
Introduction
Our Approach

Results
Conclusions

Learning Generalized Plans
Using Abstract Counting

Siddharth Srivastava, Neil Immerman, Shlomo Zilberstein

Twenty Third Conference on Artificial Intelligence
17th July, 2008

Introduction
Our Approach

Results
Conclusions

Overview

Introduction

Our Approach
Abstraction Mechanism
Algorithm for Learning Generalized Plans

Results

Conclusions

Introduction
Our Approach

Results
Conclusions

Plans and Algorithms

Plans vs Algorithms
L 1

L 3 L 2

L 5 L 4

Introduction
Our Approach

Results
Conclusions

Plans and Algorithms

Plans vs Algorithms
L 1

L 3 L 2

L 5 L 4 Load a crate

Find crate’s destination

Move Truck to Dock

Move Truck to Garage

Move truck to destination

Unload crate

Move Truck to Dock

While #(undelivered crate)>0

Introduction
Our Approach

Results
Conclusions

Plans and Algorithms

Finding Algorithm-like Plans

Variants of this problem have been of continued interest.

Recurring Hurdles

Problem definition: unknown numbers

Plans with loops: finding loops

Plans with loops: reasoning about loops (Plan correctness)
Myth Systematic approach =⇒ undecidable

(cf. automated programming)

We identify a tractable piece of this problem.

Introduction
Our Approach

Results
Conclusions

Plans and Algorithms

Generalized Plans

A formalization of algorithm-like plans.

Connected, directed
graph.

Nodes→ actions.

Edges→ conditions.

Start/terminal nodes.

Move(Truck,Dock)

Choose x: crate(x) delivered(x)

Load(x)

ScanDest(x)

DriveToDest()

Unload(x)

SetDest(Dock)

DriveToDest()

SetDest(Garage)

DriveToDest()

Start

Stop

n
o
 su

c
h
 x

Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Our Approach

Learn from an example plan

Recognize loops through loop invariants

Use abstraction to identify similar states for determining
invariants

Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Representation: States as Logical Structures

Dock(1)

Garage(2)

Truck(3)

Crate(6)

Crate(10)

at(3,1)
...

delivered(10)

delivered, Crate

1

2
3

6

5

4 7

8

10

9

delivered, Crate

at

dest, at

dest, at

Garage

Loc

at
at

at

dest

dest
Dock

Truck

Crate

Crate

Crate

Loc

V =
{Garage1, Dock1, Loc1, Truck1, Crate1, delivered1, at2, in2, dest2}

|S| = {1, 2, . . . 10}

Integrity constraints specify legal structures.

Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Representation: Actions

Precondition: formula in FO(TC).
Action operators = structure transformers

Predicate updates

p′(x̄) = (¬p(x̄) ∧∆+
p (x̄)) ∨ (p(x̄) ∧ ¬∆−p (x̄))

mv(A,B):
topmost′(x) = (¬topmost(x)∧on(A, x)) ∨ (topmost(x)∧x 6= B).

Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Review: Need for Abstraction

Idea: collapse similar states together.

Makes identifying invariants (recurring properties) easy.

Use an abstraction mechanism.

We use an abstraction scheme from static analysis.

Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Abstraction Using 3-Valued Logic

TVLA [Sagiv et al., 2002]: Three Valued Logic Analysis

Abstraction predicates: chosen unary predicates.

Values of all abstraction predicates on an element define its
role.

Collapse elements of the same role into summary
elements.

Relations involving summary elements may become
indefinite.

L1

L2

L3

C1

C2
C3
C4

Abstraction

dest

Location

Crate

dest

States from infinitely many instances 7→ finite set of abstract states

Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Precision in Action Updates

Predicate update formula:

p′(x̄) = (¬p(x̄) ∧∆+
p) ∨ (p(x̄) ∧ ¬∆−p)

TVLA’s focus+coerce operations: make structure precise wrt
a user defined formula (automatically determined in our
approach).

R

φφ

fφ
R R R R

φ

S SS
1 2 3

S
0

φ constrained to be unique.

Use this for sensing actions too.

Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Learning Generalized Plans

We recognize loop invariants by tracing example plans in the
abstract state space.

Algorithm for Learning Generalized Plans

Change action arguments to their roles in the example plan.

Apply resulting plan to abstraction of the given start state.

Find loops in the resulting state and action sequence.

Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Tracing

delivered, Crate

delivered, Crate
Crate

Truck

at

Dock

Loc

dest, at

dest, at

Garage

Chosen,Crate Loc

at
at

at

dest

destCrate

Crate

delivered, Crate

dest

dest

Garage

Dock
at

at

Crate

Chosen

Truck

at

Loc

dest, at

delivered, Crate

dest

dest

Garage

Dock
at

at

Crate

Chosen

Truck

at

Loc

dest, at

delivered, Crate

delivered, Crate

delivered, Cratedest
Dock

Loc

dest, at

Garage

Truck

at

at

Chosen,Crate

Crate

dest

Loc

dest, at

Crate

findDest(); Load(); setTarget(destLoc); Drive(); Unload(); Choose(Crate)=

Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Tracing

delivered, Crate

delivered, Crate
Crate

Truck

at

Dock

Loc

dest, at

dest, at

Garage

Chosen,Crate Loc

at
at

at

dest

destCrate

Crate

delivered, Crate

dest

dest

Garage

Dock
at

at

Crate

Chosen

Truck

at

Loc

dest, at

delivered, Crate

dest

dest

Garage

Dock
at

at

Crate

Chosen

Truck

at

Loc

dest, at

delivered, Crate

delivered, Crate

delivered, Cratedest
Dock

Loc

dest, at

Garage

Truck

at

at

Chosen,Crate

Crate

dest

Loc

dest, at

Crate

delivered, Crate

delivered, Crate

delivered, Crate

delivered, Crate

delivered, Crate

delivered, Crate

Dock

Loc

dest, at

Garage

Truck

Loc

dest, at

dest, at

dest, at

dest, at

dest, at

delivered, Crate
Garage

Dock

Loc

dest, at

Truck

at

dest

dest

Garage

Dock
at

at

Crate

Chosen, Crate

Truck

at

Loc

Truck

at

Dock

Garage

Crate dest

Crate

Crate

Chosen,Crate

Loc

Loc
dest

at
at

at

Crate

Crate

findDest(); Load(); setTarget(destLoc); Drive(); Unload(); Choose(Crate)=

Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Tracing

dest

dest

Garage

Dock
at

at

Crate

Chosen, Crate

Truck

at

Loc

delivered, Crate

dest

dest

Garage

Dock
at

at

Crate

Chosen

Truck

at

Loc

dest, at

delivered, Crate
Truck

at

Loc

dest, at

Dock

Garage

Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Finding Preconditions

In generalized planning, correctness ≡ applicability.

Classify branches on the basis of role counts; propagate
these counts backwards.

Need for doing this constrains predicate update formulas.

R

φφ

fφ
RR R

φ

S S
1 2

S
0

#R = 1 #R > 1

φ constrained to be unique and satisfiable

Introduction
Our Approach

Results
Conclusions

Abstraction Mechanism
Algorithm for Learning Generalized Plans

Finding Preconditions

In generalized planning, correctness ≡ applicability.

Classify branches on the basis of role counts; propagate
these counts backwards.

Need for doing this constrains predicate update formulas.

φ constrained to be unique and satisfiable

S
1

S
2

S
i

S
j

S
k

(#
R >

 1
)

Plan Precondition

Introduction
Our Approach

Results
Conclusions

Problems
Outputs
Performance

Problem Domains

L1

Van: Capacity 1
Truck: Capacity 2L2

L3
L4Dock

L1

L2

Ln

Start End

Delivery Assembly and Transport Striped Block Tower

(a) (b) (c)

Introduction
Our Approach

Results
Conclusions

Problems
Outputs
Performance

Results: Delivery setDest(dock)

setDest(dock)

#(crate delivered) = 1

setDest(garage)

Drive()

choose(crate)

findDest()

Load()

setDest(crateDest)

Drive()

Unload()

Drive()

choose(crate)

Load()

setDest(crateDest)

Drive()

findDest()

Unload() Drive()

Unload()

Drive()

setDest(crateDest)

Load()

findDest()

Learned plan for unit delivery

Introduction
Our Approach

Results
Conclusions

Problems
Outputs
Performance

Results: Transport
mvToL3()

mvToL2()

chooseVehicle(Van)

chooseItem(monitor;atL1)

Load()

mvToL3()

Unload()

mvToL1()

chooseVehicle(Truck)

chooseItem(server;atL2)

Load()

mvToL3()

chooseItem(monitor;atL3)

Load()

mvToL4()

Unload()

mvToL1()

chooseVehicle(Truck)

Load()

mvToL3()

Unload()

chooseItem(server;atL2)

Load()

mvToL3()

chooseItem(monitor;atL3)

Load()

mvToL4()

Unload()

mvToL2()

mvToL3()

#(m
onitor atL1) = 1

Learned plan for transport

Introduction
Our Approach

Results
Conclusions

Problems
Outputs
Performance

Results: Blocks Choose(topmost)

Choose(topmost)

Choose(topmost)

mvToTable()

mvToTable()

Choose(topmost)

mvToTable()

Choose(topmost)

Choose(topmost)

mvToTable()

Choose1(blue;onTable;topmost)

Choose2(red;onTable;topmost;base)

Move()

Choose2(blue;topmost)

Choose1(red;onTable;topmost)

Move()

Choose1(blue;onTable;topmost)

Choose2(red;topmost)

Move()

Choose1(red;onTable;topmost)

Choose2(blue;topmost)

Move()

Choose1(blue;onTable;topmost)

Choose2(red;topmost)

Move()

mvToTable() mvToTable()

#(blue onTable topmost) = 1

mvToTable()mvToTable()

#(red onTable topmost) = 1

Move()

Choose1(blue;onTable;topmost)

Choose2(red;topmost)

Move()

#(blue onTable topmost) = 1

Introduction
Our Approach

Results
Conclusions

Problems
Outputs
Performance

Results: Running Times

Delivery Transport Blocks
0

5

10

15

20

Execution Time Breakups

EgRunTVLA

AbsRunTVLA

LoopFinding

Tracing

Problem

Ti
m

e
(s

)

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

T
im

e
(s

)

Number of Items of Each Kind

Planning Times

2GB

Transport: SGPlan5
SATPLAN06

Aranda
Blocks: SGPlan5

SATPLAN06
Aranda

Introduction
Our Approach

Results
Conclusions

Conclusions

Novel algorithm for generalizing plans and finding loops.

Identified a class of domains where our methods are proven
to work (extended-LL).

No need for plan annotations/parameterization etc.

Work in Progress/Future Directions

Plan synthesis

Extensions beyond extended-LL domains

Plan evaluation.

Introduction
Our Approach

Results
Conclusions

Existing Approaches

Other research along this direction

Plan compilation: Triangle tables [Fikes et al., 1972], case
based planning [Hammond, 1989]

Explanation based learning of plans (BAGGER2) [Shavlik,
1990]

Extracting plan templates (DISTILL) [Winner et al., 2003],
planning with loops (KPLANNER) [Levesque, 2005]

Introduction
Our Approach

Results
Conclusions

Extended-LL Domains

Look like linked lists upon abstraction.

Theorem
In “extended-LL” domains, we can compute all the branch
conditions and propagate them backwards to get preconditions for
plans with simple loops.

We can find complete generalized plans through search in these
domains!

Defined as a set of syntactic constraints on action update
formulae making sure that action updates don’t require
more precision than is availabe in abstract structures.

Predicate change formulas which need focusing are
role-specific, uniquely satisfiable.

	Introduction
	

	Our Approach
	Abstraction Mechanism
	Algorithm for Learning Generalized Plans

	Results
	
	
	

	Conclusions

