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Abstract— The need for combined task and motion planning
in robotics is well understood. Solutions to this problem have
typically relied on special purpose, integrated implementations
of task planning and motion planning algorithms. We propose a
new approach that uses off-the-shelf task and motion planners
and makes no assumptions about their implementation. Doing
so enables our approach to directly build on, and benefit from,
the vast literature and latest advances in task planning and
motion planning. It uses a novel representational abstraction
and requires only that failures in computing a motion plan
for a high-level action be identifiable and expressible in the
form of logical predicates at the task level. We evaluate the
approach and illustrate its robustness through a number of
experiments using a state-of-the-art robotics simulator and a
PR2 robot. These experiments show the system accomplishing
a diverse set of challenging tasks such as taking advantage of
a tray when laying out a table for dinner and picking objects
from cluttered environments where other objects need to be
re-arranged before the target object can be reached.

I. INTRODUCTION

In order to achieve high-level goals like laying out a table,
robots need to be able to carry out high-level task planning in
conjunction with low-level motion planning. Task planning
is needed to determine long-term strategies such as whether
or not to use a tray to transport multiple objects, and motion
planning is required for computing the actual movements
that the robot should carry out. However, combining task
and motion planners is a hard problem because task planning
descriptions typically ignore the geometric preconditions of
physical actions. In reality, even simple high-level actions
such as picking up an object have continuous arguments,
geometric preconditions and effects. As a result, combining
task and motion planning by simply first generating a task
plan and then relying on a motion planner to refine that task
plan into a sequence of motions will often not work as there
might not exist a feasible motion plan for the task plan.

The main contribution of this paper is an approach that
provides an interface between task and motion planning (with
fairly minimal assumptions on each planning layer), such that
the task planner can effectively operate in an abstracted state
space that ignores geometry. Geometric constraints discov-
ered by the low-level motion planner are communicated to
the task planner through our interface layer in the form of
discrete predicates.

While our approach is generally applicable for interfacing
task planners and motion planners, for concreteness, we
introduce the main ideas through a tiny example in R2

(Fig. 2). In this problem, a gripper can pick up a block if
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Fig. 1: Top: Outline of our approach. Bottom: Example test scenarios—
(L) A cluttered table where the dark object has to be picked (there is no
designated free space); (M) A dinner layout task where a tray is available
but not necessary for transportation; (R) The PR2 starting a dinner layout.

it is in a small region around the block and aligned with one
of its sides; it can place a block that it is currently holding
by moving to a target location and releasing it. The goal is
for block b1 to end up in region S.

A purely discrete planning problem specification for this
model would include two actions pick and place, each of
which has simple preconditions and effects: if the grip-
per is empty and pick(b1) is applied, the gripper holds
b1; if the gripper is holding b1 and place(b1, S) is ap-
plied, the gripper no longer holds b1 and b1 is placed
in the region S. However, this description is clearly in-
adequate because b2 obstructs all trajectories to b1 in the
state depicted in Fig. 2, and pick(b1) cannot be executed.
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Fig. 2: Running ex-
ample in R2: the grip-
per needs to pick b1
after moving to the dot-
ted pose.

An accurate representation for this
domain has to take into account the
geometric locations of objects and the
gripper. The pick action’s true argu-
ments are initPose, targetPose, block-
Pose, traj denoting the gripper’s initial
pose, the target pose where picking
should be done, the pose of the block,
and the trajectory along which the
gripper should move to get from init-
Pose to targetPose. The preconditions
for picking b1 are: gripper is at init-
Pose; b1 is at blockPose; targetPose
is a valid gripping pose for b1 in

blockPose; traj is a trajectory that starts at initPose and ends
at targetPose; there is no obstruction in traj.

Task planning domain descriptions require actions with



discrete arguments and thus cannot directly handle this new
representation. Using discretization to explicitly consider
the continuous variables in the high-level task planner is
impractical, as even crude discretized approximations of
the domains of the continuous variables quickly lead to
computationally impractical problems. 1

The main idea behind our approach is to enable using
the more accurate descriptions by replacing the continuous-
valued arguments with symbolic references to functionally
defined values—such as “a grasping pose for b1.” We can
then continue to use an off-the-shelf task planner to produce
plans of the form: “execute pick with a target pose which is
a grasping pose for b1 and has a feasible motion plan.” Once
the task plan has been generated, each of the symbols used in
such plans needs to be refined into numbers (coordinates in
this case). The interface layer sets possible values for them
and asks the motion planner to compute a plan corresponding
to them (this constitutes the plan refinement process); if
it succeeds we are in the simplest case and the problem
is solved. Often though, no such numbers will exist—i.e.,
the refinement will fail. In our running example, since b2
is obstructing the gripper’s path, a task plan of picking b1
followed by placing it in the region S cannot be refined into
a feasible motion plan. This will manifest as follows: the
interface layer will run a search over possible instantiations
of the continuous variables in the task plan. For each possible
instantiation, it will ask the motion planner if a low-level plan
exists. The motion planner would report that it didn’t find a
feasible plan for any of the instantiations. At this point the
interface layer will pick an instantiation and extract from the
motion planner’s output what the obstructing objects are, and
will update the task level state to include this information. In
this particular case, it would add “b2 obstructs all trajectories
to the grasping pose for b1.” Now the task planner generates
a new plan: “execute pick with a target pose from where
b2 can be grasped; execute place with a target pose from
where releasing b2 will place it on S; execute pick with a
target pose from where b1 can be grasped.” For this plan the
interface layer will find an instantiation of the continuous
variables for which the motion planner can find a feasible
motion plan and we are done. Although our description of
this example, followed a particular execution, the key point
is that our approach effectively specifies a search problem
and then runs a search over this space. In general more
backtracking, and more communication through the interface
layer is likely to happen.

An important observation, and, indeed, key challenge, is
that the high-level task planner cannot compute or reason
about the truth values of predicates involving the symbolic
references to continuous variables. To handle this issue our
approach initializes the truth values of such predicates to a

1For example, in just a 2D world with 10 sampled points along each axis,
5 objects, and considering only Manhattan paths that don’t loop over them-
selves, we would need to precompute the truth values of close to 50, 000
“obstructs” predicates just for the initial state. A similar discretization for
one arm and the base for a PR2 robot would require ∼ 1011 facts. Even
if such precomputation is feasible, the resulting problems instances are too
large for task planners to solve.

set of default values.
At any stage, the refinement process can fail only if the ge-

ometric precondition for an action was actually false when it
was attempted. Such preconditions often concern the absence
of obstructions, but may also refer to torque limits, stability
properties of assemblies, etc. This is a natural consequence
of using a representation suitable for task planners, and our
approach is designed to handle it: truth values of geometric
properties are updated if needed, during the plan refinement
and generation process.

In the next sections we formalize our algorithm and
describe experiments on a number of tasks, including laying
out a dinner table, which has millions of discrete states and
picking objects while dealing with the replacement of several
obstructions on a tightly cluttered table. Videos of all the
experiments are available at:
http://www.cs.berkeley.edu/˜siddharth/icra14.

II. BACKGROUND

A. Task Planning

The formal language PDDL [1] defines a fully observable,
deterministic task planning problem as a tuple 〈A, s0, g〉,
where A is a set of parameterized propositional actions, s0
is an initial state of the domain, and g, a set of propositions,
is the goal condition. For clarity, we will describe both
preconditions and effects of actions as conjunctive lists of
literals in first-order logic, using quantifiers for brevity. The
discrete pick action could be represented as follows:
pick(b1, gripper)

precon Empty(gripper)
effect InGripper(b1), ¬Empty(gripper)

A sequence of actions a0, . . . , an executed beginning in s0
generates a state sequence s1, . . . , sn+1 where si+1 = ai(si)
is the result of executing ai in si. The action sequence is a
solution if si satisfies the preconditions of ai for all i and
sn+1 satisfies g.

B. Motion Planning

A motion planning problem is a tuple 〈C, f, p0, pt〉, where
C is the space of possible configurations or poses of a
robot, f is a boolean function that determines whether or
not a pose is in collision and p0, pt ∈ C are the initial and
final poses. A collision-free motion plan solving a motion
planning problem is a trajectory in C from p0 to pt such that
f doesn’t hold for any pose in the trajectory. Motion planning
algorithms use a variety of approaches for representing C
and f efficiently. A solution that allows collisions only with
the movable objects in a given environment may be obtained
by invoking a motion planner after modifying f to be false
for all collisions with movable obstructions. Throughout this
paper, we will use the term motion plan to denote a trajectory
that may include collisions.

III. ABSTRACT FORMULATION USING POSE
REFERENCES

Although high-level specifications like pick above capture
the logical preconditions of physical actions they cannot be



used in real pick and place tasks. A more complete repre-
sentation of the pick action can be written using predicates
IsGP, IsMP and Obstructs capturing geometric conditions:
IsGP(p, o) holds iff p is a pose at which o can be grasped;
IsMP(traj, p1, p2) holds iff traj is a motion plan from p1
to p2; Obstructs(obj′, traj, obj1) holds iff obj′ is one of the
objects obstructing a pickup of obj1 along traj.
pick2D(obj, gripper, pose1, pose2, traj)

precon Empty(gripper), At(gripper, pose1),
IsGP(pose2, obj), IsMP(traj, pose1, pose2),
∀obj′¬ Obstructs(obj′, traj, obj1)

effect In(obj1, gripper), ¬Empty(gripper),
At(gripper, pose2)

Unfortunately the continuous pose variables in this speci-
fication lead to an infinite branching factor and cannot be
used with an off-the-shelf task planner. As noted in the
introduction, discretization would be impractical.

We propose an abstract representation where continuous
variables are replaced by ones that range over finite sets
of symbols that are references to continuous values. These
references are derived from a form quantifier elimination;
we refer the reader to the appendix for details A. The
initial state contains a finite set of facts linking the refer-
ences to plan-independent geometric properties they have
to satisfy. Continuing with the example, pose variables
range over pose references such as initPose, gp obji,
pdp obji S for each object obji. Intuitively these refer-
ences denote the gripper’s initial pose, a grasping pose
(gp) for obji and a put-down pose (pdp) for placing
obji in surface S. For these references, the initial state
includes facts: at(gripper, initPose), IsGP(gp obji, obji),
IsPDP(pdp obji S, obji, S), IsMP(traj pose1 pose2, pose1,
pose2), where pose1 and pose2 range over the introduced
pose references. The task planner can now use the pick2D
specification defined above, but with variables ranging over
references replacing the continuous variables. This leads to
immense efficiency in problem representation (discretized
values or sampled poses, which will be used later in the paper
are not enumerated at the high-level in this formulation) and
makes task planning practical.

Returning to the 2D example, the preconditions of place2D
require two new predicates: IsPDL(tloc, S) indicates that
tloc is a put-down location in S and PDObstructs(obj′,
traj, obj, tloc) indicates that obj′ obstructs the trajectory
traj for placing obj at tloc. In this simple example, we
assert that once an object is placed in the region S, it does
not obstruct any pickup trajectories.
place2D(obj, gripper, pose1, pose2, traj, tloc)

precon In(obj, gripper), At(gripper, pose1),
IsPDP(pose2, obj, tloc),IsMP(traj, pose1, pose2),
IsPDL(tloc, S)
∀obj′¬PDObstructs(obj′, traj, obj, tloc)

effect ¬ In(obj, gripper), At(obj, tloc), Empty(gripper),
At(gripper, pose2),
∀obj′, traj′¬Obstructs(obj, traj′, obj′)

Further representational optimization is possible by re-
moving action arguments and that do not contribute any
functionality to the high-level specification. Such arguments

pr2Pick(obj1 gripper, pose1, pose2, traj)
precon Empty(gripper), RobotAt(pose1),

IsBPFG(pose1, obj),IsGPFG(pose2, obj),
IsMP(traj, pose1, pose2),
∀ obj’ ¬ Obstructs(obj′, traj, obj1)

effect In(obj1, gripper), ¬Empty(gripper),
∀obj′, traj′
¬Obstructs(obj1, traj′, obj′),
∀obj′, traj′, tloc′
¬PDObstructs(obj1, traj′, obj′, tloc′)

pr2PutDown(obj, gripper, pose1, pose2, traj, targetLoc)
precon In(obj, gripper) ∧ RobotAt(pose1),

IsBPFPD(pose1, obj, targetLoc),
IsGPFPD(pose2, obj, targetLoc)
IsMP(traj, pose1, pose2), IsLFPD(targetLoc, obj)
∀obj′¬PDObstructs(obj′, traj, obj, tloc)

effect ¬ In(obj, gripper), At(obj, targetLoc)
pr2Move(pose1, pose2, traj)

precon RobotAt(pose1), IsMP(traj, pose1, pose2)
effect ¬RobotAt(pose1), RobotAt(pose2)

Fig. 3: Action specifications for robots with articulated manipula-
tors.

can be reintroduced in task plans prior to refinement.
Our approach easily extends to real robots like the PR2

(e.g., Fig. 3). We can use different geometric conditions
to capture base poses for grasping (IsBPFG) and gripper
poses for grasping (IsGPFG), and for put-down (IsBPFPD,
IsGPFPD). A base pose for grasping is a pose from which
there is a collision-free IK solution to a gripper grasping pose
if all movable objects are removed. A significant point of
difference in this model is that when an object is picked up,
it no longer obstructs any trajectories. Further, the predicate
IsLFPD determines whether or not a location is one where
objects can be placed. This can be true of all locations on
surfaces that can support objects.

As noted in Section II-A, the initial state for a
planning problem is defined using the ground atoms
which are true in the initial state. However, the
truth values of ground atoms over references like
Obstructs(obj10, traj pose1 pose2, obj17) are not known
initially. We initialize such atoms in the initial state. Domain-
specific initializations can also be generated automatically to
facilitate completeness guarantees B.
Conditional Costs The PDDL framework also allows
actions to be associated with costs. The approach presented
above applies to actions whose costs depend on a nite
number of geometric predicates over possibly continuous
action arguments. Such an action can be formulated as
an action with conditional costs, or as a set of actions
with each action having a particular combination of the
geometric preconditions and the cost associated with them.
The approach outlined above applies seamlessly to such
actions in either formulation

IV. TASK AND MOTION PLANNING

We illustrate our approach through a detailed example
using the specification in Fig. 3. Fig. 4a shows an initial task
plan obtained using a task planner and the search space for
instantiations of the pose references used in it. In scenario 1
the interface layer finds instantiations that correspond to an
error-free motion plan, thus solving the problem (Fig. 4b).
In scenario 2 the interface layer is unable to find such an
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(a) On the left we show a task plan with pose references. On the right we
show the search space of possible instantiations of these references. The
initial pose has a unique instantiation as that is the robot’s current pose. In
order to refine the task plan into a motion plan, the interface layer needs
to find instantiations for all pose references, such that there is an error-free
motion plan between each successive pair of poses.
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(b) Scenario 1: The interface layer finds a set of pose instantiations for
which there is an error-free motion plan. This completes the refinement
process.
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(c) Scenario 2: The interface layer completes backtracking search finds
no complete instantiation of poses with an error-free motion plan. The
original task plan cannot be refined into a motion plan.

Initial pose


Update state
 Instantiations

for bpfg_b 
1


Instantiations

for gpfg_b 
1


Move(b , bpfg_b )
1
1


Pick(b , gpfg_b )
1
1


b  obstructs
2


(d) Scenario 2a: The interface layer selects the first possible pose
instantiation and the error-free motion plan for the first step. It uses the
failed preconditions for the second action to update the high-level state.
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(e) Scenario 2b: The interface layer invokes a task planner to compute
a new solution plan for the updated state. Refinement continues with the
new task plan.
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(f) Scenario 2c: The first partial motion plan results in an updated state that
has no solution at the task planning level. The interface layer will continue
to select the next available partial plan and invoke the task planner with
errors corresponding to it until it obtains one for which the high-level state
is solvable. It will then proceed as in Scenario 2b.

Fig. 4: Illustration of the interface layer’s refinement process. Action arguments have been abbreviated.

instantiation (Fig. 4c). It goes on to identify partial solutions
and attempts to extend them using a task planner. In scenario
2a this succeeds with the first partial motion plan (Figs. 4d).
The interface layer generates logical facts capturing reasons
for the failure and updates the high-level state where this
failure occurred. The task planner then produces a new
plan to solve the updated state (4e). In scenario 2c, the
updated state is found to be unsolvable and the interface
layer continues to search for a partial motion plan that whose
infeasibility corresponds to a solvable task planning problem.

We now describe two algorithms that constitute the inter-
face layer. Alg. 1 describes the outer loop of refinement and
regeneration of task plans that continues until a resource limit
(e.g. time) is reached. Alg. 2 describes the process of refining
task plans into trajectories representing motion plans.

A. Overall Algorithm For the Interface

Alg. 1 proceeds by first invoking a classical planner with
the given initial state of the task and motion planning
problem to get HLPlan. In each iteration of the while loop,
TryRefine (Alg. 2) is first called in line 6 in the error-free
mode, which searches for a feasible instantiation of the pose
references used in HLPlan. If this fails, the second call to
TryRefine (line 8) is made in the partial trajectory mode. In

this mode, every invocation of TryRefine yields: (a) a partial
trajectory constituting an error-free refinement of a prefix of
HLPlan, (b) the pose where this trajectory ends (c) the first
action in HLPlan that could not be refined into a motion plan,
and (d) the failed preconditions of this action. failStep and
failCause are used to update the high-level state by applying
the effects of actions in HLPlan until failStep on the state
for which HLPlan was obtained. If failStep is the first step
in the plan this leads to a modification of the initial state.
In line 10 a task planner is invoked with this new state. If
this state is unsolvable, execution continues into the next
iteration where TryRefine returns the next partial trajectory
for the same HLPlan and the errors corresponding to it. If
on the other hand the state was solvable and newPlan was
obtained execution continues with an invocation of TryRefine
with the updated plan in error-free mode (line 11). If an
upper limit on the number of attempted refinements for
HLPlan is reached (line 14) the refinement process starts
over from the first action in the available plan after resetting
the PoseGenerator used by TryRefine to instantiate pose
references, and removing facts corresponding to the old pose
reference instantiations.



Algorithm 1: Task and Motion Planning Algorithm
Input: State, InitialPose
if HLPlan not created then1

HLPlan ← callClassicalPlanner(State)2
step ← 1; partialTraj ← None; pose1 ← InitialPose3

while resource limit not reached do4
if TryRefine(pose1, HLPlan, step, partialTraj,5
ErrFreeMode) succeeds then

return refinement6

repeat7
(partialTraj, pose2, failStep, failCause)8

← TryRefine(pose1, HLPlan, step,
partialTraj, partialTrajMode)

state ← stateUpdate(State, FailCause, FailStep)9
newPlan ← callClassicalPlanner(state)10
if newPlan was obtained then11

HLPlan ← HLPlan[0:failStep] + newPlan12
pose1 ← pose2; step ← failStep13

until NewPlan obtained or MaxTrajCount reached
if MaxTrajCount reached then14

Clear all learned facts from initial state15
Reset PoseGenerators with new random seed16
Reset step, partialTraj, pose1 to initial values17

B. Refining Task Plans into Motion Plans

We assume wlog that all HLPlans are zero-indexed lists,
and start with an initial action that has no effect.

1) The TryRefine Subroutine: TryRefine (Alg. 2) imple-
ments a backtracking search over sets of possible instan-
tiations for each pose reference used in the high-level plan.
Starting with the input InitialPose, in each iteration of the
loop, TryRefine invokes PoseGenerator to get a possible
target pose for the next action. This is described in the
next section. ActionNum maintains the current action index,
for which a motion plan has been found. The function
TargetPose() maps an action to the target pose currently
being considered for that action. We first discuss lines 11-
15. If another target pose for the next action is avail-
able, an arbitrary motion planner is called with it in line
11. If motion planning succeeds in the error-free mode,
the iteration proceeds to the action after next. Otherwise,
the algorithm proceeds differently in error-free and partial-
trajectory modes. In error-free mode it obtains another target
pose for the next action. In partial-trajectory mode it yields
the reasons for failure (14: the yield keyword fixes the
algorithm’s flow of control so that the next invocation of
TryRefine resumes from the statement after yield). This
failure can result from (a) obstructions in motion planning,
which are obtained as described in section II-B and (b)
general geometric preconditions of actions, e.g. stackability,
which are determined by dedicated modules. These errors
are converted into logical facts in terms of pose references
(independent of geometric values) and returned via the yield
statement. Lines 7-10 capture backtracking, which is carried
out when the pose generator has exhausted all possible
instantiations of the next action’s references.

In practice, we carried out motion planning in error-free

Algorithm 2: TryRefine Subroutine
Input: InitialPose, HLPlan, Step, TrajPrefix, Mode
ActionNum ← Step− 1; Traj ← TrajPrefix1
Initialize target pose generators2
Target pose list for HLPlan[ActionNum] ← {InitialPose}3
while Step− 1 ≤ ActionNum ≤ length(HLPlan) do4

axn ← HLPlan[ActionNum]5
nextAxn ← HLPlan[ActionNum+1]6
if TargetPose(nextAxn) is defined then7

/* backtrack */
TargetPose(nextAxn)8

← PoseGenerator(nextAxn).resetAndGetFirst()
TargetPose(axn)9

←PoseGenerator(axn).getNext()
ActionNum−−; Traj ← Traj.delSuffixFor(axn)10

else if GetMotionPlan(TargetPose(axn),11
TargetPose(nextAxn)) succeeds then

Traj ← Traj + ComputedPath; ActionNum++12
if Mode = PartialTrajMode then13

yield (TargetPose(axn), Traj, ActionNum+1,14
GetMPErrors(TargetPose(axn),

TargetPose(nextAxn)))
end
TargetPose(nextAxn)15

← PoseGenerator(nextAxn).getNext()
if ActionNum = length(HLPlan)+1 then16

return Traj17
end

end

mode only when an IK solution existed.
2) Pose Generators: The PoseGenerator for an action

is intended to iterate over those values for pose references
which satisfy the plan-independent geometric preconditions
of that action. These are the geometric preconditions that
are not affected by actions, such as IsBPFG, IsGPFG etc. In
practice, the PoseGenerator iterates over a set of finite but
randomly sampled values that are only likely to satisfy these
properties. The random seed for generating these values is
reset when MaxTrajCount is reached in Alg. 1.

More specifically, PoseGenerator generates (a) an instan-
tiation of the pose references used in the action’s arguments
and (b) a target pose corresponding to each such instantia-
tion. We also allow the pose generator to generate a tuple
of target poses (waypoints) if needed, for multi-trajectory
actions. The GetMotionPlan call in TryRefine succeeds for
such a tuple of waypoints only if it can find a motion plan
between each successive pair of waypoints. We discuss a few
specific examples of pose generators below.
PoseGenerator for pr2Pickup The pickup pose generator
instantiates the pose references bpfg obji and gpfg obji,
which need to satisfy the geometric properties IsBPFG
and IsGPFG. For bpfg obji it samples base poses oriented
towards obji in an annulus around the object. For gpfg obji,
we need poses at which closing the gripper will result in
a stable grasp of the object. Computing such poses is an
independent problem and can be solved using state-of-the-
art approaches for grasping. We assume that such poses are
known for each object class (e.g. bowl, can, tray etc.) and
used an approach where every grasp pose corresponds to a



pre-grasp pose and a raise pose that the gripper must move
to, after it closes around the object. The pose generator
is responsible for generating possible values for all of the
intermediate poses as waypoints.
PoseGenerator for pr2PutDown The pose generator for
put-down instantiates pose references of the form tloc (a
possible pose reference for targetLoc), bpfpd obji tloc,
and gpfpd obji tloc to satisfy the properties IsBPFPD and
IsGPFPD. tloc values are sampled locations on supporting
surfaces within a certain radius of the current base pose;
values for bpfpd obji tloc are obtained by sampling base
poses in an annulus around tloc and oriented towards it.
Gripper put-down poses of the form gpfpd obji tloc are
sampled by computing possible grasping poses assuming the
object was at tloc.

C. Completeness

We present a sufficient condition under which our ap-
proach is guaranteed to find a solution if one exists. These
conditions are not necessary: our empirical evaluation shows
the algorithm succeeding in a number of tasks that do not
satisfy these conditions.

Definition 1: A set of actions is uniform wrt a goal g and
a set of predicates R if for every r ∈ R,

1) Occurrences of r in action preconditions and goal are
either always positive, or always negative

2) Actions can only add atoms using r in the form
(positive or negative) used in preconditions and the
goal g

Theorem 1: Let P = 〈A, s0, g〉 be a planning problem
such that there are no reachable dead-end states w.r.t. g
and A is a set of actions that is uniform wrt the g and
the geometric predicates used in the domain. Let G be the
pose generator for the pose references used in s0. If all the
calls to the motion planner terminate, then Alg. 1 will find a
sequence of motion plans solving P if one exists using the
pose references captured by G.

Intuitively, termination follows because under the
premises, every time a state update takes place, missing
geometric facts are added to the state and can only be
removed by actions but not added again. We refer the reader
to the appendix B for the proof.

V. EMPIRICAL EVALUATION

We implemented the proposed approach using the Open-
RAVE simulator [2]. In all of our experiments we used
Trajopt (multi-init mode), which is a state-of-the-art motion
planner that uses sequential convex optimization to compute
collision avoiding trajectories [3]. For every motion planning
query, Trajopt returns a trajectory with a cost. A wrapper
script determined collisions (if any) along the returned tra-
jectory. We used two task planners, FF [4] and the IPC
2011 version of FD [5] in seq-opt-lmcut mode, which
makes it a cost-optimal planner. FD was not appropriate for
the first two tasks described below since they used negative
preconditions and FD has known performance issues with
negative preconditions. Domain compilations for eliminating

Problem %Solved in 600s Avg. Solution Time (s)
Drawer (O) 100 34
Drawer (N) 100 185
Clutter-15 100 32
Clutter-20 94 57
Clutter-25 90 69
Clutter-30 84 77
Clutter-35 67 71
Clutter-40 63 68
Dinner-2 100 63
Dinner-4 100 133
Dinner-6 100 209

TABLE I: Summary of the results. All numbers except for the
cluttered table problem are from 10 randomly generated problems.
Cluttered table problems showed greater variance and are averages
of 100 randomly generated problems for each number of objects.

negative preconditions are possible but impractical as they
lead to hundreds of facts in the initial problem specifications.
Since our system can work with any classical planner, we
used FF for tasks where costs were not a concern. All the
problems used an ambidextrous version of the PR2 actions
shown in Fig. 3 with task-specific actions such as placing
items on a tray and opening a drawer. The source code,
problem generation scripts for use in benchmarking and
videos for all tasks are available to the community at the
website for this paper [6]. All experiments were carried out
on Intel Core i7-4770K machines with 16GB RAM, with
two tests running in parallel at a time. All the success rates
and times are summarized in Table I.

A. Object in a Drawer

In this domain the robot needs to open a drawer and
retrieve an object inside it. An object in front of the drawer
prevents its complete opening. The inner object’s placement
determines where the robot should place itself to avoid
collisions with the outer object, and whether it is possible
to retrieve the inner object without moving the outer object.
This task illustrates the generality of our approach in going
beyond pick and place, and grasping in cluttered environ-
ments. We modeled it using an open-drawer action, whose
pose generator generates random bounded values for the pull-
distance. In the solution plans, our system chose to position
the robot so as to open the drawer and access the inner object
without moving the obstruction when possible. The results
show average solution times for situations where removing
the obstruction was optional (O) and necessary (N).

B. Cluttered Table

In this task, the objective is to pick up a target object
from a cluttered table. There is no designated free space
for placing objects, so the planning process needs to find
spots for placing obstructing objects. In order to make the
problem more challenging, we restricted pickups to only
use side-grasps. The robot’s thick grippers create several
obstructions and, many of the pose instantiations lead to
cyclic obstructions. Since placing objects adds obstructions,
this task does not satisfy the premises of Thm. 1. In addition
to the summarized results in Table I, Fig. 7 shows a histogram
of the solution times. To the best of our knowledge, no
other approach has been shown to perform at this level



Fig. 5: Test domains from L to R: drawer domain, cluttered table with 40 objects where the dark object denotes the target object, and
dinner layout. The rightmost images show the PR2 using the tray and completing the dinner layout.

Fig. 6: Some of the steps executed while solving an instance of the 40 object cluttered table with the dark object as the target. Each
snapshot shows a grasp being executed.

       
1

10

Clutterï15

  3

30

       
 

 

Clutterï20

       
 

 

Clutterï25

0 100 200 300 400 500 600
1

10

N
um

be
r o

f P
ro

bl
em

s S
ol

ve
d

  3

30 Clutterï30

0 100 200 300 400 500 600
 

 

Clutterï35

0 100 200 300 400 500 600
 

 

Clutterï40

Time (s) Time (s) Time (s)
0 0

Fig. 7: Histograms of solution times for problems solved within
600s in the cluttered table domain. Y-axis is in log-scale.

on randomly generated constrained problems without using
specialized geometric reasoning routines.

C. Laying Out a Table for Dinner

The goal of this task is to lay out a dinner table. A
tray is available, but not necessary for transportation. We
modeled a scenario where the initial location of objects was
far from the target location by asserting that these locations
were in different rooms and associating a high cost to all
task-level moves across rooms. The geometric properties
in this domain were stackability and relative positions of
objects (see below). Stackability was determined using object
diameters. The test scenarios had 2, 4 and 6 objects (cups
and bowls with equal numbers of each), placed at random
locations on the table. Objects had random names to prevent
the task planner from favoring any particular stacking order.
The initial task planner specification allowed all objects to be
stacked on each other. Optimal task planning is hard in this
domain, as the number of reachable states exceeds 3 million
with just 6 objects. We used FD as the task planner since
plan cost was a consideration.

Our system appropriately used the tray to transport items.
It used inefficient movements when the robot picked objects
on its left with its right hand (and vice versa) as the task
planner chose hands arbitrarily. We made two modifications
to address this, both of which increase the complexity
of the task planning problem by increasing its branching

factor. We used a conditional cost formulation (Sec. III) to
penalize actions which accessed an object or a location on
the right (left) with the left (right) hand. We also added a
Handoff action in the domain, which transfered an object
from one hand to the other. The resulting behavior, though
not guaranteed to be optimal, showed the system determining
which hand to use for a particular grasp or putdown and
whether or not a handoff should be done. To the best of
our knowledge, no other approach has been shown to solve
task and motion planning problems with such large high-
level state spaces without using task-specific heuristics or
knowledge beyond the set of primitive task-level actions.

D. Real World Validation

For the real world experiments we used ROS packages for
detecting object and table poses (ar track alvar) and for
SLAM (hector slam). A video of the PR2 laying out the
table using this system is available at this paper’s website [6].

VI. RELATED WORK

The closest related work was a preliminary version of
the approach presented here [7]. It used a non-backtracking
version of Alg. 2 and carried out online execution. Our
approach builds upon the vast literature of related work
in robotics and planning. The field of discrete planning
has made several advances in scope and scalability, mainly
through the development of efficient methods for computing
heuristic functions automatically from a domain definition
(e.g. [8]). Various researchers have investigated the problem
of combining task and motion planning [9], [10], [11], [12].
However, to the best of our knowledge, very few approaches
are able to utilize off-the-shelf task and motion planners and
most rely on specially designed task and/or motion planning
algorithms. Those that use off-the-shelf task planners make
minimal use of task plans: typically as one of the inputs in a
heuristic function for guiding search in a configuration space.
These approaches do not address the fundamental problems
of the task planning description being incomplete and do



not attempt to (a) represent geometric information in a form
that task planners can use or (b) correct the task planner’s
representation with information gained through geometric
reasoning. In contrast, our approach attempts to refine task
plans into motion planning solutions and to provide the task
planner with corrected geometric information if necessary.

Cambon et al. [13] propose an approach that bears sim-
ilarity to ours in using location references. The references
in their approach however are not developed into a system
for communicating geometric information to the task planner
and correcting its domain definition. They are also not
derived from a specification of action preconditions and
effects. This approach requires the motion planner to use
probabilistic roadmaps (PRMs) [14] with one roadmap per
movable object, and per permutation of a movable object
in each gripper for robots like the PR2. The role of the
task plan is also limited to its length, which is one of
the inputs in a heuristic function for search. However, their
approach is probabilistically complete. Kaelbling et al. [15]
combine task and motion planning using an input hierarchy
and a specifically designed regression-based planner that
is equipped to be able to utilize task-specific reasoning
components and regress useful geometric properties.

Grasping objects in a cluttered environment is still an open
problem in robotics. Dogar et al. [16] present an approach
for replacing pick-and-place in cluttered environments with
push-grasps. This is an interesting approach for dealing with
obstructions while grasping, and would be promising as a
primitive action in our overall approach. Approaches have
also been developed for motion planning in the presence
of movable objects (e.g. [17]), but they do not address the
general problem of combining task and motion planning.

Reinvoking task planners relates to replanning for partially
observable or non-deterministic environments [18], [19].
However, the focus of this paper is on the substantially
different problem of providing the task planner with in-
formation gained through geometric reasoning. An alternate
representation for dealing with large sets of relevant facts in
the initial state would be to treat them as initially unknown
and use a partially observable planner with non-deterministic
“sensing” actions [20]. Finding offline contingent solutions
would be impractical in our setting, and they typically don’t
exist for all possible truth values of geometric predicates.
Wolfe et al. [21] use angelic hierarchical planning to define
a hierarchy of high-level actions over primitive actions. Our
approach could be viewed as using an angelic interpretation:
pose references in task plans are assumed to have a value that
satisfies the preconditions, and the interface layer attempts to
find such values. Approaches for planning modulo theories
(PMT) [22] and planning with semantic attachments [23]
address related problems high-level planning in hybrid do-
mains. These approaches require an extended planning lan-
guage and corresponding, extended planners.

VII. CONCLUSIONS

We presented a novel approach for combined task and
motion planning that is able to solve non-trivial robot plan-

ning problems without using task-specific heuristics or any
hierarchical knowledge beyond the primitive PDDL actions.
Our system works with off-the-shelf task and motion plan-
ners, and will therefore scale automatically with advances in
either field. It supports actions with geometric preconditions
without making assumptions about the implementation of the
task planner. We also presented a sufficient, but not necessary
condition for completeness. We created a suite of problems
that can be used as benchmarks for task and motion planning
and also demonstrated that our system works in several non-
trivial, randomly generated tasks where this condition is not
met and also validated it in the real world with a PR2 robot.
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APPENDIX

A. Abstract Formulation Through Quantifier Elimination

We introduce the central principle behind using pose
referencs with an example. Consider an action like grasping
in a pick and place domain. Its preconditions include real-
valued vectors and preconditions require spatial reasoning.
For clarity in this description, we consider a situation
where objects are not stacked and assume that the tar-
get location where an object has to be placed is clear.
The high-level grasp action can be specified as follows:

pick-simple(c, obj1)
precon IsBPFG(c, obj1)∧ robotAt(c)

∧∀obj2¬ obstructs(c, obj2, obj1)
effect in-gripper(obj1)

In this specification, the variable c represents robot config-
urations. In order to motivate our approach, consider the ef-
fect of this action in a framework like situation calculus [24]
but using a timestep rather than a situation to represent the
fluents:
∀t, obj1∀c(IsBPFG(c, obj1, t) ∧ robotAt(c, t) ∧
∀obj2¬obstructs(c, obj2, obj1, t) → inGripper(obj1, t +
1))

Note that this is not the complete successor state axiom for
in-gripper, which will also have to include other actions that
affect it and default conditions under which it doesn’t change
across timesteps. However, this implication is sufficient to
illustrate the main representational device we will use. We
first use the clearer, logically equivalent form:

∀t, obj1(∃c(IsBPFG(c, obj1, t) ∧ robotAt(c, t) ∧
∀obj2¬obstructs(c, obj2, obj1, t)) → inGripper(obj1, t)

which asserts more clearly that any value of c that satisfies
the preconditions allows us to achieve the postcondition.
We can now use the standard technique of Skolemization
to replace occurrences of c with a function of obj1, t:
∀t, obj1((IsBPFG(gp(obj1, t), obj1, t)
∧ robotAt(gp(obj1), t)
∧ ∀obj2¬obstructs(gp(obj1), obj2, obj1, t))

→ inGripper(obj1, t+ 1)
where the Skolem function gp(x, t) is just a symbol of

type location to the discrete planner. Intuitively, it represents
a robot configuration corresponding to the grasping-pose of
x. This representation will allow the discrete planner to treat

the entire problem at a symbolic level, without the need
for creating a problem-specific discretization. A potential
problem however, is that the Skolem functions will depend
on t, or the current step in the plan. In practice however, at
the discrete level, the time argument in a Skolem function
f(x̄, t) can be ignored as long as it is possible to recompute
(or reinterpret) f when an action’s precondition is violated by
its existing interpretation during the execution (as is the case
in our implementation). We therefore drop the t argument
from the Skolem functions in the rest of this paper.

The equivalence with an existential form as described
above can be used for each action effect as long as the
continuous variable being Skolemized is not free in the
subformula on the right of the implication. For instance,
we can add the effect that grasping an object removes all
obstructions that it had created, regardless of robot config-
urations. Therefore, to represent the grasp operator for a
discrete planning problem, rather than using a discretized
space of configurations, we only need to add symbols of the
form f(ō) in the planning problem specification, for each
object argument tuple ō consisting of the original objects,
or constants in the problem. Since many classical planners
don’t support functions, they can be reified as objects of the
form f ō with an associated set of always true relations, e.g.
is f(f oi, oi). The discrete description of pick-simple thus
becomes:

pick-simple(`, obj1):
precon is gp(`, obj1)∧ IsBPFG(`, obj1)

∧ robotAt(`)
∧∀obj2¬ obstructs(`, obj2, obj1)

effect in-gripper(obj1)
∧∀`2, obj3¬obstructs(`2, obj1, obj3)

Here ` ranges over the finite set of constant symbols of the
form gp obji where obji are the original constant symbols in
the problem. In this way, regardless of how many samples are
used in the lower level process for interpreting these symbol,
the discrete planner has a limited problem size to work with
while computing the high-level plan.

Finally, consider the only remaining case for an action
effect, when a continuous variable occurs freely in the sub-
formula on the right, e.g. ∀x, c(ϕprecon(x, c) → ϕeffect(x, c)).
In this case we don’t perform Skolemization. The symbol
used for c in this case will be an action argument, and must
range over the original objects in the domain or those already
introduced via Skolemization.

Although this exhausts the set of actions commonly used
in PDDL benchmark problems, the accurate description of
an action may involve side-effects on symbols not used
as its arguments. E.g., the putDown(obj1, loc1) action may
deterministically introduce obstructions between a number of
robot configurations and other objects. We don’t encode such
side effects in the high-level planning problem specification;
these facts are discovered and reported by the lower level
when they become relevant.

To summarize, we transform the given planning domain
with actions using continuous arguments by replacing oc-
currences of continuous variables with symbols represent-



ing Skolem function application terms. Every continuous
variable or the symbol replacing one, of type τ gets the
new type τsym. Planning problems over the modified do-
mains are defined by adding finite set of constants for
each such τsym in addition to the constants representing
problems in the original domain. The added constants denote
function application terms, e.g. gp obj17, for each physical
object and Skolem function application. This increases the
size of the input only linearly in the number of original
objects if the Skolem functions are unary. Note that the
set of Skolem functions itself is fixed by the domain and
does not vary across problem instances. The initial state
of the problem is described using facts over the set of
declared objects, e.g. “is gp(gp obj17, obj17)” denoting that
the location name gp obj17 is a grasping pose for obj17
and “obstructs(gp obj17, obj10, obj17)”, denoting that obj10
obstructs obj17 when the robot is at gp obj17.

In this formulation, the size of the input problem specifica-
tion is independent of the sampling-based discretization: we
do not need to represent sampled points from the domains
of continuous variables.

B. Formal Results

We now discuss the conditions under which our solution
approach is complete. In doing so we show that under
certain conditions, effective default assignments for atoms
can be ontained easily. We use the notion of probabilistically-
complete [25] to categorize sampling based algorithms that
are guaranteed to find a solution with sufficiently many
samples.

The following definition uses the concept of positive and
negative occurrences of atoms in formulas. Intuitively an
occurrence of an atom in a formula is negative (positive)
if it is negated (non-negated) in the negated-normal-form of
the formula. This notion of occurrence is sufficient for our
purposes as we deal only with problems with finite universes
and all quantifiers can be compiled into conjunctions or dis-
junctions. The following lemma follows from the definition
of positive and negative occurrences:

Lemma 1: Suppose an atom p(c) occurs only positively
(negatively) in a ground formula ϕ. If s is an assignment
under which ϕ is true then it must also be true under an
assignment s′ that makes p(c) true (false) and is the same
as s for all other atoms.

Definition 2: A planning domain is uniform wrt a goal g
and a set of predicates R if for every r ∈ R,

1) Occurrences of r in action preconditions and goal are
either always positive, or always negative

2) Actions can only add atoms using r in the form
(positive or negative) used in preconditions and the
goal g

Let PS be the set of predicates whose atoms may use pose
references as one of their arguments, and let D = 〈R,A〉 be
a planning domain that is uniform wrt a goal g and PS . In
the following, consider atoms over a fixed set of constants
U . Let spart be an assignment of truth values to atoms over
R\PS . Let sdefault be an assignment of truth values to atoms

over PS , assigning the atoms of each positively (negatively)
occurring predicate the truth value true (false).

Proposition 1: The state spart ∪ sdefault has a solution plan
for a goal g iff there is some assignment s0 of atoms over
PS such that spart ∪ s0 has a solution plan for reaching g.

Proof: Suppose there is an assignment s0 under which
spart ∪ s0 has a solution π and which assigns an atom p(c̄1)
true, while all occurrences of p in action preconditions and
g are negative. Consider the assignment s′0 which assigns
p(c̄1) false, but is otherwise the same as s0.

We show that π solves spart∪s′0 as well. Suppose not, and
that a(c̄2) is the first action in π whose preconditions are
not satisfied when π is applied on spart ∪ s′0. In this failed
execution, a(c̄2) must have been applied on a state s′k that
differs only on p(c̄1) from the corresponding state skin the
execution of π on s0. This is because all preceding action
applications succeded and have the same deterministic effects
in both executions. Let the ground formula representing the
preconditions of this application of a(c̄2) be ϕ. By Lemma 1,
ϕ must be satisfied by s′k, and we get a contradiction: a(c̄2)
must be applicable on s′k. The case for positive defaults is
similar.

Thus, in planning problems that are uniform wrt to the
set of predicates which use pose references, it is easy
to obtain a default truth assignment for atoms over these
predicates, under which the problem is solvable if there is
any assignment to those atoms under which it is solvable. The
following result provides sufficient conditions under which
our approach is complete. Let D be a planning domain and
U a set of typed constants. A dead-end for 〈D,U〉 wrt g is
a state over atoms(R, U) which has no path to g.

We say that two low-level states are physically similar
if they differ only on the interpretation of pose references
and atoms using pose references. We use the symbol [s] to
denote the discrete representation of a low-level state s, and
[s]default to represent the version of [s] obtained by using the
default assignment for atoms using pose references, and the
assignments in [s] for all other atoms.

The following presents sufficient conditions under which
our approach solves any problem which is solvable under
some evaluation of pose references.

We now present the main theoretical result. Intuitively,
the result holds because under the premises, every time a
state update takes place, missing geometric facts are added to
the state. Under the uniform condition, these facts can only
be removed by actions but not added again. We note that
these sufficient conditions are not necessary: our empirical
evaluation shows the algorithm succeeding in a number of
tasks that do not satisfy these conditions.

Theorem 2: Let D be a planning domain, U a set of typed
constants, g a goal, and PS the set of predicates in D that
use pose references, such that 〈D,U〉 does not have dead-
ends wrt g and D is uniform wrt g and PS . Let G be the
pose generator for the pose references used in s0.

If the combination of G and the motion planner is prob-
abilistically complete then for any low-level state s, if there
exists a physically similar state s′ such that [s′] is solvable



by the high-level planner then the execution of Alg. 1 with
inputs [s]default and D will produce a motion plan leading to
the goal.

Proof: The proof follows from the following two points:
1. For any given interpretation of pose references represented
by a low-level state s′`, Alg. 1 will eventually either discover
the truth values of all atoms using pose references or identify
the interpretation as unsolvable.

This is because in every non-final iteration of Alg. 1, line
7 must be executed and will return a non-empty assignment
of atoms constituting a violated precondition. The entire set
of atoms that violated preconditions are generated from is
finite. Once they have been returned by the low level, they
will never be generated again for this interpretation. This is
because the atom is incorporated into the new discrete state
accurately. Subsequent actions can only make it true (false)
when it occurs positively (negatively) in preconditions. As
a result, the discrete planning layer will never consider an
atom that occurs positively to be true if its truth value was
returned as false (true) by the low-level—unless an action
set it to true in which case the low-level also considers it to
be true.

If at any stage a discrete state s with default values
for some atoms using pose references is unsolvable, then
replacing them with any other truth values will not make the
problem solvable. Thus, if at any stage the classical planner
call in line 2 fails for a discrete state s with default values that
are inconsistent with the low-level state for some atoms using
pose references, the problem is indeed unsolvable under that
interpretation.
2. As a result of probabilistic completeness, the low-level
will discover all possible interpretations of pose references.

The uniform property used in this result plays a role
similar to simple domains defined by Bonet and Geffner [26].
Neither categorization is more general than the other. In
contrast to simple domains, uniformity is less restrictive in
not requiring invariants over initially unknown facts, while
simple domains are less restrictive in not enforcing all
occurrences of unknown predicates to be of the same polarity.


