manipulators, such as the Barrett
arm on a mobile base. We begin by creating a pixel-sized
obstacle based on the dimensions of the desired image
and the bounds of a given environment. We proceed by
scanning the pixel-sized obstacle across the environment.
For the input images, if a collision is detected with an
environment’s obstacles, we select a black pixel, otherwise
a white pixel is selected. For the motion trace images, we
assign a pixel value based on the µ-criticality of the region
the pixel encompasses, which we obtain using {τ1, ...,τ50}.
We then use an implementation of Itti’s saliency model [16]
by https://github.com/mayoyamasaki to extract
relevant salient information and smooth out the salient areas
from the motion trace images. The saliency maps are binned
into two categories, high saliency (denoted by white pixels)
and low saliency (denoted by black pixels), and are used as
the labels.

Even large environments do not affect training. Since our
input images are simple black and white binary images, we
are able to convert an environment into a 224x224 image
during preprocessing without losing important information.
If there exists an environment so large and detailed that too
much information is lost when converting it to a 224x224
image, we instead crop the image into smaller components
before training/inference, and then stitch the pieces together
when looking at the environment as a whole.

The code used to generate the data can be found at
https://aair-lab.github.io/ll.html.

Fig. 4. Network architecture selected for our model.

B. Network Architecture
We propose a general structure for a convolutional

encoder-decoder neural network which learns to detect crit-

Fig. 5. Handmade training environments used to generate data (not
including rotations).

ical regions.
Our network, depicted in Figure 4, has 14 convolutional

layers. 7 layers in the encoder network and 7 layers in the
decoder network forming the encoder-decoder architecture
for pixel-wise classification. A max pooling layer with stride
2 is introduced after each group of same number of filters to
encode the learned representation. Similarly, an upsampling
layer is added before each deconvolutional layer group of
same number of filters. We draw inspiration from [6] for a
learnable upsampling layer in the decoder network.

The first two convolutional layers have 64 filters with a
3× 3 kernel. Motivated by recent promising results [17],
we stack 3 layers with 3×3 kernel size to obtain a similar
receptive field as a 7×7 kernel, with 81% less parameters,
and more effective training owing to the added non-linearity
after every layer. For the initial layer group of filter size
64 and 128, we stack only two layers of kernel size 3× 3.
Though the receptive field is smaller than a 7× 7 kernel,
we still stack only 2 layers as our problem statement does
not require learning complex geometric features. The next
2 layers are of 128 filters with a 3× 3 kernel. We add 3
layers of 256 filters each, with a 3× 3 kernel, for a larger
receptive field since deeper layers learn invariant complex
features [18]. All the convolutional and max-pool layers have
padding added to them.

In the decoder network, corresponding deconvolutional
layers to the encoder network are used. The upsampled
output is used for pixel-wise classification using a softmax
cross-entropy loss function. Each layer in the network is
activated using ReLu nonlinearity.

C. Training

The network was trained using a mini-batch size of 16
and a dataset of 10,024 images. Following [19], we did
not train the network with dropout [20] since the output
of every layer is batch-normalised, which also acts as a
regularizer. We use Adam Optimizer [21] with a 0.1 learning
rate to train the network. The network was trained for
50,000 epochs since the loss converges at this point. The
training images are shuffled before each epoch and trained
with mini-batch to ensure that every input to the network
is different from the previous. This assists the optimizer to
exit local minima. We used an implementation of SegNet
[6] by https://github.com/andreaazzini for its
data pipelines since they provide a fast and efficient input
pipeline which reduces training time.

https://github.com/personalrobotics/or_ompl
https://github.com/mayoyamasaki/saliency-map
https://aair-lab.github.io/ll.html
https://github.com/andreaazzini/segnet.tf

On average, training for the full dataset takes approxi-
mately 3 hours on a single Nvidia GTX 1080Ti.

Fig. 6. Env-A and Env-B are the SE(2) used to evaluate the model. Red
dots represent the start and goal configurations. Env-C and Env-D are the
10-DOF test environments used to evaluate the model. The robot is placed
at the start and goal configurations. Test environments are unseen to the
network (they were not used in the training set of problems).

Fig. 7. Network output for the test environments shown in Figure 5. The
µ-criticality of the output is as follows: µ(Env-A) = 0.604, µ(Env-B) =
1.351, µ(Env-C) = 0.538, and µ(Env-D) = 0.398.

VI. EMPIRICAL EVALUATION

In this paper, we focus on investigating two main ques-
tions:

1) Can CNNs be used to identify critical regions for
motion planning?

2) Can critical regions be used to improve planning
performance?

The first consideration aims to see if we can extend the
visual prowess exhibited by CNNs to identifying the critical

regions of an environment. The second consideration aims
to see if knowing critical regions helps a planner reduce its
computation time. Our intent is not to create the best, most
optimal planner, but to evaluate the gains that can be made
when a planner properly leverages the critical regions of the
C-space being traversed.

To investigate these considerations, we designed challeng-
ing MP problems for SE(2) and the Barrett WAM arm (see
Figure 6), and we explored various network architectures. We
evaluate the quality of the critical regions given by our CNN
using their measure of criticality µ (see Figure 7), as well
as the planning time used by our planners. For our planning
problems, 100 MP problems were constructed using the same
start and goal pair, the same range, and a planning time limit
of 60 seconds. LLP and LL-RM both use 5% of the critical
regions identified as n, and m is 0 and n/10, respectively.
OMPL PRM and LL-RM are both given 1 second to build
a roadmap prior to planning. Our approach is for robots
with omnidirectional base movements, though any movement
constraints can be added in the EXTEND module. It is
important to note that OMPL is written in highly optimized
C++ code compared to our Python implementation.

A. Evaluating Identified Critical Regions

We evaluate the critical regions identified by a model for
an environment using its ground truth motion trace image
(see Figure 3(c)). We first cluster the model-identified critical
regions using k-Nearest Neighbors [22] with k = 25. Then we
evaluate each critical region cluster ci using its µ-criticality,
where we estimate v(ci) as the area of the pixels in the
cluster. The metric values for each cluster are then summed
to obtain an evaluation of the environment as a whole. The
higher the value, the better the critical regions.

We use this metric instead of comparing pixel accuracy
with the ground truth label since the motion trace image is
embedded with much more information regarding the quality
of the critical regions than simply identifying them.

Figure 9 shows a comparison of the critical regions iden-
tified by VGGNet, SegNet, and our parsimonious network
using this metric.

B. Results

Our results suggest that both LLP and LL-RM require
far less time to obtain a solution than OMPL’s RRT, RRT-
Connect, and PRM planners, especially as the environments
increase in difficulty. Figure 8 shows a comparison of plan-
ning time used by the OMPL planners and our LL planners
using the areas learned by our parsimonious network.

1) SE(2) Domain: For SE(2), LLP and LL-RM out-
performed OMPL’s planners in terms of average planning
time and success rate. On Env-A, RRT, RRT-Connect, and
PRM had success rates of 19%, 0%, and 53%, respectively.
For successful plans, LLP and LL-RM required 97% and
99% less time on average, respectively, than PRM, the
best performing OMPL planner on this environment. On
Env-B, RRT, RRT-Connect, and PRM had success rates of
93%, 8%, and 100%, respectively. For successful plans, LLP

Fig. 8. (a) and (b) show the percentage of trials solved versus planning time for the 100 different trials for the SE(2) domain, and (c) and (d) for the
10-DOF domain. Environments A-D are shown in Figure 6.

Fig. 9. (a) Critical regions identified using VGGNet. From left to right,
their µ-criticality is 0 and 0. (b) Critical regions identified using SegNet.
From left to right, their µ-criticality is 0 and 0.260. (c) Critical regions
identified using our network. From left to right, their µ-criticality is 0.604
and 1.351.

and LL-RM required 64% and 74% less time on average,
respectively, than PRM, the best performing OMPL planner
on this environment.

2) 10-DOF Domain: For the transportation tasks using
the movable Barrett arm, LLP and LL-RM require less
planning time on average and had higher success rate than
OMPL. On Env-C, RRT, RRT-Connect, and PRM had suc-
cess rates of 0%, 87%, and 31%, respectively. When com-
paring successful plans, LLP and LL-RM required 89% and
92% less time on average, respectively, than PRM, the best
performing OMPL planner on this environment. On Env-D,

RRT, RRT-Connect, and PRM had success rates of 0%, 23%,
and 8%, respectively. When comparing successful plans, both
LLP and LL-RM required 88% less time on average than
RRT-Connect, the best performing OMPL planner on this
environment.

C. Network Ablation Study

Since obstacles in an environment can be represented by
bounding boxes, most of the objects in our dataset have
regular geometric shapes. We performed an ablation study to
find the simplest model that can learn the feature representa-
tion using as few layers as possible, without compromising
the results. We investigated two different types of neural
networks and compared their performance with SegNet using
our µ-criticality measure. The ablation study for both types
of architecture is discussed below.

1) Convolutional Network: The main question in the
network ablation study was to enquire whether a solely
convolutional network would suffice in solving this problem.

The CNN-based VGGNet learned only to trace obstacle
borders. The µ-criticality for VGGNet as shown in the Figure
9(a) is 0 for all the test environment. Although the criticality
values were not promising, it still shed light on network
behaviour. The network was able to learn the geometry of the
obstacles in the image, which CNNs are known to be good
at, but was unable to identify the critical regions. Moreover,
training VGGNet takes 16 hours on a single Nvidia GTX
1080Ti GPU for 50,000 epochs.

2) Encoder-Decoder: After a fully convolutional ap-
proach failed, we investigated how well a segmentation
architecture, such as SegNet, could learn critical regions.
Following promising initial results using SegNet as shown
in Figure 9(b), we investigated an encoder-decoder network
which can learn the latent representation in a supervised
manner for pixel-wise classification. In an encoder-decoder,
the encoder can learn the feature representation and encode it
into a latent space, while the decoder can learn the pixel-wise
classification on the learned features.

A simple encoder-decoder network with 4 layers each in
the encoder and decoder sections of the network was able to
somewhat learn the critical regions of the data well, obtaining
µ-criticality scores of 0.0156 and 1.043, respectively on the

SE(2) environments, but tended to show a lot of checkerboard
artifacts in the identified regions.

Building on the simple encoder-decoder architecture, we
added 3 more batch normalized layers to increase the recep-
tive field size in an attempt to smooth out the critical regions
and generalize to the test set. We achieved µ-criticality scores
of 0.604 and 1.351 for respective environments as shown in
Figure 9(c), indicating the network’s ability to identify the
critical regions for motion planning.

VII. CONCLUSIONS

We presented a new approach in learning for MP and
used it to create a new suite of sample-based motion plan-
ners, Learn and Link. We constructed a fully convolutional
encoder-decoder neural network to learn critical regions for
MP problems that generalizes across different domains. Our
model is used by our LL planners to remedy the limitations
of uniform sampling, without compromising guarantees of
correctness.

Our results on challenging MP problems demonstrate
that CNNs have the capability to extract important features
relevant to MP problem.

ACKNOWLEDGMENT

This work was supported in part by the NSF under grant
IIS 1909370.

REFERENCES

[1] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
in 20th Annual Symposium on Foundations of Computer Science (sfcs
1979). IEEE, 1979, pp. 421–427.

[2] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The international journal of robotics research, vol. 20, no. 5,
pp. 378–400, 2001.

[3] P. Svestka, J. Latombe, and L. Overmars Kavraki, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[4] S. R. Lindemann and S. M. LaValle, “Current issues in sampling-based
motion planning,” in Robotics Research. The Eleventh International
Symposium. Springer, 2005, pp. 36–54.

[5] J. Hoffmann, J. Porteous, and L. Sebastia, “Ordered landmarks in
planning,” Journal of Artificial Intelligence Research, vol. 22, pp. 215–
278, 2004.

[6] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
arXiv preprint arXiv:1511.00561, 2015.

[7] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[8] C. Urmson and R. Simmons, “Approaches for heuristically biasing
rrt growth,” in Intelligent Robots and Systems, 2003.(IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on, vol. 2.
IEEE, 2003, pp. 1178–1183.

[9] D. Ferguson and A. Stentz, “Anytime rrts,” in Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on. IEEE, 2006,
pp. 5369–5375.

[10] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (bit*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in Robotics and
Automation (ICRA), 2015 IEEE International Conference on. IEEE,
2015, pp. 3067–3074.

[11] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 7087–7094.

[12] I. Havoutis and S. Ramamoorthy, “Motion synthesis through random-
ized exploration on submanifolds of configuration space,” in Robot
Soccer World Cup. Springer, 2009, pp. 92–103.

[13] J. Pan, S. Chitta, and D. Manocha, “Faster sample-based motion
planning using instance-based learning,” in Algorithmic Foundations
of Robotics X. Springer, 2013, pp. 381–396.

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[15] R. Diankov and J. Kuffner, “Openrave: A planning architecture for
autonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-08-34, vol. 79, 2008.

[16] L. Itti and C. Koch, “A saliency-based search mechanism for overt and
covert shifts of visual attention,” Vision research, vol. 40, no. 10-12,
pp. 1489–1506, 2000.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[18] M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in European conference on computer vision.
Springer, 2014, pp. 818–833.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[22] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

	Introduction
	Related Works
	Formal Framework
	Learn and Link Planners
	Learn and Link Planner
	Learn and Link Roadmap
	Probabilistic Completeness
	Distinction Between LL Planners and PRM

	Learning Critical Regions
	Data Generation
	Network Architecture
	Training

	Empirical Evaluation
	Evaluating Identified Critical Regions
	Results
	SE(2) Domain
	10-DOF Domain

	Network Ablation Study
	Convolutional Network
	Encoder-Decoder

	Conclusions
	References

