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Plans and Algorithms

Plans vs Algorithms
L 1

L 3 L 2

L 5 L 4 Load a crate

Find crate’s destination

Move Truck to Dock

Move Truck to Garage

Move truck to destination

Unload crate

Move Truck to Dock

While #(undelivered crate)>0
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Finding Algorithm-like Plans

Variants of this problem have been of continued interest.

Recurring Hurdles

Problem definition: unknown numbers

Plans with loops: finding loops

Plans with loops: reasoning about loops (Plan correctness)
Myth Systematic approach =⇒ undecidable

(cf. automated programming)

We identify a tractable piece of this problem.
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Generalized Plans

A formalization of algorithm-like plans.

Connected, directed
graph.

Nodes→ actions.

Edges→ conditions.

Start/terminal nodes.

Move(Truck,Dock)

Choose x: crate(x)    delivered(x)

Load(x)

ScanDest(x)

DriveToDest()

Unload(x)

SetDest(Dock)

DriveToDest()

SetDest(Garage)

DriveToDest()

Start

Stop

n
o
 su
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Our Approach

Learn from an example plan

Recognize loops through loop invariants

Use abstraction to identify similar states for determining
invariants
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Representation: States as Logical Structures

Dock(1)

Garage(2)

Truck(3)

Crate(6)

Crate(10)

at(3,1)
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delivered(10)

delivered, Crate
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delivered, Crate

at

dest,  at

dest,  at

Garage

Loc

at
at

at

dest

dest
Dock

Truck

Crate

Crate

Crate

Loc

V =
{Garage1, Dock1, Loc1, Truck1, Crate1, delivered1, at2, in2, dest2}

|S| = {1, 2, . . . 10}

Integrity constraints specify legal structures.



Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Representation: Actions

Precondition: formula in FO(TC).
Action operators = structure transformers

Predicate updates

p′(x̄) = (¬p(x̄) ∧∆+
p (x̄)) ∨ (p(x̄) ∧ ¬∆−p (x̄))

mv(A,B):
topmost′(x) = (¬topmost(x)∧on(A, x)) ∨ (topmost(x)∧x 6= B).
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Review: Need for Abstraction

Idea: collapse similar states together.

Makes identifying invariants (recurring properties) easy.

Use an abstraction mechanism.

We use an abstraction scheme from static analysis.
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Abstraction Using 3-Valued Logic

TVLA [Sagiv et al., 2002]: Three Valued Logic Analysis

Abstraction predicates: chosen unary predicates.

Values of all abstraction predicates on an element define its
role.

Collapse elements of the same role into summary
elements.

Relations involving summary elements may become
indefinite.

L1

L2

L3

C1

C2
C3
C4

Abstraction

dest

Location

Crate

dest

States from infinitely many instances 7→ finite set of abstract states
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Precision in Action Updates

Predicate update formula:

p′(x̄) = (¬p(x̄) ∧∆+
p ) ∨ (p(x̄) ∧ ¬∆−p )

TVLA’s focus+coerce operations: make structure precise wrt
a user defined formula (automatically determined in our
approach).

R

φφ

fφ
R R R R

φ

S SS
1 2 3

S
0

φ constrained to be unique.

Use this for sensing actions too.
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Learning Generalized Plans

We recognize loop invariants by tracing example plans in the
abstract state space.

Algorithm for Learning Generalized Plans

Change action arguments to their roles in the example plan.

Apply resulting plan to abstraction of the given start state.

Find loops in the resulting state and action sequence.
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Tracing
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findDest(); Load(); setTarget(destLoc); Drive(); Unload(); Choose(Crate)=
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Tracing
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Tracing
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Finding Preconditions

In generalized planning, correctness ≡ applicability.

Classify branches on the basis of role counts; propagate
these counts backwards.

Need for doing this constrains predicate update formulas.

R
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fφ
RR R

φ

S S
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S
0

#R = 1 #R > 1

φ constrained to be unique and satisfiable
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Finding Preconditions

In generalized planning, correctness ≡ applicability.

Classify branches on the basis of role counts; propagate
these counts backwards.

Need for doing this constrains predicate update formulas.

φ constrained to be unique and satisfiable

S
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k

(#
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)

Plan Pre­condition
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Problem Domains

L1

Van: Capacity 1
Truck: Capacity 2L2

L3
L4Dock

L1

L2

Ln

Start End

Delivery Assembly and Transport Striped Block Tower

(a) (b) (c)
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Results: Delivery setDest(dock)

setDest(dock)

#(crate     delivered) = 1

setDest(garage)

Drive()

choose(crate)

findDest()

Load()

setDest(crateDest)

Drive()

Unload()

Drive()

choose(crate)

Load()

setDest(crateDest)

Drive()

findDest()

Unload() Drive()

Unload()

Drive()

setDest(crateDest)

Load()

findDest()

Learned plan for unit delivery



Introduction
Our Approach

Results
Conclusions

Problems
Outputs
Performance

Results: Transport
mvToL3()

mvToL2()

chooseVehicle(Van)

chooseItem(monitor;atL1)

Load()

mvToL3()

Unload()

mvToL1()

chooseVehicle(Truck)

chooseItem(server;atL2)

Load()

mvToL3()

chooseItem(monitor;atL3)

Load()

mvToL4()

Unload()

mvToL1()

chooseVehicle(Truck)

Load()

mvToL3()

Unload()

chooseItem(server;atL2)

Load()

mvToL3()

chooseItem(monitor;atL3)

Load()

mvToL4()

Unload()

mvToL2()

mvToL3()

#(m
onitor      atL1) = 1

Learned plan for transport
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Results: Blocks Choose(topmost)

Choose(topmost)

Choose(topmost)

mvToTable()

mvToTable()

Choose(topmost)

mvToTable()

Choose(topmost)

Choose(topmost)

mvToTable()

Choose1(blue;onTable;topmost)

Choose2(red;onTable;topmost;base)

Move()

Choose2(blue;topmost)

Choose1(red;onTable;topmost)

Move()

Choose1(blue;onTable;topmost)

Choose2(red;topmost)

Move()

Choose1(red;onTable;topmost)

Choose2(blue;topmost)

Move()

Choose1(blue;onTable;topmost)

Choose2(red;topmost)

Move()

mvToTable() mvToTable()

#(blue onTable topmost) = 1

mvToTable()mvToTable()

#(red onTable topmost) = 1

Move()

Choose1(blue;onTable;topmost)

Choose2(red;topmost)

Move()

#(blue onTable topmost) = 1
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Results: Running Times
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Conclusions

Novel algorithm for generalizing plans and finding loops.

Identified a class of domains where our methods are proven
to work (extended-LL).

No need for plan annotations/parameterization etc.

Work in Progress/Future Directions

Plan synthesis

Extensions beyond extended-LL domains

Plan evaluation.
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Existing Approaches

Other research along this direction

Plan compilation: Triangle tables [Fikes et al., 1972], case
based planning [Hammond, 1989]

Explanation based learning of plans (BAGGER2) [Shavlik,
1990]

Extracting plan templates (DISTILL) [Winner et al., 2003],
planning with loops (KPLANNER) [Levesque, 2005]
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Extended-LL Domains

Look like linked lists upon abstraction.

Theorem
In “extended-LL” domains, we can compute all the branch
conditions and propagate them backwards to get preconditions for
plans with simple loops.

We can find complete generalized plans through search in these
domains!

Defined as a set of syntactic constraints on action update
formulae making sure that action updates don’t require
more precision than is availabe in abstract structures.

Predicate change formulas which need focusing are
role-specific, uniquely satisfiable.
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