
Sarah Keren
Technion

Siddharth Srivastava
Arizona State University

Naman Shah
Arizona State University

IJCAI 2023 Tutorial

Integrated Task and Motion Planning
From Foundations to Research Frontiers

19th August, 2023

Asdfasdfsdafsadfasd

asdfasdfas

ASC asdfasdf

2

Outline

1. Background: Why Task and Motion Planning?
2. Abstraction as a Foundation for TMP
3. Modern Abstraction-Based Approaches
4. Research Frontier: Neuro-Symbolic Abstraction Learning for TMP

3

Fundamental Problem: Long-Horizon Planning
𝑆, set of states

𝐴, set of actions

𝑇: 𝑆×𝐴 → 𝜇𝑆, action transition function

𝑅: 𝑆×𝐴 → 	ℝ, costs and utility of states, actions (can express goals and some forms of preferences*)

Automated Planning/Sequential Decision Making:

What should the robot do to maximize 𝑅 (achieve goal) over multiple time steps?

4

Task and Motion Planning: Longer Horizons, Uncertainty

5

[Shah, Vasudevan, Kumar, Srivastava, ICRA 2020]

[Srivastava, Gupta, Zilberstein, Abbeel
and Russell, AAAI 2015]

Formulation as SDM problems: 𝑆 =?𝐴 =?

Configuration Space (C-Space): State Space for a Robot in an Environment

Configuration: A complete specification of the position of every point in the system

C-Space: Space of all possible system configurations

2 - Dim 6 - Dim 20 - Dim

6

Configuration Space (C-Space)

7[Source: CS287, Pieter Abbeel, UC Berkeley]

Configuration Space (C-Space)

Obstacles reduce free space

Computing obstacle boundaries in C-Space provably exponential

8[Source: CS287, Pieter Abbeel, UC Berkeley]

Configuration Space (C-Space)

Obstacles reduce free space

Computing obstacle boundaries in C-Space provably exponential

9[Source: CS287, Pieter Abbeel, UC Berkeley]

Motion Planning Problem in C-Space 𝑋

Given 𝑥! , 𝑥" ∈ 𝑋
 compute a path from 𝑥! to 𝑥"

Path: continuous function 𝜏: 0,1 → 𝑋
s.t. 𝜏 0 = 𝑥! and 𝜏 1 = 𝑥" and ∀𝑥	𝜏 𝑥 not in 𝑋#$%

Examples

10

Formulation as Motion Planning Problems:

State (Config) Space 𝑋 =?
𝑥! , 𝑥" =?

YuMi: Two 7-DoF armsPR2: Two 8 DoF arms + 1 DoF height + 3 DoF base

What happens to the C-space when the robot picks up a plank?

Pure Motion Planning is Not Enough!
• Motion planning – which path (of waypoints) should the robot take?

• But which motion planning problem should it solve? different pickups ⇒	different c-spaces

• Where would motion planning goals in each C-space come from?

• Clearly, motion planning is not enough

11

Motion planning

Can a “higher-level” planner help us compute the strategy?

Then we could refine each action in the plan into a motion plan

Higher-level planning is typically done over states described using
features, or properties

 E.g., #clothes on table

 IsHolding(robot, basket)

 ...

 +

Actions describing how and when robot can change these properties

Would Pure Task-Planning Do the Trick?

12

Example of a high-level action:

Would Pure Task-Planning Do the Trick?

13

(:action pickup
 :parameters (?obj ?gripper)
 :precondition (and (empty ?gripper)
 (ontable ?obj))
 :effect (and (not (empty ?gripper))
 (not (ontable ?obj)
 (in ?obj, ?gripper)))))

SDM problem: which sequence of actions will lead to the goal?

The Shakey Robot

14

How do These High-Level Actions Connect to the C-Space?

15

GoTo(l)

Pickup(x)

PutDown(x)

Temporal Abstraction

≡	Abstract Actions,

 Macros,
 Options…

At(x, l)

InGripper(x)

AtDestination(x)

State

Abstraction

16

GoTo(l)

Pickup(x)

PutDown(x)

Temporal Abstraction

≡	Abstract Actions,

 Macros,
 Options…

At(x, l)

InGripper(x)

AtDestination(x)

State

Abstraction

How do These High-Level Actions Connect to the C-Space?

Sometimes Intuitive Abstractions are … Perfect

17

3
2
1

4 5
6 OnTable(3)

On(1,2)

…

Pickup(x)

PutDown(x)

(:action pickup
 :parameters (?obj ?gripper)
 :precondition (and (empty ?gripper)
 (ontable ?obj) (clear ?obj)
 :effect (and (not (empty ?gripper))
 (not (ontable ?obj)
 (in ?obj, ?gripper) (not (clear ?obj))))))

But Human Intuition has its Limits

18

Can pickup only from the side

Obstructions depend on
choice of movement trajectory

Pickup the red can!
Pickup(x)

PutDown(x)

Abstract

Actions

OnTable(3)

On(1,2)

OnTable(2)
OnTable(1)

…

Abstract

State

[Srivastava et al., ICRA 2014; Srivastava et al., AAAI 2016]

Prevailing Abstraction

?!

(:action pickup
 :parameters (?obj ?gripper)
 :precondition (and (empty ?gripper)
 (ontable ?obj) (clear ?obj)
 :effect (and (not (empty ?gripper))
 (not (ontable ?obj)
 (in ?obj, ?gripper) (not (clear ?obj))))))

But Human Intuition has its Limits

19

Can pickup only from the side

Obstructions depend on
choice of movement trajectory

Abstract model 𝑡ℎ𝑖𝑛𝑘𝑠 this is a trivial problem

Solutions from abstract model: Mostly infeasible

Pickup the red can!
Pickup(x)

PutDown(x)

Abstract

Actions

OnTable(3)

On(1,2)

OnTable(2)
OnTable(1)

…

Abstract

State

[Srivastava et al., ICRA 2014; Srivastava et al., AAAI 2016]

Prevailing Abstraction

?!

But Human Intuition has its Limits

20

Can pickup only from the side

Obstructions depend on
choice of movement trajectory

Abstract model 𝑡ℎ𝑖𝑛𝑘𝑠 this is a trivial problem

Solutions from abstract model: Mostly infeasible

Pickup the red can!
Pickup(x)

PutDown(x)

Abstract

Actions

OnTable(3)

On(1,2)

OnTable(2)
OnTable(1)

…

Abstract

State

[Srivastava et al., ICRA 2014; Srivastava et al., AAAI 2016]

Prevailing Abstraction

?!

Task Planning is Not Enough!

Task Planning followed by motion planning is also
not enough!

Summary: We Need to Integrate Task and Motion Planning!

• Task planning – given a task planning problem, computes the high-level action the robot should perform at
each step

• But that action may have no feasible motion plan (recall: cluttered table)

• Motion planning – given a motion planning problem, computes the path that the robot should take

• But which motion planning problem should it solve?

(Trajectory planning – selects the control inputs that should go to the robot’s motors)

21

Task planning
Motion planning

Trajectory planning
or control

Summary: We Need to Integrate Task and Motion Planning!

• Task planning – given a task planning problem, computes the high-level action the robot should perform at
each step

• But that action may have no feasible motion plan (recall: cluttered table)

• Motion planning – given a motion planning problem, computes the path that the robot should take

• But which motion planning problem should it solve?

• (Trajectory planning – selects the control inputs that should go to the robot’s motors?)

22

Task planning
Motion planning

Trajectory planning
or control

Technical Problems That Characterize Integrated Task and Motion Planning

High-level (abstract) models are imprecise! They scale to long horizons at the expense of
low-level constraints
Ø Which HL action will have a feasible motion plan at a point in time?

Each HL action (e.g., pickup) defines uncountably infinite Motion Planning Problems!

Ø Which MP should be solved?

Formalized later in the tutorial

Outline

1. Background: Why Task and Motion Planning?
Task Planning is Not Enough
Motion Planning is Not Enough
Foundations of Motion Planning

2. Abstraction as a Foundation for TMP
3. Abstraction-based Approaches
4. Research Frontier: Neuro-Symbolic Abstraction Learning for TMP

23

Recall: Configuration Space (C-Space)

Obstacles reduce free space

Computing obstacle boundaries in C-Space provably exponential

24[Source: CS287, Pieter Abbeel, UC Berkeley]

Sampling-based Motion Planning
• Sampling-based solutions sample the C-Space instead of explicitly computing it

• Probabilistic Roadmap (PRM)

• Rapidly-exploring random tree (RRT)

• Simply need to know if the robot is in collision (workspace query)

25

Probabilistic Roadmaps (PRM)

Forbidden space Free/feasible space

26
[Source: CS287, Pieter Abbeel, UC Berkeley]

Probabilistic Roadmaps (PRM)

Configurations are sampled by picking coordinates at random

27
[Source: CS287, Pieter Abbeel, UC Berkeley]

Probabilistic Roadmaps (PRM)

Configurations are sampled by picking coordinates at random

28
[Source: CS287, Pieter Abbeel, UC Berkeley]

Probabilistic Roadmaps (PRM)

Configurations are sampled by picking coordinates at random

29
[Source: CS287, Pieter Abbeel, UC Berkeley]

Probabilistic Roadmaps (PRM)

Sampled configurations are tested for collisions

30
[Source: CS287, Pieter Abbeel, UC Berkeley]

Probabilistic Roadmaps (PRM)

Each milestone is linked to its nearest neighbors by straight paths

31
[Source: CS287, Pieter Abbeel, UC Berkeley]

Probabilistic Roadmaps (PRM)

PRM is searched for a path from start (s) to goal (g)

32
[Source: CS287, Pieter Abbeel, UC Berkeley]

Probabilistic Roadmaps (PRM)

Collision-free edges are retained as local paths to form PRM

33
[Source: CS287, Pieter Abbeel, UC Berkeley]

Probabilistic Roadmaps (PRM)

Start and goal configurations are included as milestones

34
[Source: CS287, Pieter Abbeel, UC Berkeley]

Probabilistic Roadmaps (PRM)

Collision-free edges are retained as local paths to form PRM

35
[Source: CS287, Pieter Abbeel, UC Berkeley]

Probabilistic Roadmaps (PRM)

• Recap
• Randomly sample configurations from C-Space
• Connect them to nearest neighbors (if no collisions

with obstacles)
• Two primitive procedures (workspace collision query):

• Check if configuration is in free space
• Check if an edge is in free space

• PRM can be used for multiple queries

36

How is this different from vanilla search problems?

Probabilistic Roadmaps (PRM)

• Recap
• Randomly sample configurations from C-Space
• Connect them to nearest neighbors (if no collisions

with obstacles)
• Two primitive procedures (workspace collision query):

• Check if configuration is in free space
• Check if an edge is in free space

• PRM can be used for multiple queries

37

How is this different from vanilla search problems?

- Uncountably infinite state space (hence the need for sampling)
- Connectivity needs to be computed on the fly

+ Known metric as a starting point

Rapidly-Exploring Random Trees (RRT)

Data structure: T = (nodes V, edges E)

38
[Source: CS287, Pieter Abbeel, UC Berkeley]

Rapidly-Exploring Random Trees (RRT)

;

// Sample configuration from C-space

// Find nearest node in the tree to sample

// Try extension nearest node towards sample

// If extension does not collide with obstacles

// Add new node and edge to the tree

39
[Source: CS287, Pieter Abbeel, UC Berkeley]

Rapidly-Exploring Random Trees (RRT)

;

// Sample configuration from C-space

// Find nearest node in the tree to sample

// Try extension nearest node towards sample

// If extension does not collide with obstacles

// Add new node and edge to the tree

40
[Source: CS287, Pieter Abbeel, UC Berkeley]

Rapidly-Exploring Random Trees (RRT)

;

// Sample configuration from C-space

// Find nearest node in the tree to sample

// Try extension nearest node towards sample

// If extension does not collide with obstacles

// Add new node and edge to the tree

41
[Source: CS287, Pieter Abbeel, UC Berkeley]

Rapidly-Exploring Random Trees (RRT)

;

// Sample configuration from C-space

// Find nearest node in the tree to sample

// Try extension nearest node towards sample

// If extension does not collide with obstacles

// Add new node and edge to the tree

42
[Source: CS287, Pieter Abbeel, UC Berkeley]

Rapidly-Exploring Random Trees (RRT)

;

// Sample configuration from C-space

// Find nearest node in the tree to sample

// Try extension nearest node towards sample

// If extension does not collide with obstacles

// Add new node and edge to the tree

43
[Source: CS287, Pieter Abbeel, UC Berkeley]

Rapidly-Exploring Random Trees (RRT)

;

// Sample configuration from C-space

// Find nearest node in the tree to sample

// Try extension nearest node towards sample

// If extension does not collide with obstacles

// Add new node and edge to the tree

44
[Source: CS287, Pieter Abbeel, UC Berkeley]

Early Approaches

45

Early Characterization of Key Challenges: aSyMov
• Approach built upon PRMs

• Articulated key technical problem: picking and placing objects are discrete events, change the
“robot”, c-space

• Picking an object leads to a new, composed robot

• Different composed versions of the robot have different C-spaces

• Solution Idea:

• Maintain separate (projected) PRMs for different versions of the robot

• Link them up based on actions such as pick and place

• Motion planning after a pick-up would use the PRM for the composed robot

• Where does task planning come in?

• Goal specified in PDDL-like language

• Task plan is used as a heuristic in PRM expansion

46

Cambon, S., Alami, R., & Gravot, F. (2009). A hybrid approach to intricate motion,
manipulation and task planning. The International Journal of Robotics Research

aSyMov: Example Problem
• PRM for robot + box is disconnected

• Components correspond to different grasps

• PRM for robot alone is also disconnected.

• Components correspond to different box
positions

• Need a path through linked points

• Grow a PRM per action; bias expansion by using
high-level plan cost as a heuristic for c-states

• High-level model may be abstract (inaccurate) but
used in a limited manner – not updated

47

High-Level Summary

Search
Space

High Level
Reasoning

Low Level
Reasoning

High-level High Level
Language

aSyMov Single Any TP PRM/RRT Symbolic PDDL

61

Outline

1. Background: Why Task and Motion Planning?
2. Abstraction as a Foundation for TMP
3. Modern Abstraction-Based Approaches
4. Research Frontier: Neuro-Symbolic Abstraction Learning for TMP

62

Recall Problem Hierarchies
• Task planning – given a task planning problem, computes the high-level action the robot should perform at

each step

• Long horizon: each action takes usually a few minutes to complete.
• Motion planning – given a motion planning problem, computes the path that the robot should take

• short horizon: each waypoint usually takes a few seconds to be achieved
• (Trajectory planning – selects the control inputs that should go to the robot’s motors)

• extremely short horizon: runs ~50 Hz

63

Task planning
Motion planning

Trajectory planning
or control

Can we better utilize this hierarchy?

64

Can we somehow exploit this hierarchy?
Ans: Yes – and the key concept is “abstractions”

65

Domain for Robot Planning

G

Robot R

Goal Area Object O

Init Area

(:action Move
 :parameter ?robot ?location ?trajectory
 :precondition
 not At(?robot ?location)
 Collision-free(?trajectory)
:effect
 At(?robot ?location)
)

66

Domain for Robot Planning

G

Robot R

Goal Area Object O

Init Area

(:action Move
 :parameter ?robot ?location ?trajectory
 :precondition
 not At(?robot ?location)
 Collision-free(?trajectory)
:effect
 At(?robot ?location)
)

Key challenges: infinitely many facts, infinite branching factor

67

Abstraction: State Abstraction

G

Robot R

Goal Area Object O

Init Area

E.g., At(𝑂,Init) is True iff ∃𝑙 ∈ 𝐵𝑙𝑢𝑒𝐴𝑟𝑒𝑎	s.t. pose(o,l) = True.

69

Abstraction: State Abstraction

G

Robot R

Goal Area

First-order logic queries from concrete vocabulary 𝑉&
to abstract vocabulary 𝑉' where 𝑉' ⊂ 𝑉&.

The query 𝑟 %! 	 B𝑜(, … , 𝑜)	 = 𝑇𝑟𝑢𝑒 iff

 ∃𝑜(, … , 𝑜) such that 𝑜! ∈ 𝜌(B𝑜!) and

𝜑*
+" 𝑜(, … , 𝑜) ,#

= 𝑇𝑟𝑢𝑒.

Object O

Init AreaCollection
function
Symbolic
Reference

70

E.g., At(𝑂,Init) is True iff ∃𝑙 ∈ 𝐵𝑙𝑢𝑒𝐴𝑟𝑒𝑎	s.t. pose(o,l) = True.

Here, 𝜌 𝐼𝑛𝑖𝑡 = 𝐵𝑙𝑢𝑒𝐴𝑟𝑒𝑎 = {𝑝(, … , 𝑝)}

Abstraction: Symbolic Actions

First-order logic queries from concrete vocabulary 𝑉&
to abstract vocabulary 𝑉' where 𝑉' ⊂ 𝑉&.

The query 𝑟 %! 	 B𝑜(, … , 𝑜)	 = 𝑇𝑟𝑢𝑒 iff

 ∃𝑜(, … , 𝑜) such that 𝑜! ∈ 𝜌(B𝑜!) and

𝜑*
+" 𝑜(, … , 𝑜) ,#

= 𝑇𝑟𝑢𝑒.

G

Robot R

Goal Area Object O

Init Area

(:action Move
 :parameter ?robot ?location ?trajectory
 :precondition
 not At(?robot ?location)
 Collision-free(?trajectory)
:effect
 At(?robot ?location)
)

Symbolic arguments that
can be instantiated with
symbolic references
for high-level planning

71

G

Robot R

Goal Area Object O

Init Area

(Move R Init Traj1)

72

Abstraction: State Abstraction

G

Robot R

Goal Area Object O

Init Area

(Move R Init Traj1)

Sampler[0.25,…0.14]

73

Abstraction: State Abstraction

Abstraction: Refining Symbolic Action

G

Robot R

Goal Area Object O

Init Area

(Move R Init Traj1)

Sampler

74

Abstraction: Refining Symbolic Action

G

Robot R

Goal Area Object O

Init Area

(Move R Init Traj1)

Motion
Planner

75

Challenge 1 – Which MP to Solve?

G

Robot R

Goal Area Object O

Init Area

(Move R Init Traj1)

Sampler[0.25,…0.14]

Infinite samples!

76

Challenge 1 – Which MP to Solve?

G

Robot R

Goal Area Object O

Init Area

(Move R Init Traj1)

Sampler[0.25,…0.14]

Infinite samples!C1: Each high-level action defines infinitely many MP problems!

77

Challenge 2 – Which MP Will be Solvable?

(:action Move
 :parameter ?robot ?location ?trajectory
 :precondition
 not At(?robot ?location)
 Collision-free(?trajectory)
:effect
 At(?robot ?location)
)

No way to verify which
trajectories are collision-free

Can pickup only from the side

Obstructions depend on
choice of movement trajectory

78

Challenge 2 – Which MP Will be Solvable?

(:action Move
 :parameter ?robot ?location ?trajectory
 :precondition
 not At(?robot ?location)
 Collision-free(?trajectory)
:effect
 At(?robot ?location)
)

No way to verify which
trajectories are collision-free

Can pickup only from the side

Obstructions depend on
choice of movement trajectory

C2: Loss of information
 in abstraction à

Actions in plan
that can not refinable

79

Task and Motion Planning Problem

80

𝑂, universe of objects and object poses (implicitly defined)

𝑃 = 𝑃!"# ∪ /𝑃$, set of symbolic predicates and interpretations (definitions in geometric constraints)

Generates 𝑆, set of abstract states

𝐴 = 𝐴!"# ∪ �̅�$, set of abstract actions

𝑇: 𝑆×𝐴 → 𝜇𝑆, action transition function

𝑅: 𝑆×𝐴 → 	ℝ, costs and utility of states, actions (can express goals and some forms of preferences*)

𝛾, a concretization function (often in the form of samplers or generators)

Task and motion planning:

Compute a sequence of actions from 𝐴 that maximizes the utility 𝑅 and that can be executed in the
given model.

Optimization and SMT Based Approaches

81

IDTMP
• Core idea: Use advances in SAT/SMT solvers to perform hybrid search for TMP

• State variables for different objects and use poses as values

• Convert each high-level action to low-level motion planning problem.

82
Dantam, N. T., Kingston, Z. K., Chaudhuri, S., & Kavraki, L. E. (2018).
An incremental constraint-based framework for task and motion
planning. The International Journal of Robotics Research,

Nedunuri, Srinivas, et al. "SMT-based synthesis of integrated task
and motion plans from plan outlines." 2014 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2014.

IDTMP: SMT Planning
• SMT = satisfiability module theories

• Model the problem as Boolean satisfiability problem

83

IDTMP: SMT Planning
• SMT = satisfiability module theories

• Model the problem as Boolean satisfiability problem

G

Robot R

Goal Area Object O

Init Area

State variables:
Pose of the object 𝑃- ∈ 𝑅.
Configuration of the robot 𝐶/ ∈ 𝒳

Actions:

Pick

Place
Move

84

IDTMP: SMT Planning

G

Robot R

Goal Area Object O

Init Area

State variables:
Pose of the object 𝑃- ∈ 𝑅.
Configuration of the robot 𝐶/ ∈ 𝒳

Actions:

Pick

Place
Move

85

𝑃 = 𝑝-, … , 𝑝) 	 (a set of state variables)

𝐴 = {𝑎-, … , 𝑎0} (a set of actions)

IDTMP: SMT Planning

G

Robot R

Goal Area Object O

Init Area

State variables:
Pose of the object 𝑃- ∈ 𝑅.
Configuration of the robot 𝐶/ ∈ 𝒳

Actions:

Pick

Place
Move

Three constraints:

1. 𝑎!0 ⇒ 𝑃𝑟𝑒 𝑎! 0 ⋀	 𝐸𝑓𝑓 𝑎! 01(

86

// If an action is taken at the step 𝑘, the its precondition and effect must hold

𝑃 = 𝑝-, … , 𝑝) 	 (a set of state variables)

𝐴 = {𝑎-, … , 𝑎0} (a set of actions)

IDTMP: SMT Planning

G

Robot R

Goal Area Object O

Init Area

State variables:
Pose of the object 𝑃- ∈ 𝑅.
Configuration of the robot 𝐶/ ∈ 𝒳

Actions:

Pick

Place
Move

Three constraints:

1. 𝑎!0 ⇒ 𝑃𝑟𝑒 𝑎! 0 ⋀	 𝐸𝑓𝑓 𝑎! 01(

2. 𝑝!0 = 𝑝!01(⋁	(𝑎20 	⋁…⋁𝑎&0)	

87

// If an action is taken at the step 𝑘, the its precondition and effect must hold

// Variables that are not changed by the actions remains unchanged

𝑃 = 𝑝-, … , 𝑝) 	 (a set of state variables)

𝐴 = {𝑎-, … , 𝑎0} (a set of actions)

IDTMP: SMT Planning

G

Robot R

Goal Area Object O

Init Area

State variables:
Pose of the object 𝑃- ∈ 𝑅.
Configuration of the robot 𝐶/ ∈ 𝒳

Actions:

Pick

Place
Move

Three constraints:

1. 𝑎!0 ⇒ 𝑃𝑟𝑒 𝑎! 0 ⋀	 𝐸𝑓𝑓 𝑎! 01(

2. 𝑝!0 = 𝑝!01(⋁	(𝑎20 	⋁…⋁𝑎&0)	

3. 𝑎!0 ⇒ ¬	(𝑎-0 	⋁ …𝑎!3(0 ⋁ …𝑎!1(0 ⋁ …𝑎&0)

88

// If an action is taken at the step 𝑘, the its precondition and effect must hold

// Variables that are not changed by the actions remains unchanged

// Only one action can be taken at the given step

𝑃 = 𝑝-, … , 𝑝) 	 (a set of state variables)

𝐴 = {𝑎-, … , 𝑎0} (a set of actions)

IDTMP: SMT Planning

G

Robot R

Goal Area Object O

Init Area

State variables:
Pose of the object 𝑃- ∈ 𝑅.
Configuration of the robot 𝐶/ ∈ 𝒳

Actions:

Pick

Place
Move

Three constraints:

1. 𝑎!0 ⇒ 𝑃𝑟𝑒 𝑎! 0 ⋀	 𝐸𝑓𝑓 𝑎! 01(

2. 𝑝!0 = 𝑝!01(⋁	(𝑎20 	⋁…⋁𝑎&0)	

3. 𝑎!0 ⇒ ¬	(𝑎-0 	⋁ …𝑎!3(0 ⋁ …𝑎!1(0 ⋁ …𝑎&0)

89

// If an action is taken at the step 𝑘, the its precondition and effect must hold

// Variables that are not changed by the actions remains unchanged

// Only one action can be taken at the given step

SMT formula using 𝑝! and 𝑎! // 𝑝! 	 ∈ 𝑃	 (a set of state variables) and 𝑎! 	 ∈ 𝐴	 (a set of actions)

𝑃 = 𝑝-, … , 𝑝) 	 (a set of state variables)

𝐴 = {𝑎-, … , 𝑎0} (a set of actions)

IDTMP: SMT Planning

G

Robot R

Goal Area Object O

Init Area

State variables:
Pose of the object 𝑃- ∈ 𝑅.
Configuration of the robot 𝐶/ ∈ 𝒳

Actions:

Pick

Place
Move

Three constraints:

1. 𝑎!0 ⇒ 𝑃𝑟𝑒 𝑎! 0 ⋀	 𝐸𝑓𝑓 𝑎! 01(

2. 𝑝!0 = 𝑝!01(⋁	(𝑎20 	⋁…⋁𝑎&0)	

3. 𝑎!0 ⇒ ¬	(𝑎-0 	⋁ …𝑎!3(0 ⋁ …𝑎!1(0 ⋁ …𝑎&0)

90

// If an action is taken at the step 𝑘, the its precondition and effect must hold

// Variables that are not changed by the actions remains unchanged

// Only one action can be taken at the given step

SMT formula using 𝑝! and 𝑎! // 𝑝! 	 ∈ 𝑃	 (a set of state variables) and 𝑎! 	 ∈ 𝐴	 (a set of actions)

𝑃 = 𝑝-, … , 𝑝) 	 (a set of state variables)

𝐴 = {𝑎-, … , 𝑎0} (a set of actions)

SMT used
1) solve SMT formula consisting of discrete action and Boolean variables
2) maintain dynamic constraints such as action 𝑎! 	 is not applicable at step 𝑡

IDTMP: Overall Approach
G

Robot R

Goal Area Object O

Init Area
• Plan_length = 1

• Constraints = initial constraints

• Compute task plan for the current plan length and constraints

91

IDTMP: Overall Approach
G

Robot R

Goal Area Object O

Init Area
• Plan_length = 1

• Constraints = initial constraints

• Compute task plan for the current plan length and constraints
• If no task plan found: plan_length + 1 and retry

92

IDTMP: Overall Approach
G

Robot R

Goal Area Object O

Init Area
• Plan_length = 1

• Constraints = initial constraints

• Compute task plan for the current plan length and constraints
• If no task plan found: plan_length + 1 and retry

• If a task plan is found:
• For every action in task plan:

• Compute a motion plan

93

IDTMP: Overall Approach
G

Robot R

Goal Area Object O

Init Area
• Plan_length = 1

• Constraints = initial constraints

• Compute task plan for the current plan length and constraints
• If no task plan found: plan_length + 1 and retry

• If a task plan is found:
• For every action in task plan:

• Compute a motion plan

• If no motion plan:
• Add new constraints

94

IDTMP: Overall Approach
G

Robot R

Goal Area Object O

Init Area
• Plan_length = 1

• Constraints = initial constraints

• Compute task plan for the current plan length and constraints
• If no task plan found: plan_length + 1 and retry

• If a task plan is found:
• For every action in task plan:

• Compute a motion plan

• If no motion plan:
• Add new constraints

If 𝑎!0 does not have a motion plan à disallow 𝑎! at step k.

95

IDTMP: Experiments

96

IDTMP: Summary
• Inputs

• SMT domain with hybrid (continuous and symbolic) variable and actions

• Properties

• Probabilistically complete – if the low-level motion planner is probabilistically complete.

• How does it handle C1: SMTs reasoning for instantiating continuous variables

• How does it handle C2: SMTs reasoning for instantiations of discrete variables and adding new constraints

97
Dantam, N. T., Kingston, Z. K., Chaudhuri, S., & Kavraki, L. E. (2018).
An incremental constraint-based framework for task and motion
planning. The International Journal of Robotics Research,

Nedunuri, Srinivas, et al. "SMT-based synthesis of integrated task
and motion plans from plan outlines." 2014 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2014.

High-Level Summary
Search
Space

High Level
Planner

Low Level
Reasoning

High-level High Level
Language

P1: Infinite
Motion Plans

P2: Downward
Refinability

aSyMov Single Any TP PRM/RRT Symbolic PDDL N/A N/A

IDTMP Dual SMT Any MP
Variables with

continuous
domains

SAS SMT SMT

98

Outline

99

1. Background: Why Task and Motion Planning?
2. Abstraction as a Foundation for TMP
3. Abstraction-based Approaches
4. Research Frontier: Neuro-Symbolic Learning for TMP

Hierarchical Planning in the Now: HPN
Central Idea:

• Don’t abstract the state; plan over fluents & actions with continuous arguments
• For high-level reasoning: Use regression of geometric fluents
• For efficiency: Use an operator-abstraction hierarchy
• For refinement: Interleave refinement with execution

100

Kaelbling, Leslie Pack, and Tomás Lozano-Pérez. "Hierarchical task and
motion planning in the now." 2011 IEEE International Conference on
Robotics and Automation. IEEE, 2011.

Place(o,[2,2])

• State represented by a set of fluents with possibly continuous arguments

• Subroutines used to dynamically evaluate fluents

• No need to represent complete state descriptions

• Examples of fluents with continuous arguments (1-d):

• In(o, r): object o is completely inside region r

• ObjLoc(o, l): left edge of object o is at location l

• ClearX(r, x): only objects ∈ x possibly overlap with region r

• Actions:

• Place(o, ltarget) causes ObjLoc(o, ltarget);

• requires ClearX(sweptVol(o, linit, ltarget))

• In(o, r): ramification action for the fluent In(o, r)

• Clear(r, x): ramification action for the fluent Clear(r, x)

HPN: States and Actions

G

Robot R

Goal Area Object O

Init Area

G

101

HPN: Action Specifications
• Action specification without hierarchy:

• Arguments include current subgoal (maintained during regression)
• Effects, preconditions including argument-choice constraints

PickPlace((o, ltarget), snow , γ):
 effect: ObjLoc(o, ltarget)
 choose: lstart ∈ {snow[o].loc} ∪
 generateLocsInRegions((o,{warehouse,stove,sink}),snow,γ)
 //operator instantiations have to be considered for each generated value of lstart

 //Allows lstart to be generated using γ for efficient regression
 pre: ObjLoc(o, lstart), ClearX(sweptVol(o, lstart,ltarget),{o})

• Precondition + choose essentially generates the next subgoal during regression
• Use operator-specific regression subroutines for geometric fluents (provided as input)

102

HPN: Regression Algorithm
• Carry out goal regression using goal state, preimage computation methods for each operator,

geometric fluent

• Search using A*; heuristic = number of goal fluents that are not true in the preimage

Goals
Operations
Ramification actions
Primitive actions

In(o,G)

Move(G,[1,1])Pick(G) Place(G)InIn(o,G) ClearX(sweptVol(…, {o})

prim_pick prim_pick prim_pick

G

Robot R

Goal Area Object O

Init Area

Pick((𝑜),𝑠,𝛾):

 effect: Holding(𝑜)

 pre: AtGraspPose(𝑜) [1]

 prim: prim_pick

Place((𝑜),𝑠,𝛾):

 effect: Holding(𝑜) [1]

 pre: ¬Holding(𝑜)

 prim: prim_place

Move((𝑜,𝑙!"#),𝑠,𝛾):

 choose: 𝑙$%&'%
 effect: ObjectLoc(𝑙!"#)

 pre: ObjectLoc(𝑙$%&'%) [1]

 Holding(𝑜) [2]

 ClearX(sweptVol(𝑜, 𝑙$%&'%, 𝑙!"#), {𝑜}) [3]

 prim: prim_move

103

HPN: Hierarchical Action Representation
• Use a hierarchy defined using precondition postponement to

reduce the horizon during regression

• Suppose operator o has preconditions p1, …, pn, effect r

• Operator with pn postponed

• o_postponed:

• precon = p1, …, pn-1

• expansion:

• Achieve pn while maintaining p1, …, pn-1;

• Then execute o

• Additional side-effects of achieving pn may have to be
declared

• Define hierarchy by associating abstraction-level with each
precondition

Pick((𝑜),𝑠,𝛾):

 effect: Holding(𝑜)

 pre: AtGraspPose(𝑜) [1]

 prim: prim_pick

Place((𝑜),𝑠,𝛾):

 effect: Holding(𝑜) [1]

 pre: ¬Holding(𝑜)

 prim: prim_place

Move((𝑜,𝑙!"#),𝑠,𝛾):

 choose: 𝑙$%&'%
 effect: ObjectLoc(𝑙!"#)

 pre: ObjectLoc(𝑙$%&'%) [1]

 Holding(𝑜) [2]

 ClearX(sweptVol(𝑜, 𝑙$%&'%, 𝑙!"#), {𝑜}) [3]

 prim: prim_move

104

HPN: Hierarchical Action Representation
• Use a hierarchy defined using precondition postponement to

reduce the horizon during regression

• Suppose operator o has preconditions p1, …, pn, effect r

• Operator with pn postponed

• o_postponed:

• precon = p1, …, pn-1

• expansion:

• Achieve pn while maintaining p1, …, pn-1;

• Then execute o

• Additional side-effects of achieving pn may have to be
declared

• Define hierarchy by associating abstraction-level with each
precondition

Pick((𝑜),𝑠,𝛾):

 effect: Holding(𝑜)

 pre: AtGraspPose(𝑜) [1]

 prim: prim_pick

Place((𝑜),𝑠,𝛾):

 effect: Holding(𝑜) [1]

 pre: ¬Holding(𝑜)

 prim: prim_place

Move((𝒐,𝒍𝒆𝒏𝒅),𝒔,𝜸):

 choose: 𝒍𝒔𝒕𝒂𝒓𝒕
 effect: ObjectLoc(𝒍𝒆𝒏𝒅)

 pre: ObjectLoc(𝒍𝒔𝒕𝒂𝒓𝒕) [1]

 Holding(𝒐) [2]

 ClearX(sweptVol(𝒐, 𝒍𝒔𝒕𝒂𝒓𝒕, 𝒍𝒆𝒏𝒅), {𝒐}) [3]

 prim: prim_move

105

HPN: Main Algorithm
•Repeat depth-first refinement + execution

• Primitives are executed as they are generated (“planning in the now”)

strate these methods by handling large problem instances in the one-dimensional kitchen environ-
ment.

3.1 hpn architecture

The hpn process is invoked by hpn(snow , �, ↵,world), where snow is a description of the state of
world when the planner is called; � is the goal, which describes a set of world states; ↵ is a structure
that controls the abstraction level, which we discuss in more detail in section 3.2.4; and world is an
actual robot or a simulator on which primitive actions can be executed. In the prototype system
described in this paper, world is actually a geometric motion planner coupled with a simulated or
physical robot.

hpn calls the regression-based plan procedure, which returns a whole plan at the specified
level of abstraction, ((�, g0), (!1, g1), ..., (!n, gn)). The pre-images, gi, will serve as the goals for
the planning problems at the next level down in the hierarchy.

hpn(snow , �, ↵,world):
p = plan(snow , �, ↵)
for (!i, gi) in p

if isPrim(!i)
world .execute(!i, snow)

else
hpn(snow , gi, nextLevel(↵, !i), world)

hpn starts by making a plan p to achieve the top-level goal. Then, it executes the plan steps,
starting with action !1, side-e↵ecting snow so that the resulting state will be available when control
is returned to the calling instance of hpn. If an action is a primitive, then it is executed in the
world, which causes snow to be changed; if not, then hpn is called recursively, with a more concrete
abstraction level for that step. hpn assumes that the fluents used to describe goals are the same
at every abstraction level; that is, there is no state abstraction, only operator abstraction. The
procedure nextLevel takes a level of abstraction ↵ and an operator !, and returns a new level of
abstraction � that is more concrete than ↵.

Note that the abstract action !i does not directly a↵ect the planning at the more concrete
level; only the subgoal gi is relevant. This means that hpn does not refine plans, in the sense
of simply adding details to an existing plan; the plan at a more concrete level may not have
any connection to the abstract action at the level above. Also note that hpn does not backtrack
across abstraction levels; that is, it commits to the subgoals generated by planning at each level of
abstraction. We discuss the consequences of this structure in more detail in section 3.2.3. If the
hierarchical decomposition is well chosen, the hpn approach may result in a potentially enormous
computational savings; if it is not, then the system may execute useless or retrograde actions.

Figure 7 shows a hierarchical version of the plan in figure 6. Blue nodes are goals for planning
problems; pink nodes are operations associated with a concrete action; gray nodes are definitional
operations. Operation nodes are prefixed with An where n is an integer representing the abstraction
value at which that operator is being applied.

Instead of one large problem with an 11-step plan, we now have 5 planning problems, with
solutions of length 1, 2, 3, 4, and 5. Because planning time is generally exponential in the length
of the plan, the reduction in length of the longest plan is significant.

24

107

HPN: Overall Approach

strate these methods by handling large problem instances in the one-dimensional kitchen environ-
ment.

3.1 hpn architecture

The hpn process is invoked by hpn(snow , �, ↵,world), where snow is a description of the state of
world when the planner is called; � is the goal, which describes a set of world states; ↵ is a structure
that controls the abstraction level, which we discuss in more detail in section 3.2.4; and world is an
actual robot or a simulator on which primitive actions can be executed. In the prototype system
described in this paper, world is actually a geometric motion planner coupled with a simulated or
physical robot.

hpn calls the regression-based plan procedure, which returns a whole plan at the specified
level of abstraction, ((�, g0), (!1, g1), ..., (!n, gn)). The pre-images, gi, will serve as the goals for
the planning problems at the next level down in the hierarchy.

hpn(snow , �, ↵,world):
p = plan(snow , �, ↵)
for (!i, gi) in p

if isPrim(!i)
world .execute(!i, snow)

else
hpn(snow , gi, nextLevel(↵, !i), world)

hpn starts by making a plan p to achieve the top-level goal. Then, it executes the plan steps,
starting with action !1, side-e↵ecting snow so that the resulting state will be available when control
is returned to the calling instance of hpn. If an action is a primitive, then it is executed in the
world, which causes snow to be changed; if not, then hpn is called recursively, with a more concrete
abstraction level for that step. hpn assumes that the fluents used to describe goals are the same
at every abstraction level; that is, there is no state abstraction, only operator abstraction. The
procedure nextLevel takes a level of abstraction ↵ and an operator !, and returns a new level of
abstraction � that is more concrete than ↵.

Note that the abstract action !i does not directly a↵ect the planning at the more concrete
level; only the subgoal gi is relevant. This means that hpn does not refine plans, in the sense
of simply adding details to an existing plan; the plan at a more concrete level may not have
any connection to the abstract action at the level above. Also note that hpn does not backtrack
across abstraction levels; that is, it commits to the subgoals generated by planning at each level of
abstraction. We discuss the consequences of this structure in more detail in section 3.2.3. If the
hierarchical decomposition is well chosen, the hpn approach may result in a potentially enormous
computational savings; if it is not, then the system may execute useless or retrograde actions.

Figure 7 shows a hierarchical version of the plan in figure 6. Blue nodes are goals for planning
problems; pink nodes are operations associated with a concrete action; gray nodes are definitional
operations. Operation nodes are prefixed with An where n is an integer representing the abstraction
value at which that operator is being applied.

Instead of one large problem with an 11-step plan, we now have 5 planning problems, with
solutions of length 1, 2, 3, 4, and 5. Because planning time is generally exponential in the length
of the plan, the reduction in length of the longest plan is significant.

24

108

HPN: Overall Approach

strate these methods by handling large problem instances in the one-dimensional kitchen environ-
ment.

3.1 hpn architecture

The hpn process is invoked by hpn(snow , �, ↵,world), where snow is a description of the state of
world when the planner is called; � is the goal, which describes a set of world states; ↵ is a structure
that controls the abstraction level, which we discuss in more detail in section 3.2.4; and world is an
actual robot or a simulator on which primitive actions can be executed. In the prototype system
described in this paper, world is actually a geometric motion planner coupled with a simulated or
physical robot.

hpn calls the regression-based plan procedure, which returns a whole plan at the specified
level of abstraction, ((�, g0), (!1, g1), ..., (!n, gn)). The pre-images, gi, will serve as the goals for
the planning problems at the next level down in the hierarchy.

hpn(snow , �, ↵,world):
p = plan(snow , �, ↵)
for (!i, gi) in p

if isPrim(!i)
world .execute(!i, snow)

else
hpn(snow , gi, nextLevel(↵, !i), world)

hpn starts by making a plan p to achieve the top-level goal. Then, it executes the plan steps,
starting with action !1, side-e↵ecting snow so that the resulting state will be available when control
is returned to the calling instance of hpn. If an action is a primitive, then it is executed in the
world, which causes snow to be changed; if not, then hpn is called recursively, with a more concrete
abstraction level for that step. hpn assumes that the fluents used to describe goals are the same
at every abstraction level; that is, there is no state abstraction, only operator abstraction. The
procedure nextLevel takes a level of abstraction ↵ and an operator !, and returns a new level of
abstraction � that is more concrete than ↵.

Note that the abstract action !i does not directly a↵ect the planning at the more concrete
level; only the subgoal gi is relevant. This means that hpn does not refine plans, in the sense
of simply adding details to an existing plan; the plan at a more concrete level may not have
any connection to the abstract action at the level above. Also note that hpn does not backtrack
across abstraction levels; that is, it commits to the subgoals generated by planning at each level of
abstraction. We discuss the consequences of this structure in more detail in section 3.2.3. If the
hierarchical decomposition is well chosen, the hpn approach may result in a potentially enormous
computational savings; if it is not, then the system may execute useless or retrograde actions.

Figure 7 shows a hierarchical version of the plan in figure 6. Blue nodes are goals for planning
problems; pink nodes are operations associated with a concrete action; gray nodes are definitional
operations. Operation nodes are prefixed with An where n is an integer representing the abstraction
value at which that operator is being applied.

Instead of one large problem with an 11-step plan, we now have 5 planning problems, with
solutions of length 1, 2, 3, 4, and 5. Because planning time is generally exponential in the length
of the plan, the reduction in length of the longest plan is significant.

24

Plan 1
In(𝑜,𝐺)

Place(G)

In

A0:In(o,G)

Plan 3
ClearX(sweptVol(…, {o})

prim_pick

prim_move
prim_pick

Plan 2
ObjectLoc(𝑜, 𝑙,-.)

A0:Clear

Plan 2
¬Holding(o)

A0: Move(o,𝑙,-.)

Plan 4
Holding(𝑜)

A0: Pick(𝑜)

A1: Move(o,𝑙,-.)

Pick((𝑜),𝑠,𝛾):

 effect: Holding(𝑜)

 pre: AtGraspPose(𝑜) [1]

 prim: prim_pick

Place((𝑜),𝑠,𝛾):

 effect: ¬	Holding(𝑜) [1]

 pre: Holding(𝑜)

 prim: prim_place

Move((𝑜,𝑙!"#),𝑠,𝛾):

 choose: 𝑙$%&'%
 effect: ObjectLoc(𝑙!"#)

 pre: ObjectLoc(𝑙$%&'%) [1]

 Holding(𝑜) [2]

 ClearX(sweptVol(𝑜, 𝑙$%&'%, 𝑙!"#), {𝑜}) [3]

 prim: prim_move

In((𝑜,𝑅),s,𝛾):

 choose: 𝑙

 effect: In(𝑜, 𝑅)

 pre: ObjectLoc(𝑙) [1]

 ¬Holding(𝑜) [2]

109

HPN: Overall Approach

strate these methods by handling large problem instances in the one-dimensional kitchen environ-
ment.

3.1 hpn architecture

The hpn process is invoked by hpn(snow , �, ↵,world), where snow is a description of the state of
world when the planner is called; � is the goal, which describes a set of world states; ↵ is a structure
that controls the abstraction level, which we discuss in more detail in section 3.2.4; and world is an
actual robot or a simulator on which primitive actions can be executed. In the prototype system
described in this paper, world is actually a geometric motion planner coupled with a simulated or
physical robot.

hpn calls the regression-based plan procedure, which returns a whole plan at the specified
level of abstraction, ((�, g0), (!1, g1), ..., (!n, gn)). The pre-images, gi, will serve as the goals for
the planning problems at the next level down in the hierarchy.

hpn(snow , �, ↵,world):
p = plan(snow , �, ↵)
for (!i, gi) in p

if isPrim(!i)
world .execute(!i, snow)

else
hpn(snow , gi, nextLevel(↵, !i), world)

hpn starts by making a plan p to achieve the top-level goal. Then, it executes the plan steps,
starting with action !1, side-e↵ecting snow so that the resulting state will be available when control
is returned to the calling instance of hpn. If an action is a primitive, then it is executed in the
world, which causes snow to be changed; if not, then hpn is called recursively, with a more concrete
abstraction level for that step. hpn assumes that the fluents used to describe goals are the same
at every abstraction level; that is, there is no state abstraction, only operator abstraction. The
procedure nextLevel takes a level of abstraction ↵ and an operator !, and returns a new level of
abstraction � that is more concrete than ↵.

Note that the abstract action !i does not directly a↵ect the planning at the more concrete
level; only the subgoal gi is relevant. This means that hpn does not refine plans, in the sense
of simply adding details to an existing plan; the plan at a more concrete level may not have
any connection to the abstract action at the level above. Also note that hpn does not backtrack
across abstraction levels; that is, it commits to the subgoals generated by planning at each level of
abstraction. We discuss the consequences of this structure in more detail in section 3.2.3. If the
hierarchical decomposition is well chosen, the hpn approach may result in a potentially enormous
computational savings; if it is not, then the system may execute useless or retrograde actions.

Figure 7 shows a hierarchical version of the plan in figure 6. Blue nodes are goals for planning
problems; pink nodes are operations associated with a concrete action; gray nodes are definitional
operations. Operation nodes are prefixed with An where n is an integer representing the abstraction
value at which that operator is being applied.

Instead of one large problem with an 11-step plan, we now have 5 planning problems, with
solutions of length 1, 2, 3, 4, and 5. Because planning time is generally exponential in the length
of the plan, the reduction in length of the longest plan is significant.

24

Plan 1
In(𝑜,𝐺)

Place(G)

In

A0:In(o,G)

Plan 3
ClearX(sweptVol(…, {o})

prim_pick

prim_move
prim_pick

Plan 2
ObjectLoc(𝑜, 𝑙,-.)

A0:Clear

Plan 2
¬Holding(o)

A0: Move(o,𝑙,-.)

Plan 4
Holding(𝑜)

A0: Pick(𝑜)

A1: Move(o,𝑙,-.)

Pick((𝑜),𝑠,𝛾):

 effect: Holding(𝑜)

 pre: AtGraspPose(𝑜) [1]

 prim: prim_pick

Place((𝑜),𝑠,𝛾):

 effect: ¬	Holding(𝑜) [1]

 pre: Holding(𝑜)

 prim: prim_place

Move((𝑜,𝑙!"#),𝑠,𝛾):

 choose: 𝑙$%&'%
 effect: ObjectLoc(𝑙!"#)

 pre: ObjectLoc(𝑙$%&'%) [1]

 Holding(𝑜) [2]

 ClearX(sweptVol(𝑜, 𝑙$%&'%, 𝑙!"#), {𝑜}) [3]

 prim: prim_move

In((𝑜,𝑅),s,𝛾):

 choose: 𝑙

 effect: In(𝑜, 𝑅)

 pre: ObjectLoc(𝑙) [1]

 ¬Holding(𝑜) [2]

110

HPN: Overall Approach

strate these methods by handling large problem instances in the one-dimensional kitchen environ-
ment.

3.1 hpn architecture

The hpn process is invoked by hpn(snow , �, ↵,world), where snow is a description of the state of
world when the planner is called; � is the goal, which describes a set of world states; ↵ is a structure
that controls the abstraction level, which we discuss in more detail in section 3.2.4; and world is an
actual robot or a simulator on which primitive actions can be executed. In the prototype system
described in this paper, world is actually a geometric motion planner coupled with a simulated or
physical robot.

hpn calls the regression-based plan procedure, which returns a whole plan at the specified
level of abstraction, ((�, g0), (!1, g1), ..., (!n, gn)). The pre-images, gi, will serve as the goals for
the planning problems at the next level down in the hierarchy.

hpn(snow , �, ↵,world):
p = plan(snow , �, ↵)
for (!i, gi) in p

if isPrim(!i)
world .execute(!i, snow)

else
hpn(snow , gi, nextLevel(↵, !i), world)

hpn starts by making a plan p to achieve the top-level goal. Then, it executes the plan steps,
starting with action !1, side-e↵ecting snow so that the resulting state will be available when control
is returned to the calling instance of hpn. If an action is a primitive, then it is executed in the
world, which causes snow to be changed; if not, then hpn is called recursively, with a more concrete
abstraction level for that step. hpn assumes that the fluents used to describe goals are the same
at every abstraction level; that is, there is no state abstraction, only operator abstraction. The
procedure nextLevel takes a level of abstraction ↵ and an operator !, and returns a new level of
abstraction � that is more concrete than ↵.

Note that the abstract action !i does not directly a↵ect the planning at the more concrete
level; only the subgoal gi is relevant. This means that hpn does not refine plans, in the sense
of simply adding details to an existing plan; the plan at a more concrete level may not have
any connection to the abstract action at the level above. Also note that hpn does not backtrack
across abstraction levels; that is, it commits to the subgoals generated by planning at each level of
abstraction. We discuss the consequences of this structure in more detail in section 3.2.3. If the
hierarchical decomposition is well chosen, the hpn approach may result in a potentially enormous
computational savings; if it is not, then the system may execute useless or retrograde actions.

Figure 7 shows a hierarchical version of the plan in figure 6. Blue nodes are goals for planning
problems; pink nodes are operations associated with a concrete action; gray nodes are definitional
operations. Operation nodes are prefixed with An where n is an integer representing the abstraction
value at which that operator is being applied.

Instead of one large problem with an 11-step plan, we now have 5 planning problems, with
solutions of length 1, 2, 3, 4, and 5. Because planning time is generally exponential in the length
of the plan, the reduction in length of the longest plan is significant.

24

Plan 1
In(𝑜,𝐺)

Place(G)

In

A0:In(o,G)

Plan 3
ClearX(sweptVol(…, {o})

prim_pick

prim_move
prim_pick

Plan 2
ObjectLoc(𝑜, 𝑙,-.)

A0:Clear

Plan 2
¬Holding(o)

A0: Move(o,𝑙,-.)

Plan 4
Holding(𝑜)

A0: Pick(𝑜)

A1: Move(o,𝑙,-.)

Pick((𝑜),𝑠,𝛾):

 effect: Holding(𝑜)

 pre: AtGraspPose(𝑜) [1]

 prim: prim_pick

Place((𝑜),𝑠,𝛾):

 effect: ¬	Holding(𝑜) [1]

 pre: Holding(𝑜)

 prim: prim_place

Move((𝑜,𝑙!"#),𝑠,𝛾):

 choose: 𝑙$%&'%
 effect: ObjectLoc(𝑙!"#)

 pre: ObjectLoc(𝑙$%&'%) [1]

 Holding(𝑜) [2]

 ClearX(sweptVol(𝑜, 𝑙$%&'%, 𝑙!"#), {𝑜}) [3]

 prim: prim_move

In((𝑜,𝑅),s,𝛾):

 choose: 𝑙

 effect: In(𝑜, 𝑅)

 pre: ObjectLoc(𝑙) [1]

 ¬Holding(𝑜) [2]

111

HPN: Algorithmic Details & Optimizations
• Use generators to make choice of arguments more efficient

• Algorithm commits to subgoals generated at higher level of abstraction when refining

• Need to ensure subgoal feasibility

• Approximate the generation of feasible results of “choose” operations using limited logical reasoning

• Ensures logical consistency of fluents based on domain-specific integrity constraints

• Achieving postponed preconditions can lead to additional effects in abstract operators

• Can declare approximations/conservative versions of side-effects with actions

112

HPN: Experiments

113

HPN: Summary
• Input:

• Correct and complete primitive action definitions using geometric predicates

• Operator-specific regression functions for geometric properties

• Pose generators

• For efficiency, can use additional input:

• Pose generators that make use of current subgoal

• Precondition levels to obtain a hierarchy, declaration of operator side-effects

• Limited logical reasoning in pose generators

• Properties:

• Complete if the problem has no dead-ends, action preconditions are accurate

• Motion planners terminate and return solutions when preconditions hold

• Approach for C1: through generators and regression (backward-search)

• Approach for C2: Regression over geometric fluents

114

Kaelbling, Leslie Pack, and Tomás Lozano-Pérez. "Hierarchical task and
motion planning in the now." 2011 IEEE International Conference on
Robotics and Automation. IEEE, 2011.

High-Level Summary
Search
Space

High Level
Planner

Low Level
Reasoning

High-level High Level
Language

P1: Infinite
Motion Plans

P2: Downward
Refinability

aSyMov Single Any TP PRM/RRT Symbolic PDDL N/A N/A

IDTMP Dual SMT Any MP
Variables with

continuous
domains

SAS SMT SMT

HPN Dual
HPN-specific

regression
planner

Any MP Hybrid HPN-specific generators

Regression
over

geometric
fluents

115

TMP through an Interface Layer
• Geometric planning is hard à Symbolic high-level

• Off-the-shelf task planner

• Off-the-shelf motion planner

• Interface layer that communicates between task planner and motion planner

• Converts each task level action to a motion planning problem

• Converts motion planning failures as facts over symbols & refines abstract information

116

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., & Abbeel,
P. (2014, May). Combined task and motion planning through an
extensible planner-independent interface layer. In 2014 IEEE
international conference on robotics and automation (ICRA)

TMP through an Interface Layer: Example

PickUp(obj o1, pose p1, pose p2, pose p3, path p):
precondition: Empty(gripper) ∧ GripperAt(p1) ∧

At(o1, p3) ∧ IsGraspingPose(p2, o1, p3)
∧ path(p, p1, p2) ∧ ∀o2 ¬ Obstructs(o2, p)

effect: Holding(o1) ∧ ¬ At(o1, p3) ∧
¬ Empty(gripper) ∧ GripperAt(p2)

117

TMP through an Interface Layer: Example

PickUp(obj o1, pose p1, pose p2, pose p3, path p):
precondition: Empty(gripper) ∧ GripperAt(p1) ∧

At(o1, p3) ∧ IsGraspingPose(p2, o1, p3)
∧ path(p, p1, p2) ∧ ∀o2 ¬ Obstructs(o2, p)

effect: Holding(o1) ∧ ¬ At(o1, p3) ∧
¬ Empty(gripper) ∧ GripperAt(p2)

Generator

118

TMP through an Interface Layer: Example

PickUp(obj o1, pose p1, pose p2, pose p3, path p):
precondition: Empty(gripper) ∧ GripperAt(p1) ∧

At(o1, p3) ∧ IsGraspingPose(p2, o1, p3)
∧ path(p, p1, p2) ∧ ∀o2 ¬ Obstructs(o2, p)

effect: Holding(o1) ∧ ¬ At(o1, p3) ∧
¬ Empty(gripper) ∧ GripperAt(p2)

• High level intuitive plan:
• pick block1 after going to block1’s grasping pose along a trajectory

Symbolic references

119

TMP through an Interface Layer: Example

• High level intuitive plan:
• pick block1 after going to block1’s grasping pose along a trajectory

Symbolic references

Interface level:
Searches for an instantiation of block1’s grasping pose
that is reachable via a feasible (collision-free) trajectory

…finds no feasible trajectory

120

TMP through an Interface Layer: Example

• High level intuitive plan:
• pick block1 after going to block1’s grasping pose along a trajectory

Symbolic references

Interface level:
Searches for an instantiation of block1’s grasping pose
that is reachable via a feasible (collision-free) trajectory

…finds no feasible trajectory

Fix values for references, report reason for failure:
“block2 obstructs block1’s grasping pose along a trajectory”

121

TMP through an Interface Layer: Example

• High level intuitive plan:
• pick block1 after going to block1’s grasping pose along a trajectory

Symbolic references

Fix values for references, report reason for failure:
“block2 obstructs block1’s grasping pose along a trajectory”

PickUp(obj o1, pose p1, pose p2, pose p3, path p):
precondition: Empty(gripper) ∧ GripperAt(p1) ∧

At(o1, p3) ∧ IsGraspingPose(p2, o1, p3)
∧ path(p, p1, p2) ∧ ∀o2 ¬ Obstructs(o2, p)

effect: Holding(o1) ∧ ¬ At(o1, p3) ∧
¬ Empty(gripper) ∧ GripperAt(p2)

122

TMP through an Interface Layer: Example

PickUp(obj o1, pose p1, pose p2, pose p3, path p):
precondition: Empty(gripper) ∧ GripperAt(p1) ∧

At(o1, p3) ∧ IsGraspingPose(p2, o1, p3)
∧ path(p, p1, p2) ∧ ∀o2 ¬ Obstructs(o2, p)

effect: Holding(o1) ∧ ¬ At(o1, p3) ∧
¬ Empty(gripper) ∧ GripperAt(p2)

Discrete state += Obstructs(block2, path(initLoc, gp(block1))

123

TMP through an Interface Layer: Example

PickUp(obj o1, pose p1, pose p2, pose p3, path p):
precondition: Empty(gripper) ∧ GripperAt(p1) ∧

At(o1, p3) ∧ IsGraspingPose(p2, o1, p3)
∧ path(p, p1, p2) ∧ ∀o2 ¬ Obstructs(o2, p)

effect: Holding(o1) ∧ ¬ At(o1, p3) ∧
¬ Empty(gripper) ∧ GripperAt(p2)

Discrete state += Obstructs(block2, path(initLoc, gp(block1))

124

TMP through an Interface Layer: Example

PickUp(obj o1, pose p1, pose p2, pose p3, path p):
precondition: Empty(gripper) ∧ GripperAt(p1) ∧

At(o1, p3) ∧ IsGraspingPose(p2, o1, p3)
∧ path(p, p1, p2) ∧ ∀o2 ¬ Obstructs(o2, p)

effect: Holding(o1) ∧ ¬ At(o1, p3) ∧
¬ Empty(gripper) ∧ GripperAt(p2)

• High level intuitive plan:
• pick block1 after going to block1’s grasping pose…

• REPLAN
• pick block2 after going to block2’s grasping pose…
• release block2 after going to release pose for free area…
• pick block1 after going to block1’s grasping pose…

125

TMP through an Interface Layer: Example

PickUp(obj o1, pose p1, pose p2, pose p3, path p):
precondition: Empty(gripper) ∧ GripperAt(p1) ∧

At(o1, p3) ∧ IsGraspingPose(p2, o1, p3)
∧ path(p, p1, p2) ∧ ∀o2 ¬ Obstructs(o2, p)

effect: Holding(o1) ∧ ¬ At(o1, p3) ∧
¬ Empty(gripper) ∧ GripperAt(p2)

• High level intuitive plan:
• pick block1 after going to block1’s grasping pose…

• REPLAN
• pick block2 after going to block2’s grasping pose…
• release block2 after going to release pose for free area…
• pick block1 after going to block1’s grasping pose…

Goal Reached!!

126

TMP through an Interface Layer: Complete Algorithm

127

TMP through an Interface Layer: Complete Algorithm

Iteratively try all
instantiations

Stop when a valid
instantiation is found
for all the symbolic
references.

128

TMP through an Interface Layer: Complete Algorithm

Iteratively try all
instantiations

What if that fails?

129

TMP through an Interface Layer: Complete Algorithm

Iteratively try all
instantiations

What if that fails?

Fix the symbolic
state using failure
reason

130

TMP through an Interface Layer: Complete Algorithm

Iteratively try all
instantiations

What if that fails?

Fix the symbolic
state using failure
reason

Compute a
new plan

131

TMP through an Interface Layer: Complete Algorithm

Iteratively try all
instantiations

What if that fails?

Fix the symbolic
state using failure
reason

Compute a
new plan

132

TMP through an Interface Layer: Experiments
• Several objects obstruct the target object

• Most of these objects are themselves obstructed by other objects

• No designated free space

• Geometric predicates constructed by the interface layer: obstructs(pose, obj1, obj2)

133

TMP through an Interface Layer: Experiments
• 3 pairs of noodle & soup bowls, predefined destinations

• Tray available, but utilization not

• Task planner has to decide whether to use the tray based on plan costs

• Geometric predicates constructed by interface layer:

• smaller(obj1, obj2);

• wrong_side(gripper, pose) — used for determining which hand to use

134

TMP through an Interface Layer: Summary
• Inputs

• PDDL domain with references instead of continuous values

• Generators for instantiating references

• Subroutines for infeasibility detection and expression, given a motion plan

• Properties

• Probabilistically complete

• Each task planner invocation gets

• Small branching factor

• States have only a relevant subset of facts for current instantiation

• How does it handle P1: through symbolic references, forward-search, and lazily invoking the motion planner

• How does it handle P2: by communicating errors to the high-level planner and computing new plans

135

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., & Abbeel,
P. (2014, May). Combined task and motion planning through an
extensible planner-independent interface layer. In 2014 IEEE
international conference on robotics and automation (ICRA)

High-level Summary
Search
Space

High Level
Planner

Low Level
Reasoning

High-level High Level
Language

P1: Infinite
Motion Plans

P2: Downward
Refinability

aSyMov Single Any TP PRM/RRT Symbolic PDDL N/A N/A

IDTMP IDTMP Dual SMT Any MP
Variables with

continuous
domains

SAS SMT

HPN Dual
HPN-specific

regression
planner

Any MP Hybrid HPN-specific generators

Regression
over

geometric
fluents

Symbolic
Interface Dual Any TP Any MP Symbolic PDDL Pose

generators
Identifying

errors

136

PDDLStream
• Forward-search over hybrid representation

• Modifies the PDDL representation

137

Garrett, C. R., Lozano-Pérez, T., & Kaelbling, L. P. (2020, June).
Pddlstream: Integrating symbolic planners and blackbox samplers via
optimistic adaptive planning. In Proceedings of the International
Conference on Automated Planning and Scheduling.

PDDLStream
• Forward-search over hybrid representation

• Modifies the PDDL representation

138

Backward
search

Hybrid
representation

Forward
search

Relational
representation

HPN Symbolic
interfaces

PDDLStream

PDDLStream: Streams
• Forward-search over hybrid representation

• Modifies the PDDL representation G

Robot R

Goal Area Object O

Init Area

139

• Forward-search over hybrid representation

• Modifies the PDDL representation

Move([0,0],t,[-1,1])

PDDLStream: Streams

G

Robot R

Goal Area Object O

Init Area

G

t = some trajectory

140

PDDLStream: Streams
• Forward-search over hybrid representation

• Modifies the PDDL representation

Move([0,0],t,[-1,1])

G

Robot R

Goal Area Object O

Init Area

t = some trajectory

G

Requires
continuous
parameters

141

PDDLStream: Streams
• Forward-search over hybrid representation

• Modifies the PDDL representation

• Main two concepts:

• Streams

Move([0,0],t,[-1,1])

G

Robot R

Goal Area Object O

Init Area

t = some trajectory

G

142

PDDLStream: Streams
• Forward-search over hybrid representation

• Modifies the PDDL representation

• Main two concepts:

• Streams ~ Samplers or Generators

Move([0,0],t,[-1,1])

G

Robot R

Goal Area Object O

Init Area

t = some trajectory

G

143

PDDLStream: Streams
• Forward-search over hybrid representation

• Modifies the PDDL representation

• Main two concepts:

• Streams ~ Samplers or Generators
• Procedural component: A conditional generator

def motion(q1, q2):
#code to sample a pose
…..
return traj

Move([0,0],t,[-1,1])

G

Robot R

Goal Area Object O

Init Area

t = some trajectory

G

144

PDDLStream: Streams
• Forward-search over hybrid representation

• Modifies the PDDL representation

• Main two concepts:

• Streams ~ Samplers or Generators
• Procedural component: a conditional generator

• Declarative component: add facts that can be guaranteed

Move([0,0],t,[-1,1])

G

Robot R

Goal Area Object O

Init Area

t = some trajectory

G

145

PDDLStream: Streams
• Forward-search over hybrid representation

• Modifies the PDDL representation

• Main two concepts:

• Streams ~ Samplers or Generators
• Procedural component: a conditional generator

• Declarative component: add facts that can be guaranteed

Move([0,0],t,[-1,1])

G

Robot R

Goal Area Object O

Init Area

t = some trajectory

G

146

PDDLStream: C1
• Forward-search over hybrid representation

• Modifies the PDDL representation

• Main two concepts:

• Streams ~ Samplers or Generators
• Procedural component: a conditional generator

• Declarative component: add facts that can be guaranteed

Move([0,0],t,[-1,1])

G

Robot R

Goal Area Object O

Init Area

t = some trajectory

GC1: Infinite groundings à Infinitely many motion planning problems!!

147

PDDLStream: Optimistic Samples
• Forward-search over hybrid representation

• Modifies the PDDL representation

• Main two concepts:

• Streams ~ Samplers or Generators
• Procedural component: a conditional generator

• Declarative component: add facts that can be guaranteed

• Optimistic samples ~ Symbolic References
• Evaluating streams to generate samples is expensive

• High-level planning would need a thousands of these
calls for even simple problems

• So solution? à Generate ”optimistic” placeholder samples..
 Assumed to be valid

Move([0,0],t,[-1,1])

G

Robot R

Goal Area Object O

Init Area

t = some trajectory

G

148

PDDLStream: Overall Approach
• Depth = 0

• For the current dept:

• Generate achievable optimistic samples
 (Tackling C1)

G

Robot R

Goal Area Object O

Init Area

149

PDDLStream: Overall Approach

Only depends on objects that
does not require any stream à Required depth = 0

• Depth = 0

• For the current dept:

• Generate achievable optimistic samples

G

Robot R

Goal Area Object O

Init Area

Achievable optimistic samples at level 0: #p1_0 [(O, Init)]
 #p2_0[(O, Goal)]

 #g1_0[(G, Goal)]
150

PDDLStream: Overall Approach

Requires input that is
generated using streams of
depth = 0

à Required depth = 1

• Depth = 0

• For the current dept:

• Generate achievable optimistic samples

G

Robot R

Goal Area Object O

Init Area

At level 1: #q1_1 [(O,#p1_0, #g_0)]

 #q2_1 [(O,#p2_0, #g_0)]

 ….
151

PDDLStream: Overall Approach

Requires input that is
generated using streams of
depth = 0

à Required depth = 1

• Depth = 0

• For the current dept:

• Generate achievable optimistic samples

G

Robot R

Goal Area Object O

Init Area

At level 1: #q1_1 [(O,#p1_0, #g_0)]

 #q2_1 [(O,#p2_0, #g_0)]

 ….
152

PDDLStream: Overall Approach
• Depth = 0

• For the current dept:

• Generate achievable optimistic samples

• Compute an abstract plan using the optimistic
samples

We need:
(Motion …) and (Kin …)

Min depth = 2

G

Robot R

Goal Area Object O

Init Area

153

PDDLStream: Overall Approach
• Depth = 0

• For the current dept:

• Generate achievable optimistic samples

• Compute an abstract plan using the optimistic
samples

• If no plan found

• Increase depth and repeat.

We need:
(Motion …) and (Kin …)

Min depth = 2

G

Robot R

Goal Area Object O

Init Area

154

PDDLStream: Overall Approach
• Depth = 0

• For the current dept:

• Generate achievable optimistic samples

• Compute an abstract plan using the optimistic
samples

• If no plan found

• Increase dept and repeat.

• If a plan is found

• Use streams to instantiate optimistic
samples with real values (Move #q0 #t0 #q1)

(Pick b1 #p0 g #q1)
(Move #q1 #t2 #q2)
(Place b #p2 g #q2)

def ik():
#code to compute IK
…..

G

Robot R

Goal Area Object O

Init Area

155

PDDLStream: Overall Approach
• Depth = 0

• For the current dept:

• Generate achievable optimistic samples

• Compute an abstract plan using the optimistic
samples

• If no plan found

• Increase dept and repeat.

• If a plan is found

• Use streams to instantiate optimistic
samples with real values

• If no instantiation found

• Disable stream at the current depth
and replan with the same depth

(Move #q0 #t0 #q1)
(Pick b1 #p0 g #q1)
(Move #q1 #t2 #q2)
(Place b #p2 g #q2)

def motion():
#code to compute IK
…..

G

Robot R

Goal Area Object O

Init Area

156

PDDLStream: Overall Approach
• Depth = 0

• For the current dept:

• Generate achievable optimistic samples

• Compute an abstract plan using the optimistic
samples

• If no plan found

• Increase dept and repeat.

• If a plan is found

• Use streams to instantiate optimistic
samples with real values

• If no instantiation found

• Disable stream at the current depth
and replan with the same depth

(Move #q0 #t0 #q1)
(Pick b1 #p0 g #q1)
(Move #q1 #t2 #q2)
(Place b #p2 g #q2)

def motion():
#code to compute IK
…..

G

Robot R

Goal Area Object O

Init Area

Forces task planner to give a new plan!!
157

Akin to the backtracking and IDTMP

Constraint approach

PDDLStream: Overall Approach
• Depth = 0

• For the current dept:

• Generate achievable optimistic samples

• Compute an abstract plan using the optimistic
samples

• If no plan found

• Increase dept and repeat.

• If a plan is found

• Use streams to instantiate optimistic
samples with real values

• If no instantiation found

• Disable stream at the current depth
and replan with the same depth

(Move #q0 #t0 #q1)
(Pick b1 #p0 g #q1)
(Move #q1 #t2 #q2)
(Place b #p2 g #q2)

def motion():
#code to compute IK
…..

G

Robot R

Goal Area Object O

Init Area

Forces task planner to give a new plan!!

depth+=1

158

PDDLStream: Overall Approach
• Depth = 0

• For the current dept:

• Generate achievable optimistic samples

• Compute an abstract plan using the optimistic
samples

• If no plan found

• Increase dept and repeat.

• If a plan is found

• Use streams to instantiate optimistic
samples with real values

• If no instantiation found

• Disable stream at the current depth
and replan with the same depth

(Move #q0 #t0 #q1)
(Pick b1 #p0 g #q1)
(Move #q1 #t2 #q2)
(Place b #p2 g #q2)

def motion():
#code to compute MP
…..

To ensure completeness:
Adaptively switch between computing new plan and refinements.

G

Robot R

Goal Area Object O

Init Area

159

PDDLStream: Experiments

160

PDDLStream: Summary
• Inputs

• PDDL domain with streams

• Procedural function for streams -- conditional generators

• Properties

• Forward search using hybrid representation

• Probabilistically complete – guarantees it by switching between computing refinements
and finding new plans

• Key Ideas:

• C1: through optimistic samples and lazy-querying streams

• C2: by forcing the planner to generate new plans until it finds a plan that is refinable.

161

Garrett, C. R., Lozano-Pérez, T., & Kaelbling, L. P. (2020, June).
Pddlstream: Integrating symbolic planners and blackbox samplers via
optimistic adaptive planning. In Proceedings of the International
Conference on Automated Planning and Scheduling.

High-Level Summary

162

Search
Space

High Level
Planner

Low Level
Reasoning

High-level High Level
Language

P1: Infinite
Motion Plans

P2:
Downward
Refinability

aSyMov Single Any TP PRM/RRT Symbolic PDDL N/A N/A

IDTMP Dual SMT Any MP
Variables with

continuous
domains

SAS SMT SMT

HPN Dual
HPN-specific

regression
planner

Any MP Hybrid HPN-specific generators

Regression
over

geometric
fluents

Symbolic
Interface Dual Any TP Any MP Symbolic PDDL Pose

generators
Identifying

errors

PDDLStream Dual Any TP Any MP Hybrid PDDL optimistic
samples

Iterating over
all task plans

Limitations

TMP through an extension layer [Srivastava et al. 2014]
Incremental TMP [Dantam et al. 2018]

PDDLStream [Garrett et al. 2020]

Works only for deterministic problems

163

Limitations

TMP through an extension layer [Srivastava et al. 2014]
Incremental TMP [Dantam et al. 2018]

PDDLStream [Garrett et al. 2020]

Works only for deterministic problems

What if robot’s actions are stochastic?

164

Task and Motion Planning Under Uncertainty

PickUp(obj o1, pose p1, pose p2, pose p3, path p):
precondition: Empty(gripper) ∧ GripperAt(p1) ∧

At(o1, p3) ∧ IsGraspingPose(p2, o1, p3)
∧ path(p, p1, p2) ∧ ∀o2 ¬ Obstructs(o2, p)

effect: 0.8 Holding(o1) ∧ ¬ At(o1, p3) ∧
 ¬ Empty(gripper) ∧ GripperAt(p2)

0.2 [No change]

G

Robot R

Goal Area Object O

Init Area

165

Task and Motion Planning Under Uncertainty

Symbolic Planner
Problem

Abstract Model High-level plan
1. Move 𝑅 𝑙𝑜𝑐4 𝑡𝑟𝑎𝑗(
2. Pick R 𝑂 𝑡𝑟𝑎𝑗.
3. Move 𝑅 𝐺 𝑡𝑟𝑎𝑗5
4. Place 𝑅 𝑂 𝑡𝑟𝑎𝑗6

166

Task and Motion Planning Under Uncertainty

Symbolic Planner
Problem

Abstract Model High-level plan
1. Move 𝑅 𝑙𝑜𝑐4 𝑡𝑟𝑎𝑗(
2. Pick R 𝑂 𝑡𝑟𝑎𝑗.
3. Move 𝑅 𝐺 𝑡𝑟𝑎𝑗5
4. Place 𝑅 𝑂 𝑡𝑟𝑎𝑗6

Move

Pick

Move

MovePlace

Move

PickMove

MovePickMove

High-level policy

167

STAMP
• High-level domain: classical planning PDDL domain

 PPDDL domain for a stochastic shortest path problem

168

Shah, N., Vasudevan, D. K., Kumar, K., Kamojjhala, P., &
Srivastava, S. (2020, May). Anytime integrated task and
motion policies for stochastic environments. In 2020 IEEE
International Conference on Robotics and Automation (ICRA)

STAMP
• High-level domain: classical planning PDDL domain

 PPDDL domain for a stochastic shortest path problem

• Use an SSP solver to compute a branching policy Move

Pick

Move

MovePlace

Move

PickMove

MovePickMove

169

• High-level domain: classical planning PDDL domain
 PPDDL domain for a stochastic shortest path problem

• Use an SSP solver to compute a branching policy

• Refine the plan to compute task and motion plan
Refine the entire policy to compute
task and motion policy

STAMP

Move

Pick

Move

MovePlace

Move

PickMove

MovePickMove

170

STAMP: Dealing with #branches

Move

Pick

Move

MovePlace

Move

PickMove

MovePickMove

• Too many branches: Waiting to refine the entire
policy tree would be inefficient

171

STAMP: Dealing with #branches

0.0475

Move

Pick

Move

MovePlace

Move

PickMove

MovePickMove

0.95

0.95

0.95

0.95

0.05

0.05

0.05 1.0

0.000125 0.002375 0.0475 0.9025

• Too many branches: Waiting to refine the entire
policy tree would be inefficient

• Intuitive idea: knapsack problem with computation
as cost and probability of encountering as value

172

STAMP: Dealing with #branches

0.0475

Move

Pick

Move

MovePlace

Move

PickMove

MovePickMove

0.95

0.95

0.95

0.95

0.05

0.05

0.05 1.0

0.000125 0.002375 0.0475 0.9025

• Too many branches: Waiting to refine the entire
policy tree would be inefficient

• Intuitive idea: knapsack problem with computation
as cost and probability of encountering as value

Theorem: Let t be the time since the start of the
algorithm at which the refinement of any RTL path is
completed. If path costs are accurate and constant then
the total probability of unrefined paths at time t is at
most 1 - opt(t) / 2, where opt(t) is the best possible
refinement that could have been achieved in time t.

173

STAMP: HPlan Algorithm

PRN 1

- Partially refined policy

- Current Low-level state

- Current High-level state

PRN 4PRN 3PRN 2

Error e1 Error e2 Error e3

174

STAMP: HPlan Algorithm

PRN 4PRN 3PRN 2

Error e1 Error e2 Error e3

PRN 1

PRN 5

Error e4 Error e5

PRN 6

The overall algorithm works as follows:
• Select a node from PRG.
• Compute an abstract policy.
• Select one of the following:

• Explore
• Expand the PRG

Repeat until a policy is fully refined in one of
the PRG nodes.

178

STAMP: Why a New Refinement Algorithm?

PRN 4PRN 3PRN 2

Error e1 Error e2 Error e3

PRN 1

PRN 5

Error e4 Error e5

PRN 6

Theorem: If there exists a proper policy that
reaches the goal within horizon h with
probability p, and has feasible low-level
refinement, then the algorithm will find it
with probability 1.0 in the limit of infinite
samples.

Time-based switching between nodes allows
maintaining multiple abstract models and prevents
getting stuck into a single abstract model.

179

STAMP: Experiments
• Problem: build a desired structure using Keva

planks.

• Target design is expressed as a goal condition

• Stochasticity:

• User may place the plank on one of two
different locations

• Robot: Yumi IRB 14000

180

181

STAMP: Summary
• Inputs

• PPDDL domain with references instead of continuous values and possibly stochastic actions

• Generators for instantiating references

• Subroutines for infeasibility detection and expression, given a motion plan

• Properties

• Handles Stochasticity

• + all the properties of “TMP using Interface layer”

• How does it handle P1: through symbolic references, forward-search, and lazily invoking the motion planner

• How does it handle P2: by communicating errors to the high-level planner and computing new plans

182

Shah, N., Vasudevan, D. K., Kumar, K., Kamojjhala, P., &
Srivastava, S. (2020, May). Anytime integrated task and
motion policies for stochastic environments. In 2020 IEEE
International Conference on Robotics and Automation (ICRA)

High-Level Summary
Search
Space

High Level
Planner

Low Level
Reasoning

High-level High Level
Language

P1: Infinite
Motion Plans

P2:
Downward
Refinability

Stochastic

aSyMov Single Any TP PRM/RRT Symbolic PDDL N/A N/A No

HPN Dual
HPN-specific

regression
planner

Any MP Hybrid HPN-
specific

generators

Regression
over

geometric
fluents

No

IDTMP Dual SMT Any MP

Variables
with

continuous
domains

SAS SMT SMT No

Symbolic
Interface

Dual Any TP Any MP Symbolic PDDL Pose
generators

Identifying
errors

No

PDDLStream Dual Any TP Any MP Hybrid PDDL optimistic
samples

Iterating
over all task

plans
No

STAMP Dual Any TP Any MP Symbolic PPDDL Pose
generators

Identifying
errors

Yes
183

Limitations

184

Approach Input

aSyMov PDDL

IDTMP PDDL + module to convert symbolic action to motion
planning problems

HPN Action descriptions + preimage for each action

Symbolic Interface PDDL + generators

PDDLStream PDDL + streams (generators)

STAMP PDDL + generators

Limitations

185

Approach Input

aSyMov PDDL

IDTMP PDDL + module to convert symbolic action to motion
planning problems

HPN Action descriptions + preimage for each action

Symbolic Interface PDDL + generators

PDDLStream PDDL + streams (generators)

STAMP PDDL + generators

Requires
1) State abstractions

2) Action abstractions
3) Action descriptions

4) Samples or generators

Outline

186

1. Background: Why Task and Motion Planning?
2. Abstraction as a Foundation for TMP
3. Abstraction-based Approaches
4. Research Frontier: Neuro-Symbolic Learning for TMP

What needs to be learned?
1. State abstractions

2. Temporal abstractions

1. Identifying actions

2. Learning action descriptions

3. Learning samplers / generators for action refinements

187

Learning State Abstractions Given High-level Actions

188

Skills-to-Symbols
• Core idea: Learned symbolic model in a PDDL representation

• Input: State variables with low-level continuous values

• Output: A symbolic PDDL model

• What is given:

• Options masks -- set of low-level state variables relevant to an option

• Abstract goal options -- Options that achieves termination sets with probability 1.0 expressed
 using only relevant state variables

189
Konidaris, G., Kaelbling, L. P., & Lozano-Perez, T. (2018). From
skills to symbols: Learning symbolic representations for abstract
high-level planning. Journal of Artificial Intelligence Research

Skills-to-symbols

190

Skills-to-symbols: Computing Factors

191

G

Robot R

Goal Area Object O

Init Area

Variables

𝑠(= 	𝑃𝑜𝑠𝑒* = Robot pose
𝑠. = 	𝑃𝑜𝑠𝑒# = Object pose

𝑠5 = 	𝐴𝑡𝑡𝑎𝑐ℎ𝑒𝑑 = Whether the object is picked or not

Skills-to-symbols: Computing Factors

192

G

Robot R

Goal Area Object O

Init Area

Variables

𝑠(= 	𝑃𝑜𝑠𝑒* = Robot pose
𝑠. = 	𝑃𝑜𝑠𝑒# = Object pose

𝑠5 = 	𝐴𝑡𝑡𝑎𝑐ℎ𝑒𝑑 = Whether the object is picked or not

Options

𝑜(=	Move (r) : 𝑠(
𝑜. =Grab (o). : 𝑠(, 𝑠. // grabs the object

𝑜5 =	UnGrab(o). : 𝑠(, 𝑠.	 // releases the object
𝑜6 =	Transport(o) : 𝑠(, 𝑠5 // moves the object

// moves the robot

Skills-to-symbols: Computing Factors

193

G

Robot R

Goal Area Object O

Init Area

Variables

𝑠(= 	𝑃𝑜𝑠𝑒* = Robot pose
𝑠. = 	𝑃𝑜𝑠𝑒# = Object pose

𝑠5 = 	𝐴𝑡𝑡𝑎𝑐ℎ𝑒𝑑 = Whether the object is picked or not

Options

𝑜(=	Move (r) : 𝑠(
𝑜. =Grab (o). : 𝑠(, 𝑠. // grabs the object

𝑜5 =	UnGrab(o). : 𝑠(, 𝑠.	 // releases the object
𝑜6 =	Transport(o) : 𝑠(, 𝑠5 // moves the object

// moves the robot
Variable Option

𝑜(, 𝑜6 𝑠(

𝑠. 𝑜., 𝑜5

𝑠5 𝑜6

Skills-to-symbols: Computing Factors

194

G

Robot R

Goal Area Object O

Init Area

Variables

𝑠(= 	𝑃𝑜𝑠𝑒* = Robot pose
𝑠. = 	𝑃𝑜𝑠𝑒# = Object pose

𝑠5 = 	𝐴𝑡𝑡𝑎𝑐ℎ𝑒𝑑 = Whether the object is picked or not

Options

𝑜(=	Move (r) : 𝑠(
𝑜. =Grab (o). : 𝑠(, 𝑠. // grabs the object

𝑜5 =	UnGrab(o). : 𝑠(, 𝑠.	 // releases the object
𝑜6 =	Transport(o) : 𝑠(, 𝑠5 // moves the object

// moves the robot
Variable Option

𝑜(, 𝑜6 𝑠(

𝑠. 𝑜., 𝑜5

𝑠5 𝑜6

𝑓(

𝑓.

𝑓5

Skills-to-symbols: Computing Factors

195

G

Robot R

Goal Area Object O

Init Area

Variables

𝑠(= 	𝑃𝑜𝑠𝑒* = Robot pose
𝑠. = 	𝑃𝑜𝑠𝑒# = Object pose

𝑠5 = 	𝐴𝑡𝑡𝑎𝑐ℎ𝑒𝑑 = Whether the object is picked or not

Options

𝑜(=	Move (r) : 𝑠(
𝑜. =Grab (o). : 𝑠(, 𝑠. // grabs the object

𝑜5 =	UnGrab(o). : 𝑠(, 𝑠.	 // releases the object
𝑜6 =	Transport(o) : 𝑠(, 𝑠5 // moves the object

// moves the robot
Variable Option

𝑜(, 𝑜6 𝑠(

𝑠. 𝑜., 𝑜5

𝑠5 𝑜6

𝑓(

𝑓.

𝑓5

Simple case!!

Skills-to-symbols: Computing Factors

196

Options

𝑜(=	Move (r) : 𝑠(
𝑜. =Grab (o). : 𝑠(, 𝑠. // grabs the object

𝑜5 =	UnGrab(o). : 𝑠(, 𝑠.	 // releases the object
𝑜6 =	Transport(o) : 𝑠(, 𝑠5 // moves the object

// moves the robot
Variable Option

𝑜(, 𝑜6 𝑠(

𝑠. 𝑜., 𝑜5

𝑠5 𝑜6

𝑓(

𝑓.

𝑓5

Skills-to-symbols: Assigning Propositions

197

Identify propositions:

1. Identify independent factors -- factors that can be used to decompose the effect
 create a proposition for each independent factor

2. For the remaining collection of factor -- create a proposition

Skills-to-symbols: Learning Symbolic Operators
• For each option:

• Identify the added and removed propositions in the effect set (termination set)

• Identify the propositions in the propositions in the initiation set

198

Skills-to-symbols: Example

199

Skills-to-symbols: Example

200

High-Level Summary

201

Abstract
States

Abstract
Actions

Low-level
behaviors

Samplers C-Space
changes

Skills to
Symbols Learned Input Input Input Yes

Learning High-Level Actions Given State Abstractions

202

Learning Symbolic Operators
• Core idea: Learn descriptions (precondition and effects) of high-level actions for task and motion planning

• What is provided:

• State abstractions -- predicates and interpretation of predicates

• Controllers -- low-level behaviors parameterized by typed objects

• Samplers -- generators for discretizing high-level arguments

• Data -- {𝑥! , 𝑎! , 𝑥!1(}	 for a set of training tasks

203

Silver, T., Chitnis, R., Tenenbaum, J., Kaelbling, L. P., & Lozano-
Pérez, T. (2021, September). Learning symbolic operators for
task and motion planning. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)

Learning Symbolic Operators: Approach

204

Data

𝑥-, 𝑐(, 𝑥(
….
𝑥)3(, 𝑐), 𝑥)

G

Robot R

Goal Area Object O

Init Area

What is given?

Controllers

Move(o)

Pick(o)

Place(o)

Predicates

At(?o – obj ?a –area)

RobotAt(?a – area)

Holding(?o – obj)

Learning Symbolic Operators: Approach

205

Data

𝑥-, 𝑐(, 𝑥(
….
𝑥)3(, 𝑐), 𝑥)

G

Robot R

Goal Area Object O

Init Area

What is given?

Controllers

Move(o)

Pick(o)

Place(o)

Predicates

At(?o – obj ?a –area)

RobotAt(?a – area)

Holding(?o – obj)

1. Convert low-level states into abstract states in the data
Data

𝑥-, 𝑐(, 𝑥(
….
𝑥)3(, 𝑐), 𝑥)

Abstract Data

𝑠-, 𝑐(, 𝑠(
….
𝑠)3(, 𝑐), 𝑠)

At(o,init)

RobotAt(a1)

¬Holding(o)

Learning Symbolic Operators: Approach

206

Data

𝑥-, 𝑐(, 𝑥(
….
𝑥)3(, 𝑐), 𝑥)

G

Robot R

Goal Area Object O

Init Area

What is given?

Controllers

Move(o)

Pick(o)

Place(o)

Predicates

At(?o – obj ?a –area)

RobotAt(?a – area)

Holding(?o – obj)

1. Convert low-level states into abstract states in the data

2. Cluster transitions using the lifted effects

Abstract Data

𝑠-, 𝑐(, 𝑠(
….
𝑠)3(, 𝑐), 𝑠)

¬RobotAt(?a1)

 RobotAt(?a2)

Holding(?o1)

¬At(?o1,?a1)

¬Holding(?o1)

At(?o1,?a1)

Learning Symbolic Operators: Approach

207

Data

𝑥-, 𝑐(, 𝑥(
….
𝑥)3(, 𝑐), 𝑥)

G

Robot R

Goal Area Object O

Init Area

What is given?

Controllers

Move(o)

Pick(o)

Place(o)

Predicates

At(?o – obj ?a –area)

RobotAt(?a – area)

Holding(?o – obj)

1. Convert low-level states into abstract states in the data

2. Cluster transitions using the lifted effects

3. Learn preconditions for each cluster Abstract Data

𝑠-, 𝑐(, 𝑠(
….
𝑠)3(, 𝑐), 𝑠)

¬RobotAt(?a2)

 RobotAt(?a1)

¬Holding(?o1)

At(?o1,?a1)

Holding(?o1)

¬At(?o1,?a1)

Learning Symbolic Operators: Approach

208

Data

𝑥-, 𝑐(, 𝑥(
….
𝑥)3(, 𝑐), 𝑥)

G

Robot R

Goal Area Object O

Init Area

What is given?

Controllers

Move(o)

Pick(o)

Place(o)

Predicates

At(?o – obj ?a –area)

RobotAt(?a – area)

Holding(?o – obj)

1. Convert low-level states into abstract states in the data

2. Cluster transitions using the lifted effects

3. Learn preconditions for each cluster
4. Make an operator for each cluster

Abstract Data

𝑠-, 𝑐(, 𝑠(
….
𝑠)3(, 𝑐), 𝑠)

¬RobotAt(?a2)

 RobotAt(?a1)

¬Holding(?o1)

At(?o1,?a1)

Holding(?o1)

¬At(?o1,?a1)

TMP with Learned High-level Actions

209

TMP framework requires:

Abstract states

Abstract actions

Low-level behaviors / motion planner
Samplers / generators

TMP with Learned High-level Actions

210

TMP framework requires:

Abstract states -- Input

Abstract actions -- Learned

Low-level behaviors / motion planner -- Input
Samplers / generators -- Input

High-Level Summary

211

Abstract
States

Abstract
Actions

Low-level
behaviors

Samplers C-Space
changes

Skills to
Symbols Learned Input Input Input Yes

Silver et
al. 2021

Input Learned Input Input Yes

Learning NSRTs
• Core idea: learn high-level abstract actions in the form of NSRTs

• NSRTs = Neuro-symbolic relational transitions

• NSRTs include:

• High-level action components: parameters, preconditions, effects

• Low-level reactive policy: 𝜋 𝑎 𝑥

• What is provided:

• Predicates -- state abstraction

• 𝑓: 𝑋	×	𝐴 → 𝑋 a known low-level deterministic transition function

212
Silver, T., Athalye, A., Tenenbaum, J. B., Lozano-Pérez, T., &
Kaelbling, L. P. (2023, March). Learning Neuro-Symbolic Skills for
Bilevel Planning. In Conference on Robot Learning. PMLR

Learning NSRTs: Overall Approach

213

Learning NSRTs: Creating Data Partitions and Effects

214

Data

𝑥-, 𝑎(, 𝑥(
….
𝑥)3(, 𝑎), 𝑥)

G

Robot R

Goal Area Object O

Init Area

What is given?

Predicates

At(?o – obj ?a –area)

RobotAt(?a – area)

Holding(?o – obj)

Data

𝑥-, 𝑎(, 𝑥(
….
𝑥)3(, 𝑎), 𝑥)

Abstract Data

𝑠-, 𝑎(, 𝑠-
….
𝑠)3(, 𝑎), 𝑠)

Partition 1

𝑠-, 𝑎(, 𝑠-
….
𝑠-, 𝑎), 𝑠(

Learning NSRTs: Creating Data Partitions and Effects

215

Data

𝑥-, 𝑎(, 𝑥(
….
𝑥)3(, 𝑎), 𝑥)

G

Robot R

Goal Area Object O

Init Area

What is given?

Predicates

At(?o – obj ?a –area)

RobotAt(?a – area)

Holding(?o – obj)

Data

𝑥-, 𝑎(, 𝑥(
….
𝑥)3(, 𝑎), 𝑥)

Abstract Data

𝑠-, 𝑎(, 𝑠-
….
𝑠)3(, 𝑎), 𝑠)

215

Abstract Data

𝑠-, 𝑎(, 𝑠(
….
𝑠)3(, 𝑎), 𝑠)

Partition 1

Partition 2

Partition 3

Learning NSRTs: Learning Preconditions

216

Data

𝑥-, 𝑎(, 𝑥(
….
𝑥)3(, 𝑎), 𝑥)

G

Robot R

Goal Area Object O

Init Area

What is given?

Predicates

At(?o – obj ?a –area)

RobotAt(?a – area)

Holding(?o – obj)

Data

𝑥-, 𝑎(, 𝑥(
….
𝑥)3(, 𝑎), 𝑥)

Abstract Data

𝑠-, 𝑎(, 𝑠-
….
𝑠)3(, 𝑎), 𝑠)

216

Abstract Data

𝑠-, 𝑎(, 𝑠(
….
𝑠)3(, 𝑎), 𝑠)

RobotAt(?a1)

¬RobotAt(?a2)

¬Holding(?o1)

At(?o1,?a1)

Holding(?o1)

¬At(?o1,?a1)

Learning NSRTs: Reactive Low-Level Policy

217

Data

𝑥-, 𝑎(, 𝑥(
….
𝑥)3(, 𝑎), 𝑥)

G

Robot R

Goal Area Object O

Init Area

What is given?

Predicates

At(?o – obj ?a –area)

RobotAt(?a – area)

Holding(?o – obj)

Partition 1

𝑠-, 𝑎(, 𝑠-
….
𝑠-, 𝑎), 𝑠(

Low-level Data

𝑥-, 𝑎(, 𝑥(
….
𝑥)3(, 𝑎), 𝑠)

Learn a regression model 𝜋(𝑎|𝑥)

High-Level Summary

218

Abstract
States

Abstract
Actions

Low-level
behaviors

Samplers C-Space
changes

Skills to
Symbols Learned Input Input Input Yes

Silver et
al. 2021

Input Learned Input Input Yes

Silver et
al. 2022

Input Learned Learned Learned Yes

Learning State and Action Abstractions

219

HARP: A Neuro-Symbolic Motion Planner
• Core idea: Learn to zero-shot create state and action abstractions simultaneously using critical regions

• What is provided?

• A set of training environments

• A random problem generators (random initial and goal configuration)

• A motion planner

• What is learned?

• A method to zero-shot create state and action abstractions for unseen environments

220

Shah, N., & Srivastava, S. (2022, May). Using Deep Learning to Bootstrap
Abstractions for Hierarchical Robot Planning. In Proceedings of the 21st
International Conference on Autonomous Agents and Multiagent Systems

Critical Regions

221

[Molina et al., 2020, ICRA]

Given a class of motion planning problem M,
criticality of an open set 𝑟 in the C-space:

 𝜇 𝑟 = 	 lim
%$→%8

𝒇(𝒓)
𝒗(𝒔𝒏)

𝒇 𝒙 = fraction of solution plans that pass through 𝑥 // captures hubs
𝒗(𝒙) = measure of 𝑥 under uniform sampling density //captures bottlenecks.

HARP: Learning to Zero-Shot Predict CRs

222

𝑛 = #degrees of freedom (DOFs)
𝑘 = #DOFs that are not determined by the

 end-effector’s location in the
workspace

 𝐼(

𝑘 channels

𝐿(𝐿., 𝐿5, … , 𝐿?, … 𝐿01(

Critical regions for each DOF

UNet[1]

[1] O. Ronneberger, P.Fischer, and T. Brox. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proc. MICCAI, 2015

Occupancy
Matrix

end-effector = base link for navigation
end-effector = gripper link for manipulation

HARP: Training Data

223

Training Data

Input
CRs for

base location

CRs for

base rotation

CRs for

base rotation
CRs for

base locationInput

CRs for

hinged angle

HARP: Learning to Zero-Shot Predict CRs

224

𝑛 = #degrees of freedom (DOFs)
𝑘 = #DOFs that are not determined by the

 end-effector’s location in the
workspace

Critical regions for each DOF

UNet[1]

[1] O. Ronneberger, P.Fischer, and T. Brox. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proc. MICCAI, 2015

Occupancy
Matrix

end-effector = base link for navigation
end-effector = gripper link for manipulation

HARP: Constructing Zero-Shot Abstractions
• Given a robot and new environment,

Predict CRs

225

HARP: Constructing Zero-Shot Abstractions
• Given a robot and new environment,

Predict CRs

Construct Voronoi diagrams around CRs

226

HARP: Constructing Zero-Shot Abstractions
• Given a robot and new environment,

Predict CRs

Construct Voronoi diagrams around CRs

Abstract states = Voronoi cells

227

2D projection of RBVDs

HARP: Constructing Zero-Shot Abstractions
• Given a robot and new environment,

Predict CRs

Construct Voronoi diagrams around CRs

Abstract states = Voronoi cells

Abstract actions = transitions between
 abstract states

228

2D projection of RBVDs

HARP: Hierarchical Motion Planning
• Given a robot and new environment,

Predict CRs

Construct Voronoi diagrams around CRs

Abstract states = Voronoi cells

Abstract actions = transitions between
 abstract states

Hierarchical motion planning using:

 a high-level multi-source bi-directional
beam search

 a multi-source multi-directional LLP mp

229

2D projection of RBVDs

HARP: Experiments

230

Rectangular robot
Hinged robot

Car-Rectangular robot
Fetch 8-DOF manipulator

HARP: Experiments

231

Rectangular robot
Hinged robot

Car-Rectangular robot
Fetch 8-DOF manipulator

Uses CRs

Uses CRs + abstractions

Formal results:
downward refinability for
holonomic robots;
soundness;
probabilistic completeness

SHARP: What if Robot Dynamics are Stochastic?
Objective: Compute a motion plan

 Compute a motion policy

232

SHARP: What if Robot Dynamics are Stochastic?
Objective: Compute a motion plan

 Compute a motion policy

High-level actions = Options

233

SHARP: What if Robot Dynamics are Stochastic?
Objective: Compute a motion plan

 Compute a motion policy

High-level actions = Options

Option guide = autogenerated dense pseudo-reward

234

SHARP: What if Robot Dynamics are Stochastic?
Objective: Compute a motion plan

 Compute a motion policy

High-level actions = Options

Option guide = autogenerated dense pseudo-reward

235

Autogenerated reward shaping

SHARP: What if Robot Dynamics are Stochastic?
Objective: Compute a motion plan

 Compute a motion policy

High-level actions = Options

Option guide = autogenerated dense pseudo-reward

236

Autogenerated reward shaping

HARP g
en

er
ate

d m
otio

n p
lan

SHARP: Experiments

237

SHARP: Results

238

SHARP performs well (times include creation of state and action abstractions).
 Next-best: RRT-replan! Other baselines struggle to learn
Hypothesis: not suited for stochasticity, long horizons, sparse rewards

SHARP: Results

239

Bars indicate solution length in number of steps (lower is better)
 Pies indicate % success (darker is better)

High-Level Summary

240

Abstract
States

Abstract
Actions

Low-level
behaviors

Samplers C-Space
changes

Skills to
Symbols Learned Input Input Input Yes

Silver et
al. 2021

Input Learned Input Input Yes

Silver et
al. 2022

Input Learned Learned Learned Yes

HARP/
SHARP

Learned Learned Learned /
Computed

Learned No

Outline

241

1. Background: Why Task and Motion Planning?
2. Abstraction as a Foundation for TMP
3. Abstraction-based Approaches
4. Research Frontier: Neuro-Symbolic Learning for TMP

What next?

Open Questions
• Stochasticity at the low-level

242

Move

Pick

Move

MovePlace

Move

PickMove

MovePickMove

Open Questions
• Stochasticity at the low-level

• Partial observability

243

Open Questions
• Stochasticity at the low-level

• Partial observability

• Learning abstractions for TMP -- What if neither state nor actions are not provided?

244

GoTo(l)

Pickup(x)

PutDown(x)

Temporal Abstraction

≡	Abstract Actions,

 Macros,
 Options…

At(x, l)

InGripper(x)

AtDestination(x)

State

Abstraction

Open Questions
• Stochasticity at the low-level

• Partial observability

• Learning abstractions for TMP -- What if state and actions are not provided?

• Orthogonal direction: Pose estimation (understanding low-level observational data)

245

